
Rusciano et al. Reply: In their Comment [1] to our letter
[2], Berthier, Flenner, and Szamel (BFS) point out that,
because of the presence of pre-Fickian and pre-Gaussian
regimes, Fickianity and Gaussianity in glass formers are
attained at infinite time only [3]. We reply that this
asymptotic interpretation leads to a priori denying the
existence of Fickian yet non-Gaussian diffusion (FnGD),
and even of standard Brownian diffusion, not only in glass
formers, but in any actual system. Indeed, Brownian
diffusion is always “gradually” attained after other regimes
(e.g., ballistic motion), even in the most simple model
systems [4]. In many cases, like for glass formers and a
variety of other systems [5–12], these pre-Fickian and/or
pre-Gaussian regimes are long-lasting and easily detect-
able. At longer times, however, Fickianity and/or
Gaussianity are observed to be fully-fledged attained in
those systems, along similar routes (often consistent with
algebraic fits), both in experiments and simulations (within
obvious uncertainties inherent to any measurements) [13].
Thus, it is fully legitimate and meaningful to measure a
Fickian time τF and a Gaussian time τG, which we in fact
find to be distinct from one another in glass formers [2]: the
existence of FnGD in these systems is therefore
undisputable.
In earlier papers [15–17], brought into play in the

preceding comment [1], BFS themselves wrote about “time
and/or length scales of the onset of Fickian diffusion in
supercooled liquids” to mark finite time and/or length
scales. Conversely, they now claim that the “approach to
Fickian behavior is […] scale-free and no characteristic
timescale controls the emergence of Fickian behavior.” This
claim is incorrect. Indeed, the approach to Fickian behavior
is not described by a single power law and, therefore, is not
scale-free. Rather, it is characterized by a continuous
change of the effective mean square displacement
(MSD) exponent ½d loghx2ðtÞi=d log t�, as commonly
reported for glass formers and for many other systems
[6,10,18,19]. Our time τF marks the end of the non-scale-
free approach to Fickian behavior (within obvious uncer-
tainties), being therefore fully well defined.
Concerning τG, it is defined in the late decay of α2ðtÞ,

within an observed master curve, which is always attained
well after τF. Thus, it is τG > τF systematically. Our τG is
indicative of the time where the master curve is fully
established, within obvious uncertainties. The presence of
a master curve—being it compatible with a power-law fit
over a certain time range is not crucial—makes the temper-
ature or concentration dependence of τG unaffected by the
adopted threshold. Hence, our approach draws on a robust
“time-temperature (or time-concentration) superposition”
with its shift factors, in analogy with many other cases,
including de Gennes theory of polymer dynamics [20–22].
Next, we remark that our analysis in [2] deals with

quantities specifically targeted to spot out FnGD, whereas
the papers mentioned by BFS, published quite earlier than

the discovery of FnGD [5], obviously focus on different
quantities or scopes [13]. Hence, we reply to the further
criticisms in [1] as follows: (i) In [17], the naming Fickian
diffusion is explicitly associated with Fickian and Gaussian
diffusion, mirroring a common belief before the discovery of
FnGD [5]. (ii) Concerning the exponential decay length lðtÞ
of the Van Hove function, BFS explicitly cite their works
[23,24] on exponential tails “at t ≤ τα.” Such a time range is
not considered at all in our work, which instead focuses on
much longer times, t∈½τF;τG�, with τF>τα. (iii) Concerning
the power law lðtÞ ∝ tα, we recently demonstrated [25] that
there are nodiscrepancies between [2] and [19], provided that
exponential fits are performed in the appropriate time range,
as in our Letter. (iv) Regarding our ξG and the length in [15],
they are the root MSDs at t ¼ τG and at t ¼ τα, respectively.
Since τG ≫ τα, including a generally different temperature
dependence, the two lengths are different. (The further length
in [16] is obtained from a multipoint correlation function,
hence it is intrinsically different from our ξG.) (v) Mermin-
Wagner fluctuations in 2D systems are known to affect the
short-time (caged) dynamics [26], and are therefore irrel-
evant here: our results refer to very long-time dynamics,
when particles have definitely escaped their original cages.
Indeed, we recently demonstrated that FnGD is the same in
two- and three-dimensional glass formers [25]. (vi) At
variance with what was suggested by BFS [1], long-time
diffusion in glass formers is consistent with the picture
emerging by popular FnGD models [27]. Indeed, recent
papers [19,28,29] by some authors of [27] explicitly focus on
FnGD in glass formers.
Overall, we firmly deem that FnGDexists in glass formers

and that τF and τG are not only well defined, but are
fundamental timescales for the long-time glassy dynamics.
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