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Collectives of actively moving particles can spontaneously separate into dilute and dense phases—a
fascinating phenomenon known as motility-induced phase separation (MIPS). MIPS is well-studied for
randomly moving particles with no directional bias. However, many forms of active matter exhibit
collective chemotaxis, directed motion along a chemical gradient that the constituent particles can generate
themselves. Here, using theory and simulations, we demonstrate that collective chemotaxis strongly
competes with MIPS—in some cases, arresting or completely suppressing phase separation, or in other
cases, generating fundamentally new dynamic instabilities. We establish principles describing this
competition, thereby helping to reveal and clarify the rich physics underlying active matter systems that
perform chemotaxis, ranging from cells to robots.
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The thermodynamics of active matter—collections of
agents that consume energy to move or exert forces—has
been studied extensively due to its fundamental richness as
well as its importance to diverse applications [1,2]. One
prominent class of active matter is that composed of self-
propelled agents, ranging from enzymes [3–5] and cells [6–
9] to synthetic microswimmers and robots [10–12]. These
forms of active matter can often be modeled as collections
of active Brownian particles (ABPs), each of which self-
propels with a velocity of magnitudeU0 and a direction that
is continually reoriented by random thermal fluctuations,
eventually decorrelating over a timescale τR. The persist-
ence length of an ABP trajectory is then given by ∼U0τR;
the directedness of a particle of radius a can there-
fore be described by the reorientation Péclet number
PeR ≡ a=ðU0τRÞ.
Studies of this canonical model have led to fascinating

insights into the thermodynamics of active matter. For
example, phase separation in passive equilibrium systems
typically requires attractive interactions between constitu-
ents; in stark contrast, for small PeR, ABPs undergo
motility-induced phase separation (MIPS) into dense and
dilute phases without attractive interactions [13–18].
Remarkably, this nonequilibrium process can often be
described using models inspired by the phase separation
of thermally equilibrated passive systems [15,19–22].
This prior work focused on ABPs that move randomly,

with no preferred direction. However, many forms of active
matter exhibit collective chemotaxis—directed motion in
response to an external chemical gradient that can be
generated collectively by the agents themselves. In biology,
this phenomenon enables populations of cells to escape
from harmful environments, colonize new terrain, and

migrate as groups [6,23–32]; at the subcellular level,
enzymes may also perform chemotaxis [3–5]. Synthetic
active materials that can perform chemotaxis have also
been developed, often exhibiting new surprises in their
phase behavior—e.g., unusual clustering and oscillatory
density fluctuations [10,11,33–42]. However, despite these
hints that chemotaxis can influence the physics of active
matter, a broader understanding of how exactly chemotaxis
alters MIPS remains lacking.
Here, we address this gap in knowledge by developing a

theoretical model that combines both MIPS and chemo-
taxis, which are usually studied in isolation. We find that
collective chemotaxis can dramatically suppress MIPS,
arrest phase separation, or engender new complex phase
separation dynamics reminiscent of other pattern-forming
systems [43–59], but that arise due to completely different
physics—in this case, due to the competition between
MIPS, which drives ABPs to cluster into dense phases, and
chemotaxis, which instead drives them to disperse away.
Governing equations.—Building on existing continuum

models of MIPS [15,19–22], we describe the time evolution
of the volume fraction ϕ of chemotactic ABPs via the
continuity equation

∂ϕ

∂t
¼ −∇ · J; ð1Þ

J ¼ −M0ϕ∇
�
μ̃hðϕ; PeRÞ − κ∇2ϕ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MIPS

þ χ0ϕ∇fðc̃Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
chemotaxis

; ð2Þ

where t is time and J is the flux of particles. This flux has
two contributions, as indicated by the underbraces in
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Eq. (2). The first reflects active Brownian motion, as
established by the classical “model B”; in future work, it
would be interesting to explore other models of MIPS that
treat additional complexities [20]. As detailed in Sec. 1 of
[60], M0 ¼ 0.5U2

0τR is the active diffusivity reflecting the
random undirected motion of the particles, μ̃h is the bulk
chemical potential nondimensionalized by the energy scale
0.5ζU2

0τR with drag coefficient ζ, and the characteristic
length scale

ffiffiffi
κ

p
∼U0τR sets the width of the interface

between the dense and dilute phases in MIPS [15,19].
The second term in Eq. (2) represents a new addition of

chemotaxis to this classical model of MIPS. This term is
widely used to describe the chemotaxis of microorganisms
[6,24–32,77] as well as many synthetic forms of active
matter [4,34,78,79]; indeed, it can be directly derived from
an explicit microscopic description of chemotactic ABPs as
detailed in Sec. 2 of [60], based on [34]. Here, c̃ is the
concentration, nondimensionalized by a fixed characteristic
concentration, of a diffusible chemical signal (the “chemo-
attractant”) that the particles sense and direct their motion
in response to. The monotonically increasing function fðc̃Þ
describes the ability of the particles to sense the chemo-
attractant; we take fðc̃Þ ¼ c̃ as an illustrative example
[80,81]. The chemotactic coefficient χ0 describes the ability
of the particles to move up the sensed chemoattractant
gradient. Thus, χ0∇fðc̃Þ describes the chemotactic veloc-
ity, and when multiplied by ϕ describes the chemotactic
flux [82,83]. Hence, we define a new chemotactic Péclet
number PeC ≡ χ0=M0 to describe the competition between
directed chemotaxis and undirected active diffusion.
Chemoattractants (e.g., nutrients) are often taken up by

the particles themselves—thereby collectively generating a
local chemoattractant gradient that the particles bias their
motion in response to [24–26,28,34,37,39,40,84–88].
Thus, we describe the chemoattractant via

∂c̃
∂t

¼ Dc∇2c̃ − kϕgðc̃Þ þ S; ð3Þ

where Dc is the chemoattractant diffusivity, k is the
characteristic volumetric rate of chemoattractant uptake,
and gðc̃Þ describes how uptake rate increases with c̃; we use
the linearized gðc̃Þ ¼ c̃ for simplicity. Finally, S represents
the rate at which chemoattractant is externally supplied,
taken to be constant and spatially uniform as an illustrative
example.
Chemotaxis suppresses MIPS.—First, we establish the

conventional case of MIPS as a baseline, described by our
governing Eqs. (1)–(3) with PeC ¼ 0. To do so, we choose
a functional form for μ̃hðϕ; PeRÞ, given by Eq. (S4) of [60],
that derives from a previously established ABP equation of
state [16,89]. The homogeneous state with constant, spa-
tially uniform ϕðxÞ ¼ ϕ0, where x denotes position,
becomes unstable to fluctuations in ϕ when the free energy
is nonconvex (∂ϕμ̃h < 0). Therefore, the spinodal curve

demarcating the limit of stability is given by ∂ϕμ̃h ¼ 0,
shown by the black curves in Fig. 1; ϕ0 represents the ABP
volume fraction averaged over the entire system. Above
this spinodal curve, the homogeneous state is linearly
stable. Below the spinodal, ABPs spontaneously separate
into dense and dilute phases, initially forming domains with
a most unstable wavelength ∼q−1sp ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2κ=∂ϕμ̃h
p

that
coarsen over time via spinodal decomposition (Movie
S1) as established previously [19,89].
How do the features of MIPS change upon the introduc-

tion of chemotaxis (PeC > 0)? Given a constant and uniform
S, the homogeneous state is now described by spatially
uniform ABP and chemoattractant profiles, ϕðxÞ ¼ ϕ0 and
c̃ðxÞ ¼ c̃0, where c̃0 is given by the steady-state solution to
Eq. (3), c̃0 ¼ S=ðkϕ0Þ. By perturbing this steady state with
small-amplitude fluctuations δϕ ¼ δϕ̂eiq·xþωt and δc̃ ¼
δĉeiq·xþωt of spatial wave vector q and growth rate ω, we
obtain the dispersion relation ωðqÞ, given by Eq. (S33) of
[60], whereq ¼ jqj is thewave number of a givenmode. The
homogeneous state is linearly stable if Reω < 0, which is
always true when ∂ϕμ̃h > 0. We therefore focus our sub-
sequent analysis on the spinodal region of nonchemotactic
MIPS where ∂ϕμ̃h < 0, and nondimensionalize q and ω
by the characteristic nonchemotactic MIPS quantities qsp
and ωsp ≡ ωðqsp;PeC ¼ 0Þ.
As detailed in Sec. 3 of [60], the dispersion relation

for chemotactic MIPS [Eq. (S37)] solely depends on three
dimensionless parameters: α≡ −M0ϕ0∂ϕμ̃h=Dc, which
compares the collective ABP diffusivity −M0ϕ0∂ϕμ̃h to
that of the chemoattractant; the Damköhler number Da≡
kϕ0=ð2Dcq2spÞ ¼ −κkϕ0=ðDc∂ϕμ̃hÞ, which compares the
rates of chemoattractant uptake and diffusion over the length
scale q−1sp =

ffiffiffi
2

p
; and the reduced chemotactic Péclet number

Pe0C ≡ χ0c̃0=ð−M0ϕ0∂ϕμ̃hÞ. Because the MIPS phase dia-
gram is conventionally parametrized by ϕ0 and PeR, which
together set ∂ϕμ̃h [Eq. (S5)], we also define versions of the
three dimensionless parameters that are independent of these
variables: α0 ≡M0=Dc, Da0 ≡ κk=Dc, and PeC given ear-
lier, such that α ¼ −α0ϕ0∂ϕμ̃h, Da ¼ −Da0ϕ0=∂ϕμ̃h, and
Pe0C ¼ −PeC · S=ðkϕ2

0∂ϕμ̃hÞ. Furthermore, because the pro-
portionality between Pe0C and PeC is scaled by S=k, without
loss of generality, we fix the chemoattractant supply rate
S=k ¼ 1. Chemotactic MIPS is then parametrized by a total
of five governing parameters: fϕ0; PeR; α0;Da0; PeCg, as
summarized in Table S1. Thus, to examine how chemotaxis
influences MIPS, we first investigate how the conventional
ϕ0 − PeR phase diagram of MIPS changes upon varying α0,
Da0, and PeC.
As detailed in Sec. 3 of [60] and summarized in

Appendix A, our first main result from the linear stability
analysis is that phase separation is suppressed by chemo-
taxis, but only when two criteria are simultaneously satis-
fied: (i) Pe0C ≥ Pe0Ccrit, and (ii) α ≤ αcrit, where Pe0Ccrit¼
ð1þminfDa;1gÞ2=ð4·minfDa;1gÞ and αcrit ¼ 1þ 2 · Daþ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dað1þ DaÞp

. We therefore designate the limits given by
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Pe0C¼Pe0Ccrit and α ¼ αcrit as “Boundary 1” and “Boundary
2”—shown in the PeR − ϕ0 phase diagrams (Fig. 1) by the
solid and red dotted curves, respectively. Boundary 1 is
colored by the different values of PeC. Boundary 2 does not
depend on PeC. Criteria (i) and (ii) correspond to the regions
above Boundaries 1 and 2, respectively; hence, the region
above both boundaries represents the stable regime in which
the ABPs are in the homogeneous state, while conversely,
the region below either Boundary 1 or 2 represents the
unstable regime in which the ABPs phase separate.
As a starting example, we consider Da0 ¼ 0.2 and

α0 ¼ 1, shown in Fig. 1(a). In this case, Boundary 2 is
below the horizontal axis; hence, the system is linearly stable
above Boundary 1 and unstable below it. Boundary 1 shifts
to lower PeR and a narrower range ofϕ0 with increasing PeC.
That is, the region of instability shrinks and phase separation
is suppressed when chemotaxis is stronger. Numerical
simulations at PeC ¼ 1 confirm this linear stability result:
ABPs are in the homogeneous state above Boundary 1, but

phase separate below it, as shown in Fig. 1(b). Intriguingly,
the features of this phase separation appear to be funda-
mentally distinct from the spinodal decomposition observed
in conventional nonchemotactic MIPS. For example, as
shown in Movie S2, ABPs phase separate into finite-sized
domains that remain stationary and do not subsequently
coarsen—unlike in conventional MIPS.
Next, upon increasing α0 to 4, Boundary 1 remains un-

altered, but Boundary 2 shifts upward, as shown in Fig. 1(c).
As a result, for the case of PeC ¼ 1, Boundary 2 rises above
Boundary 1, which is omitted since Boundary 2 now
corresponds to the limit of stability, as confirmed by
numerical simulations shown in Fig. 1(d). As shown in
Movie S3, ABPs phase separate into finite-sized domains
and bands that form traveling waves, a feature that is
fundamentally distinct both from conventional MIPS and
Fig. 1(b).
Finally, to highlight yet another distinct form of phase

separation, we then increase both α0 and Da0 in Fig. 1(e),
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FIG. 1. Chemotaxis suppresses MIPS. (a),(c),(e) Phase diagram determined by linear stability analysis for different Da0 and α0; ϕ0

represents the system-averaged ABP volume fraction. The black curve shows the limit of stability without chemotaxis, below which is
conventional MIPS. The colored solid and red dotted curves show Boundaries 1 and 2, defined in the main text; different colors indicate
different PeC. Boundary 2 is below the horizontal axis in (a). The region above both boundaries is stable (ABPs in the homogeneous
state), while the region below either boundary is unstable. The different instability types—finite (F) or unbounded (U), stationary (S) or
oscillatory (O)—are denoted by the shaded, unshaded, nonhashed, and hashed regions, respectively. Dash-dotted and dashed
curves indicate the boundaries between F=U and S=O instabilities, respectively. The predictions are corroborated by simulations
(Movies S2-S4), snapshots of which are shown in (b),(d),(f), which focus on the gray boxed regions shown in (a),(c),(e). Snapshots in (b)
and (d) correspond to PeC ¼ 1, while PeC ¼ 0.35 in (f).
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where Boundary 1 shifts downward while Boundary 2
shifts upward, part of which becomes the limit of stability
for PeC ¼ 0.35, confirmed by simulations in Fig. 1(f).
Strikingly, we find that throughout the unstable region,
the patterns vary from traveling bands that are exten-
ded (shaded greenþ hashed region) or less extended
(unshadedþ hashed region) to domains that stretch, rotate,
and translate (unshaded region below the green dashed
curve), as shown in Movie S4.
Taken altogether, these results demonstrate that MIPS is

suppressed when (1) the strength of chemotaxis, as quan-
tified by PeC, and (2) chemoattractant diffusivity relative to
that of the ABPs, as quantified by α−10 , are sufficiently high.
Moreover, our simulations reveal that the features of phase
separation are dramatically altered by chemotaxis—with
separated domains that initially can either be finite-sized or
unbounded in space, and can either be stationary or exhibit
complex oscillatory dynamics in time, depending on the
values of fϕ0; PeR; α0;Da0; PeCg. We summarize these
results in the α0 − PeC phase diagram shown in Fig. 2,
holding ϕ0, PeR, and Da0 fixed, and show the region of
stability (which lies above Boundary 1 and to the left of
Boundary 2 in the α0 − PeC plane shown) and snapshots of
these different types of instability (animated in Movie S5)
that we now seek to categorize.

Chemotaxis arrests phase separation.—We first classify
the instabilities by their distinct spatial characteristics. In
particular, depending on the range of initially unstable wave
numbers q− < q < qþ in the dispersion relation ωðqÞ
[Eq. (S33)] derived using our linear stability analysis,
we differentiate instabilities as being either finite wave-
length (F) when the unstable modes are spatially bounded
(q− > 0), and therefore phase-separated domains do not
coarsen, or unbounded (U) when the unstable modes can
instead extend indefinitely in space (q− ¼ 0) [90]. While
conventional MIPS is a Type U instability [19,43,89], our
second main result is that chemotaxis can give rise to Type
F instabilities as well—as shown by the domains that do
not coarsen in, e.g., Movies S2 and S3 noted earlier.
Comparing the ABP (Movies S2 and S3) and chemo-
attractant (Movies S6 and S7) profiles reveals the under-
lying reason: ABPs in an extended, dense domain
collectively establish a strong local chemoattractant gra-
dient through uptake—which in turn causes them to bias
their motion up the gradient and disperse away, arresting
phase separation.
This behavior is also reflected in the simulations shown

in Fig. 2 and Movie S5. For the example of α0 ¼ 2 (left of
Boundary 2), as PeC increases, the coarsening slows and
eventually becomes arrested (Sec. 6 of [60]), forming
finite-sized domains and stripes—ultimately reaching the
homogeneous state at the largest PeC above Boundary 1.
Examining the dispersion relations corroborates this obser-
vation (see Appendix B). Indeed, determining q− directly
from the dispersion relation yields the criterion that Type F
is Pe0C > 1 (shaded regions in Fig. 1), while Type U is given
by Pe0C < 1 (unshaded). The boundary between the two,
given by Pe0C ¼ 1 [Eq. (S68)], is represented by the dash-
dotted curves in Figs. 1 and 2. In all cases, our predictions
agree well with the simulations, as detailed in Sec. 7 of [60]
—thereby providing a description of how chemotaxis can
arrest MIPS. Indeed, as described in Sec. 9 of [60], this
description may help to rationalize previous observations of
bacterial populations [7,91].
Chemotaxis engenders complex oscillatory dynamics.—

We further classify the instabilities by their distinct tem-
poral characteristics [43]: “Stationary” (S) if all unstable
modes are nonoscillatory with Imω ¼ 0, or “Oscillatory”
(O) if there exist unstable and oscillatory modes with
ReωðqÞ > 0 and ImωðqÞ ≠ 0. While conventional MIPS
is a Type S instability, our third main result is that
chemotaxis can give rise to Type O instabilities as well
—e.g., Movies S3 and S4 noted earlier. This behavior is
also reflected in Fig. 2 and Movie S5, and is again
corroborated by examining the dispersion relations for
the example of α0 ¼ 8 (Appendix B). In this case, at large
PeC, chemotaxis proceeds more rapidly and the diffusing
chemoattractant cannot equilibrate fast enough. As a result,
variations in c̃ðxÞ lag behind ϕðxÞ (Appendix B), driving
sustained large-scale motion of the phase-separated
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FIG. 2. Chemotaxis arrests phase separation and generates
dynamic instabilities. Phase diagram is parametrized by α0 and
PeC, holding ϕ0 ¼ 0.8, PeR ¼ 10−3, and Da0 ¼ 0.5 fixed. Differ-
ent instability types predicted by our linear stability analysis are
indicated using the same labels as in Fig. 1, again corroborated by
simulations (Movie S5), snapshots of which are shown. Arrows
show the local velocity field u relative to the characteristic
velocity u0 ≡M0=

ffiffiffi
κ

p
∼ U0; juj < 0.005u0 vectors are omitted

for clarity.
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domains [92,93], e.g., through stretching, rotating, and
translating, as indicated by the arrows in Fig. 2 showing the
local velocity field u.
The dispersion relation again yields a criterion for the

Type O instability, shown as the hashed regions in Fig. 1.
The Type S=O boundary [Eq. (S60)] is represented using
the dashed curves in Figs. 1(e), 1(f) and 2; in Fig. 1(c) and
1(d), this boundary coincides with Boundary 2. We again
observe good agreement between the predicted Type S=O
boundary and the simulations [94]. Thus, our analysis
provides a key first step toward explaining how the inter-
play between chemotaxis and chemoattractant diffusion
can generate more complex phase separation dynamics
than in conventional MIPS. Indeed, as described in Sec. 9
of [60], our results may help guide new experiments using
synthetic materials [12,95–101] to explore these rich
physics. Our simulations also show other complex features,
e.g., the quasiordered lattices in Fig. 2, whose description
will require nonlinearities to be explicitly incorporated in
the analysis; moreover, while here we examined a specific
type of chemotaxis and MIPS, our theoretical framework
can be readily extended to other forms of taxis and phase
separation. We further describe these useful directions for
future work in Sec. 10 of [60].

We acknowledge support from NSF Grants No. CBET-
1941716, No. DMR-2011750, and No. EF-2124863, the
Camille Dreyfus Teacher-Scholar Program, the Pew Bio-
medical Scholars Program, and a Princeton Bioengineering
Initiative (PBI2) Postdoctoral Fellowship.

Appendix A: Linear stability analysis.—Here, we pro-
vide a summary of the linear stability analysis in Sec. 3
of [60]. Substituting the small-amplitude perturbations
δϕ and δc̃ into linearized Eqs. (1), (2), and (3) yields

ωδϕ̂¼−M0ϕ0q2ð∂ϕμ̃hþκq2Þδϕ̂þχ0ϕ0q2f0ðc̃0Þδĉ; ðA1Þ

ωδĉ ¼ −Dcq2δĉ − kðgðc̃0Þδϕ̂þ ϕ0g0ðc̃0ÞδĉÞ: ðA2Þ

Section 3E of [60] shows that the system is always
linearly stable outside the spinodal region ∂ϕμ̃h > 0.
Therefore, we analyze the linear stability when ∂ϕμ̃h < 0

below. Nondimensionalizing the wave number q and
growth rate ω via q̃ ¼ q=ð ffiffiffi

2
p

qspÞ and ω̃ ¼ ω=ð4ωspÞ,
we obtain the following quadratic equation for ω̃:

ω̃2 þ
�
q̃4 −

�
1 −

1

α

�
q̃2 þ Da

α

	
ω̃

þ q̃2

α

�ðq̃2 − 1Þðq̃2 þ DaÞ þ Da · Pe0C
� ¼ 0: ðA3Þ

The stability condition is that the two solutions to the
equation satisfy Re ω̃�ðq̃Þ ≤ 0 for all q̃, or equivalently
ω̃þω̃− > 0 and ω̃þ þ ω̃− < 0.

Since

ω̃þω̃− ¼ q̃2

α

�ðq̃2 − 1Þðq̃2 þ DaÞ þ Da · Pe0C
�
; ðA4Þ

when Da ≤ 1, αq̃−2ω̃þω̃− ≥ Da · ðPe0C − 1Þ. When Da > 1,
αq̃−2ω̃þω̃−≥−½ð1þDaÞ2=4�þDa·Pe0C. Therefore, ω̃þω̃−>0

for all q̃ is equivalent to criterion (i) (Pe0C ≥ Pe0Ccrit).
Since

ω̃þ þ ω̃− ¼ −q̃4 þ
�
1 −

1

α

�
q̃2 −

Da
α

; ðA5Þ

when α ≤ 1, ω̃þ þ ω̃− ≤ −Da=α < 0. When α > 1,
ω̃þ þ ω̃− ≤ ð1 − α−1Þ2=4 − Da=α. Therefore, ω̃þþω̃−<0
for all q̃ is equivalent to criterion (ii) (α ≤ αcrit).
In the main text, we define Type U instability to be when

the lower bound of the unstable wave number q− is zero. As
shown in Sec. 3C of [60], this condition is equivalent to
requiring that the second order derivative of ω̃þ at q̃ ¼ 0 is
positive, that is, ω̃00þðq̃ ¼ 0Þ ¼ 2ð1 − Pe0CÞ > 0, or Pe0C < 1.
Oscillatory instability emerges when there exists q̃ for

which Re σðq̃Þ > 0 and Im σðq̃Þ ≠ 0, or equivalently
ω̃þω̃− > 0 and the discriminant of Eq. (A3) is negative.
The first condition requires that criterion (ii) is not satisfied
(α > αcrit). For the second condition, because the discrimi-
nant is

Δ ¼
�
q̃4 −

�
1þ 1

α

�
q̃2 −

Da
α

	
2

−
4Da · Pe0C

α
q̃2; ðA6Þ

Δ becomes negative when Pe0C is sufficiently large. Sec. 3D
of [60] derives the expression for the critical Pe0C above
which both conditions are met.

Appendix B: The role of chemotaxis in arresting
phase separation and generating complex dynamics.—
As shown in Fig. 2 and Movie S5, for the example of
α0 ¼ 2 (left of Boundary 2), chemotaxis arrests phase
separation with increasing PeC. Examining the dispersion
relations in Fig. 3(a) corroborates this observation. At
low nonzero PeC, the unstable modes extend to q− ¼ 0
(blue to green curves), indicating a Type U instability. By
contrast, for the larger PeC ¼ 0.75, q− > 0 (chartreuse
curve), indicating a Type F instability.
Also as shown in Fig. 2 andMovie S5, for the example of

α0 ¼ 8 (right of Boundary 2), chemotaxis arrests phase
separation with increasing PeC. Examining the dispersion
relations in Fig. 3(b) corroborates this observation. At low
PeC (blue and cyan curves), all unstable modes (with
Reω > 0) are stationary (having Imω ¼ 0), indicating a
Type S instability; by contrast, at higher PeC (green to
orange curves), some unstable modes have Imω ≠ 0,
indicating a Type O instability.
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Comparing the ABP and chemoattractant profiles, ϕðxÞ
and c̃ðxÞ respectively, sheds light on the physics underlying
these complex dynamics at large PeC and α0. Figure 3(c)
shows the illustrative case of α0 ¼ 8 for the five different
PeC shown in (a). For the lowest two PeC, chemotaxis is
weak, enabling c̃ðxÞ to equilibrate in response to changes in
ϕðxÞ. Consequently, the phase-separated patterns remain
stationary, reflective of a Type S instability. For larger PeC,
however, chemotaxis proceeds more rapidly and the dif-
fusing chemoattractant cannot equilibrate fast enough. As a
result, variations in c̃ðxÞ lag behind ϕðxÞ, driving directed
large-scale motion of the phase-separated domains [92,93],
reflective of a Type O instability.
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