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Inspired by recent experimental measurements [Guo et al., Phys. Rev. Lett. 124, 206602 (2020); Jiménez
et al., Nature (London) 592, 370 (2021)] on frustrated quantum magnet SrCu2ðBO3Þ2 under combined
pressure and magnetic fields, we study the related spin-1=2 Shastry-Sutherland model using state-of-the-art
tensor network methods. By calculating thermodynamics, correlations, and susceptibilities, we find, in zero
magnetic field, not only a line of first-order dimer-singlet to plaquette-singlet phase transition ending with a
critical point, but also signatures of the ordered plaquette-singlet transition with its critical end point
terminating on this first-order line. Moreover, we uncover prominent magnetic barocaloric responses, a
novel type of quantum correlation induced cooling effect, in the strongly fluctuating supercritical regime.
Under finite fields, we identify a quantum phase transition from the plaquette-singlet phase to the spin
supersolid phase that breaks simultaneously lattice translational and spin rotational symmetries. The
present findings on the Shastry-Sutherland model are accessible in current experiments and would shed
new light on the critical and supercritical phenomena in the archetypal frustrated quantum magnet
SrCu2ðBO3Þ2.
DOI: 10.1103/PhysRevLett.131.116702

Introduction.—Frustrated magnetism constitutes a fertile
ground breeding enriched spin states and phase transitions
[1,2], including unusual spin orders, quantum spin liquid
[3–5], and unconventional quantum critical point (QCP)
like the deconfined QCP (DQCP) [6], etc. The paradig-
matic Shastry-Sutherland (SS) model is a highly frustrated
quantum spin system with an analytically known ground
state in certain parameter regime [7]. Nevertheless, its
global phase diagram hosts rich spin states and transitions,
where numerical simulations are playing an increasingly
important role [8–25]. On the other hand and as a miracle of
nature, the SS model is faithfully realized by a quantum
magnetic material SrCu2ðBO3Þ2 whose pressure-field-
temperature phase diagram is under intensive investigation
[26–34], and the intriguing magnetic phenomena observed
in experiments in turn require further theoretical studies of
the SS model.
The spin-1=2 SSmodel is defined on a square lattice with

the Hamiltonian

H ¼ J
X

hi;ji
Si · Sj þ J0

X

hhi;jii
Si · Sj; ð1Þ

where J > 0 is the antiferromagnetic (AFM) coupling on
the interdimer, and J0 > 0 on the intradimer bonds

[cf. Fig. 1(b)]. We take J0 ¼ 1 as the energy scale hereafter.
For α≡ J=J0 ≤ 0.5, the ground state is rigorously a product
of singlets on the J0 dimers [7], dubbed the dimer-singlet
(DS) phase. While for the other limit, α ≫ 1, it has clearly a
Néel AFM state [35], and possible intermediate phases
were debated for decades [8–17]. Now a consensus has
more or less been reached that there exists an intervening
plaquette-singlet (PS) phase [18–25,28,30,32,33]. The
DS-PS transition is first order, while the PS-AFM transition
is possibly second order and belongs to a DQCP [20].
Evidence of the intermediate PS phase and pressure-
induced quantum phase transitions (QPTs) were indeed
found in recent experiments [28,30,31].
However, there are still enigmas surrounding this seem-

ingly innocent PS phase. For example, the experiments on
SrCu2ðBO3Þ2 show that the plaquette singlets sit on “full”
plaquettes containing diagonal bonds [28,32,47]; while
recent ground-state numerics suggest the “empty” pla-
quettes without diagonal bonds instead [18,20–25]. As a
crucial step toward resolving this discrepancy, a finite-
temperature calculation from the theoretical side is much
in demand first: how about the competition between
the instabilities toward empty and full PS order across the
full temperature range? After all, based only on the
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ground-state results one cannot exclude in principle a full-
plaquette phase at an intermediate temperature. Recent
specific heat measurements on SrCu2ðBO3Þ2 found a signal
at T ∼ 2 K, conjecturing that it reflects the onset of PS
order [30,31]. Despite great efforts for thermodynamics
simulations made in recent years [21,48,49], this signal
remains elusive theoretically due to the great challenges in
unbiased calculations down to such low temperature.
In this work, we perform a finite-temperature study of

the SS model on a cylinder geometry with the state-of-the-
art exponential tensor renormalization group (XTRG)
approach [50–52]. XTRG has been successfully used in
studying frustrated quantum magnets [53–56], and here we
simulate the SS model down to T=J0 ∼ 0.006 on a long
cylinder. By mapping out the phase diagram, we reproduce
the critical point [31] and uncover the empty PS phase
below the thermal transition line T�

P with a Z2 symmetry
breaking. Although the calculations are restricted within
W ¼ 6 cylinders, we believe the conclusions also hold for
wider ones (preliminary width-8 results also support this
scenario, see Supplemental Material, Fig. S2 [36]), and
therefore explain the specific heat peak observed at

T ≲ 2 K in recent experiments [30,31]. We further propose
a pronounced quantum correlation cooling driven by
pressure (that controls the coupling ratio α) in the super-
critical regime. As a companion, we also perform density-
matrix renormalization group (DMRG) [57] calculations to
explore theQPTs driven by combined pressure andmagnetic
fields. In particular, evidence for the QPT between the PS
phase and a spin supersolid (SSS) phase is witnessed, whose
location well agrees with recent experiments [32].
The SS model phase diagram.—The obtained pressure-

temperature phase diagram of the SS model is shown in
Fig. 1(a) based on the contour plot of the magnetic specific
heat Cm=T. As the first-order transition line is slightly bent,
one goes over various spin states as temperature decreases
with fixed J=J0 ¼ 0.676, and find in Fig. 1(c) intriguing
temperature-evolution behaviors: starting from the high-T
paramagnetic (PM) phase, the system evolves into the DS
regime [second row of Fig. 1(c)], where the intradimer
correlation CD ¼ −hSi · SjiD [cf. inset in Fig. 2(c)] is
strongest and the spin structure factor peaks at X and Y
points in the first Brillouin zone. Further decreasing
temperature, it enters the plaquette liquid (PL) phase via
a first-order transition, where CD changes its sign and the
interdimer correlation CNN ¼ −hSi · SjiNN [see also inset
in Fig. 2(c)] becomes stronger, as shown in the third row of
Fig. 1(c). In the PM, DS, and PL regimes, the equivalent
NN bonds take the same values and there is no Z2

symmetry breaking; while at sufficiently low temperatures
(T < T�

P), the PL phase eventually gives way to the ordered
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FIG. 2. Contour plots of (a) intradimer correlator CD and
(b) order parameter OE for the empty PS order. Green dashed,
solid, and dotted lines are peaks of Cm=T, and red (yellow) dot
represents the CP (CEP) [cf. Fig. 1(a)]. (c), (d) Magnetic specific
heat Cm=T, in conjunction with CD, interdimer correlator CNN,
and OE vs T, for J=J0 ¼ 0.67 and 0.68, respectively. The inset in
(c) illustrates definitions of these quantities. Roughly 6% total
entropy is released near the T�

P peak, consistent with experimental
result of ∼4% obtained at 1.8 GPa [30].

(b)

(a) (c)

FIG. 1. (a) Pressure-temperature phase diagram of the SS
model with magnetic specific heat Cm=T as contour background.
The low-temperature data smoothly extrapolate to the ground-
state results, where a first-order QPT occurring at α1 ≃ 0.673 and
a QCP at α�2 ≃ 0.692 are obtained by DMRG [36] on the same
geometry. Two crossovers TDS and TPL (blue dashed lines), first-
order T1 (solid line), and second-order transition T�

P (empty circle
for each data point) are determined from peaks of Cm=T. (b) The
6 × 24 cylinder with the ordered PS phase illustrated. (c) Temper-
ature evolution of local bond correlators (first column), static spin
structure factors (second column), and the corresponding phases
(third column) for J=J0 ¼ 0.676. Local correlators are measured
at the center of the lattice, exemplified by the light green square in
(b), with two types of empty plaquettes indicated by þ and −
signs, respectively. Blue (red) bonds indicate negative (positive)
correlations with their widths proportional to the absolute values.
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PS phase upon a second-order transition. The PS order
can be detected by comparing two bonds with the same
orientation [58], as shown in the last row of Fig. 1(c).
Correspondingly, the spin structure peak shifts to the M
point in the PL and ordered PS phases, with the latter being
brighter. Markedly, this interesting temperature evolution
of spin states due to the slightly bent first-order line is
consistent with the results in a recent NMR experiment,
where a phase coexistence phenomenon was observed [32].
First-order line and critical point.—We determine

the critical point (CP), ðα�c; T�
c=J0Þ ≃ ð0.678; 0.036Þ, in

Fig. 1(a) as the position where two dashed lines, TDS
and TPL, and the solid line T1 meet. The latter, i.e., a first-
order transition line, can be understood from intradimer
correlation CD, which serves as the corresponding density-
type order parameter. As shown in Fig. 2(a), for T < T�

c, a
discontinuous jump inCD occurs at α1 ≃ 0.675, a character-
istic of the first-order transition between the DS and PL/PS
phase. In contrast, for T > T�

c, the simulated CD data show
a smooth change, which resembles that of liquid-gas
crossover in the supercritical regime of water’s pressure-
temperature phase diagram [31]. According to the cou-
plings determined in Refs. [28,30], our results correspond
to a critical pressure around 2 GPa, and a critical temper-
ature T�

c about 2–3 K, in agreement with recent experiments
[31]. We further examine the correlation jump between the
DS and PS states ΔCD ∼ ½ðT�

c − TÞ=T�
c�β near the CP (from

below) [31], with the fitted critical exponent β ≈ 1=8 [36]
falling into the two-dimensional Ising universality class.
Notably, the white line in Fig. 2(a) with CD ≈ 0, which
roughly coincides with the TPL line determined independ-
ently from the broad peak of Cm=T, indicates a sign
switching in the intradimer correlations, as also observed
experimentally [47].
In Fig. 1(a), there are two crossover temperature scales,

TDS and TPL, determined from Cm=T humps. They can be
elucidated by examining two types of local correlations,
i.e., the interdimer CNN and the intradimer CD. As shown
in Figs. 2(c) and 2(d), a shoulderlike structure is first
developed in Cm=T at Th ∼ 0.4J0, where both correlations
build up with similar strengths. However, it is found that for
α ¼ 0.67 < α1, [cf. Fig. 2(c)], the intra(inter) dimer corre-
lations increase (decrease) rapidly around TDS; while, for
α ¼ 0.68 > α1, [cf. Fig. 2(d)], the situation around TPL is
reversed. Moreover, we define the empty PS order param-
eter OE ≡P

i½ð−1ÞixSi · Siþx̂ − ð−1ÞiySi · Siþŷ�, with ix;y
the coordinates of site i [cf. Fig. 1(b)], and the summation
runs over sites of the central unit cell to alleviate finite-size
effect. It is found that OE remains vanishingly small till
near T�

P, indicating the fluctuating plaquette order in the PL
regime yet without Z2 symmetry breaking.
Second-order line and critical end point.—When further

decreasing temperature, the specific heat peak gets brighter
and becomes maximal at ðαE; TE=J0Þ ≈ ð0.674; 0.008Þ, as
shown in Fig. 1(a), which is nothing but the critical end

point (CEP) [59,60]. On the right hand side of this point,
there is a second-order thermal transition line T�

P defined by
the peaks of Cm=T, which goes downward and eventually
drops outside of our temperature window when approach-
ing the possible QPT at α�2 ≈ 0.692 determined by DMRG
calculations [36]. Such a peak structure has been exper-
imentally observed recently [30,31]. Here, we perform
low-temperature calculations down to the previously inac-
cessible regime [21,31,48,49], and identify the ordered PS
phase below the transition temperature T�

P ∼ 0.01J0, i.e.,
resembling the “solid” or “ice” beneath the “liquid” phase
in the water’s phase diagram. The low-temperature calcu-
lations smoothly extrapolate to the ground-state DMRG
results, and hence provide a comprehensive pressure-
temperature phase diagram of the SS model in Fig. 1(a).
Noteworthily, although the PS order transition found
experimentally is around T=J0 ∼ 0.02 [30,31], slightly
higher than the value obtained here for W ¼ 6 geometry,
our finite-size analysis indicates thatT�

P increaseswithwidth,
and the rudimentary width-8 result of T�

P already takes a
similar value (cf. Supplemental Material, Fig. S2 [36]).
To understand the nature of this low-temperature PS

phase, in particular, whether the symmetry breaking occurs
among the empty or full plaquettes, we compute order
parameters for both the empty (OE) and full (OF) PS states.
The former is shown in Figs. 2(b)–2(d), while the latter is
found to be much smaller (see more details in Supplemental
Material, Sec. III B [36]). In Fig. 2(d), we find OE remains
zero until around T�

P, where the specific heat shows a peak.
It corresponds to the rapid buildup of Z2 symmetry
breaking order amongst empty plaquettes. We also compute
the PS susceptibility for both empty (χE) and full (χF) PS
orders, and find that the former increases much faster even
in the PL regime below TPL [36]. Therefore, we conclude
that the empty PS instability predominates over the full one
in the entire low-temperature range, and confirm that the PS
phase is of empty type in the pressure-temperature phase
diagram. Since recent experiments indicate instead the full-
plaquette state in SrCu2ðBO3Þ2 [28,32,47], one needs to
consider additional terms beyond the basic SSM to resolve
this subtle discrepancy [19].
Supercritical regime and magnetic barocalorics.—It is

well known that water in its supercritical state has many
fascinating physical properties leading to various applica-
tions [61]. In the case of quantummagnets, the supercritical
regime remains largely unexplored [62]. Here, we initiate
the investigation of supercriticality in the SS model from
the perspective of magnetothermodynamics. In Fig. 3(a),
we present the isentropes in this regime, where a prominent
adiabaticmagnetic cooling effect is found.By connecting the
lowest temperature points of isentropes, we obtain amaximal
entropy line with strong spin fluctuations that resembles the
renowned Widom line in the supercritical regime [63]. As
such a cooling effect originates from the magnetic entropy
change and is controlled by pressure, we dub it magnetic
barocaloric effect, and propose to characterize it by a
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Grüneisen ratio ΓP≡−ð1=TÞf½ð∂S=∂PÞT �=½ð∂S=∂TÞP�g. As
shown in Fig. 3(b), a clear sign changewith very pronounced
peak/dip can be observed in ΓP for supercritical spin states.
More specifically, we denote the nominator by
γP ≡ −ð∂S=∂PÞT ∼ ∂hSi · Sji=∂T, and find a universal scal-
ing γP ∼ ln ½ðT − T�

cÞ=T�
c� near the CP [cf. the inset of

Fig. 3(b)], dictated by the 2D Ising universality class.
Notably, in sharp distinction to the conventional magnetic
cooling due to entropy changevia an order-disorder switch of
the magnetic moment’s orientations [64], here the magnetic
barocaloric effect is related to the rearrangements in spin
singlet patterns [illustrated in the inset of Fig. 3(a)]. Such a
quantum correlation induced cooling, observed in the super-
critical regime and ascribed to the rearrangement of disorder
singlet patterns, constitutes a novel mechanism for helium-
free cryogenics.
Field-temperature phase diagram and spin-supersolid

transition.—Given the ordered PS phase identified,
we consider applying magnetic fields to pressured
SrCu2ðBO3Þ2 [32,33] along the spin Sz direction, i.e.,
H → H − h

P
i S

z
i . Here, we focus on J=J0 ¼ 0.68 and

h=J0 ≤ 0.25, and the contour plot of Cm=T is shown in
Fig. 4(a), where we find both temperature scales, TPL and
T�
P, decrease as the field increases, and the latter will

eventually drop out of the available temperature window.
A low-temperature Cm=T peak reappears for h=J0 ≳ 0.22,
suggesting a QPT occurs before h=J0 ¼ 0.22.
To clarify the quantum phases and phase transitions in

Fig. 4(a), we perform DMRG calculations and show the
results in Figs. 4(b) and 4(c). On width-6 cylinder, there
exists a pressure-induced intermediate PS phase [20],
which gives way to a stripy SSS [33] phase for h > hc=J0≃
0.185 [cf. Fig. 4(b)] via a QPT possibly of first order [36].
In the SSS phase with h=J0 ¼ 0.2, we show the computed

local moments in Fig. 4(c) where a 10 × 2 unit cell can be
observed, similar to the previously iPEPS results [33]. In
the SSS phase, both hMxi and hMzi are nonzero, indi-
cating that both translational and U(1) symmetries are
simultaneously broken, i.e., there exists a quantum
magnetic analog of supersolidity. Taking J0 ≈ 60 K for
SrCu2ðBO3Þ2 under pressure of about 2.0 GPa [30], we
estimate the field-driven QPT takes place at hc ≈ 8 T, in
agreement with recent experiments [32,33].
The SSS order is also evident in the spin structure factors

SγγðkÞ ¼ N−1P
i;j e

−ik·ðri−rjÞhSγi · Sγji (with N the total
lattice sites) shown in the insets of Fig. 4(b), where a
broad peak in the PS phase changes into a double-peak
structure split apart at kx ¼ π � ðπ=5Þ, as h changes from
0.16 to 0.2. Such a peak-splitting behavior is also foundwhen
decreasing temperature [36], accessible byneutron scattering
measurements for probing the SSS phase. We note that for
different choices of α, other phases may show up instead of
SSS, making the field-driven spin states and transitions
extremely rich in the pressured SrCu2ðBO3Þ2 [32,33].
Discussion and outlook.—Recent experimental advances

[30–32] have added greatly to the understanding of the
pressure-field-temperature phase diagram of SrCu2ðBO3Þ2,
which advocate comprehensive theoretical studies. Here,
with the state-of-the-art tensor-network approach, we map

(a) (b)
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FIG. 3. (a) Contour plot of thermal entropy S with isentropes
indicated by blue solid lines, where a prominent cooling effect
due to dramatic change in quantum correlations is observed. The
white dashed and solid lines are determined from Cm=T
[cf. Fig. 1(a)]. The black dashed line connects the dips of isen-
tropes and represents a line of maximal entropy. (b) Grüneisen
ratio ΓP vs pressure P. The inset shows γPðt̃Þ vs ln t̃≡
ln ½ðT − T�
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c� (blue circles), with the fitting (red line)

also shown. In both panels, we use the relation between
coupling strength and pressure given by [28], i.e., J0ðPÞ ¼
ð75 − 8.3P=GPaÞ K and JðPÞ ¼ ð46.7 − 3.7P=GPaÞ K.
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out the finite-temperature phase diagram that explains
experimental findings and opens a refreshing avenue in
the SrCu2ðBO3Þ2 studies. In particular, the ordered PS
phase and its thermal transition line are identified, and the
nature of the low-temperature PS phase is clarified by
finding that the empty PS order is always predominant over
the full one at low temperature. This nails down the
direction to explain the discrepancy, i.e., the original SS
model could not fully capture the low-T phase in
SrCu2ðBO3Þ2, and one might need to consider additional
terms for the model Hamiltonian. As the PS transition
takes place at very low temperature, i.e., T�

P=J
0 ∼Oð0.01Þ,

it suggests that other (small) interactions, including the
interlayer couplings (≲10% of J0 [65]), spin-orbit cou-
plings (∼3% [66]), distortion [19], and staggered ring
exchange interaction [22], may be relevant to make a more
pertinent theoretical explanation on SrCu2ðBO3Þ2.
Moreover, we call for future experimental investigations
of the magnetic barocalorics in the supercritical regime,
which constitutes a bona fide spin correlation cooling
effect fundamentally different from traditional magnetic
refrigeration. The novel cooling mechanism in frustrated
magnets enables potential applications in space cryogen-
ics [67] and quantum technologies [68].
The pressure-driven PS-AFM quantum phase transition

has been intensively studied recently [20,24,25]. Our finite-
T studies here, for a width-6 system, find no salient feature
near α�2 in simulated quantities [36]. Whether this transition
belongs to a DQCP [20] or is replaced by a quantum spin
liquid phase [23–25] unfortunately cannot be addressed
here. Instead, the field-driven PS-SSS transition in the case
of α ¼ 0.68 (i.e., 2.2 GPa pressure in experiments) belongs
to first order and can be probed by magnetocaloric
measurements [36]. Meanwhile, a field-driven PS-AFM
phase transition was recently observed under a relatively
higher pressure (e.g., 2.4 GPa) and has been suggested to be
a proximate DQCP [32], which remains for future studies.
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