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Uncovering the physical contents of the nontrivial topology of quantum states is a critical problem in
condensed matter physics. Here, we study the topological circular dichroism in chiral semimetals using
linear response theory and first-principles calculations. We show that, when the low-energy spectrum
respects emergent SO(3) rotational symmetry, topological circular dichroism is forbidden for Weyl
fermions, and thus is unique to chiral multifold fermions. This is a result of the selection rule that is
imposed by the emergent symmetry under the combination of particle-hole conjugation and spatial
inversion. Using first-principles calculations, we predict that topological circular dichroism occurs in CoSi
for photon energy below about 0.2 eV. Our Letter demonstrates the existence of a response property of
unconventional fermions that is fundamentally different from the response of Dirac and Weyl fermions,
motivating further study to uncover other unique responses.

DOI: 10.1103/PhysRevLett.131.116603

Introduction.—The interaction between chiral materials
and circularly polarized light is a topic of broad interest in
fundamental sciences [1–10]. Because chiral materials have
a definite left- or right-handed crystalline structure, they
respond differently to the left and right circularly polarized
light. Natural optical activity (i.e., optical rotation and
circular dichroism with time-reversal symmetry) and the
circular photogalvanic effect are such phenomena due to
the light-helicity dependence in the refractive index and dc
photocurrent, respectively.
The quantization of the circular photogalvanic effect

in chiral topological semimetals has gained attention
recently [7–9,11–13]. In three-dimensional chiral crystals,
a band-crossing point carries a quantized magnetic mono-
pole charge in momentum space, which is the Chern
number [14,15]. While the magnetic monopoles appear
in pairs in the Brillouin zone by the fermion doubling
theorem [16], monopole and antimonopole are not at the
same energy, in general, because there is no symmetry to
relate them in chiral crystals. The uncompensated monop-
ole charge of a chiral fermion near the Fermi level can
manifest through physical responses. The quantized circu-
lar photogalvanic effect is a rare example of topological
optical responses originating from the monopole charge of
a chiral fermion.
More recently, another topological optical phenomenon

was discovered in chiral topological semimetals [17,18]. It
was proposed that linearly dispersing chiral fermions
show topological circular dichroism, where the helicity-
dependent absorption of light is determined only by
universal quantities, including fundamental constants and
the ratio between the sample thickness and the light
wavelength [Fig. 1]. While this discovery provides another

exciting example of topological optical responses, the
results in Refs. [17,18] need further investigation because
they were derived from physical arguments using Fermi’s
Golden rule without rigorous derivations.
In this Letter, we investigate topological circular dichro-

ism in chiral topological semimetals using linear response
theory and first-principles calculations. Remarkably, we
find that topological circular dichroism does not appear for
Weyl fermions, which are chiral fermions with twofold
degenerate band-crossing points, and is thus unique to chiral
multifold fermions having threefold or fourfold degenerate
band-crossing points.We also find differences in the magni-
tude and spectral range of the quantized response for chiral
multifold fermions compared to the original proposal. We
show that these new features are mainly because of the
selection rule imposed by the symmetry under the combi-
nation of particle-hole conjugation and spatial inversion.
Unlike the quantized circular photogalvanic effect,

topological circular dichroism does not depend on the
current relaxation time, which depends on materials.
Instead, the topological circular dichroism relies on iso-
tropic linear dispersion. To test our model analysis, we
perform first-principles calculations of the circular dichro-
ism for CoSi, a chiral threefold semimetal with good linear
dispersions per spin degrees of freedom [19–23]. The result
agrees well with model analysis, showing approximate
quantizations for photon energies below about 0.2 eV.
Isotropic k dot p model.—We first consider the model

of isotropic chiral pseudospin-j fermions in three dimen-
sions [14,20].

H0ðkÞ ¼ −μþ χvk · J; ð1Þ
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where k is the wave vector, J is the pseudospin-j
operator satisfying the su(2) algebra because of isotropy.
The sign χ ¼ �1 determines the chirality. The energy
eigenvalues are

EnðkÞ ¼ −μþ ℏvkhn; ð2Þ

where the integer hn ¼ −j;…; j is the helicity quantum
number [Fig. 2]. The crossing point at k ¼ 0 has (2jþ 1)-
fold degeneracy. The band with helicity h carries the Chern
number ch ¼ −2χh on a closed surface that encloses the
node (i.e., the magnetic monopole charge in momentum
space defined by the Berry curvature), which serves as a
topological charge of the spin-j fermion. We have a
Weyl fermion for j ¼ 1=2 and a chiral multifold fermion
for a higher j. In this model, optical transitions occur
between adjacent energy levels only because of an optical
selection rule imposed by isotropy [19,24]: for m ≠ n,
transition dipole moment hψmkjer̂jψnki∝ humkjJjunki¼0
if hm ≠ hn � 1.
Our model has symmetry THðkÞT−1 ¼ Hð−kÞ under

effective time reversal T that flips the pseudospin.
Therefore, the anomalous Hall effect is forbidden.
However, natural optical activity can arise from broken
inversion symmetry.

Below, we focus on isotropic spin-1 fermions because
they aremore relevant to realmaterials but consider spin-3=2
fermions as well for completeness. In crystals, the topo-
logical protection of multifold fermions requires particular
space group symmetries. When spin-orbit coupling is
negligible, space groups 195–199 and 207–214 combined
with time reversal symmetry can protect isotropic threefold
fermions [14]. A topologically stable isotropic threefold
fermion can also appear in spin-orbit coupled antiferromag-
nets with type IV magnetic space groups PI213ð198.11Þ,
PI4332ð212.62Þ, and PI4132ð213.66Þ [25]. On the
other hand, a threefold fermion stabilized by other space
group symmetries does not respect full isotropy in the low-
energy limit [14,25]. Topologically protected spin-3=2
fermions do not have isotropy unless fine-tuned [14].
Nevertheless, we do not exclude the possibility of a fine-
tuned isotropic spin-3=2 fermion and consider both isotropic
spin-1 and spin-3=2 fermions.
Topological circular dichroism from natural optical

activity.—In crystalline solids, natural optical activity is
described by the part of the optical conductivity that is
linear in photon momentum q [4]. Let us consider the
expansion σabðω;qÞ ¼ σabðωÞ þ σabcðωÞqc þOðq2Þ. In
our model, the refractive indices for light with left (L)
and right (R) helicity are

nL=R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χxx þ ðμ0cσxyz=2Þ2

q
� μ0cσxyz=2; ð3Þ

where χab ¼ σabð−iϵ0ωÞ−1 is the electric susceptibility,
and the light helicity is defined by the sign of q · iE� ×E.
For q ¼ jqjð0; 0; 1Þ, L and R polarization vectors are,
respectively, L̂ ¼ ð1;−i; 0Þ= ffiffiffi

2
p

and R̂ ¼ ð1; i; 0Þ= ffiffiffi
2

p
.

Because of the isotropy in our model, χxx and σxyz are
the only nonvanishing tensor components. The real and
imaginary parts of circular birefringence nL − nR ¼
μ0cσxyz are responsible for the optical rotation and circular
dichroism, respectively.
Natural optical activity has two contributions from the

Fermi sea and the Fermi surface, respectively [4,5,26]. The
formula for the Fermi sea part is [4]

σ0abc ¼
e2ω
ℏ

X
n;m

Z
k
fnm

�
ImðranmBbc

mn − rbnmBac
mnÞ

ω2
mn − ω2

−
ð3ω2

mn − ω2ÞImðranmrbmnÞðvcmm þ vcnnÞ
2ðω2

mn − ω2Þ2
�
; ð4Þ

where
R
k ¼ R

BZ d
3k=ð2πÞ3, fnm ¼ fn − fm and ℏωmn ¼

ℏωm − ℏωn are the differences of the Fermi-Dirac
distributions and energy eigenvalues, respectively, vimn ¼
hψmkjv̂ijψnki and rjnm ¼ −ivjnm=ωnm are velocity and
position matrix elements, Bab

mn¼Borb;ab
mn þBspin;ab

mn , Borb;ab
mn ¼

2−1ðPp;Ep≠Em
rbmpvapn þ

P
p;Ep≠En

vamprbpnÞ,

FIG. 1. Topological circular dichroism by a chiral multifold
semimetal hosting a pseudospin-j fermion near the Fermi level.
IL=Rs are the transmitted intensity for the left (L) and right (R)
handed light. N1=2 ¼ 0, N1 ¼ 1, and N3=2 ¼ 3.

FIG. 2. Band structure of pseudospin-j fermions described by
Eq. (1). (a) j ¼ 1=2. (b) j ¼ 1. (c) j ¼ 3=2. The spectrum has the
same shape along ki¼x;y;z because of isotropy. Arrows represent
possible optical transition channels allowed by the selection rule
due to isotropy [19,24]. Optical transitions with red x marks are
forbidden by the Pauli blocking with the chemical potential
represented by the blue dashed line. CP symmetry further
constrains that transitions between h ¼ �1=2 bands (arrows
with red triangles) does not contribute to natural optical activity.
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Bspin;ab
mn ¼ e−1ϵabchψmkjM̂spin;cjψnki, and M̂spin is the spin

magnetic moment operator. The spin magnetic moment
does not contribute to the response in systems with
negligible spin-orbit coupling; we discuss its effect in
spin-orbit coupled systems below. The Fermi surface part
is given by [5,27]

σGabc ¼
e2

ℏ

X
n

Z
k

�
1

ω
ð∂afnBbc

nn − ∂bfnBac
nnÞ

− ∂cfn
X
m

ImðranmrbmnÞ
ωmnω

ω2
mn − ω2

�
: ð5Þ

The effect of dissipation is included by the substitu-
tion ω → ωþ iτ−1.
In the clean limit where ωτ → ∞, the Fermi sea part is

purely imaginary and thus describes circular dichroism.

σ0abc¼
iπe2ω
ℏ

X
n¼occ

m¼unocc

Z
k
δðωmn−ωÞ×Im

×

�
ðranmBbc

mn−rbnmBac
mn−

1

2
ðranmrbmnÞðvcmmþvcnnÞ

�
: ð6Þ

For the model in Eq. (1), we obtain quantized values

σ0abc¼ iϵabcsμχ
e2

3h

×

8>><
>>:

0 j¼1=2;

Θðℏω− jμjÞ j¼1;

3
h
Θ
�
ℏω− 3jμj

2

�
−Θðℏω−2jμjÞ

i
j¼3=2;

ð7Þ

where sμ ¼ μ=jμj [Fig. 3(a)]. The Chern number origin
of the quantization is manifested in the expression
of the nonvanishing value σ0xyz ¼ −isμc2jþje2ð6hÞ−1
jð1þ v2j=v2jþ1Þ=ð1 − v2j=v2jþ1Þj, where c2jþ1 ¼ −ð2πÞ−1H
dS · F2jþj ¼ −2χj is the outward Berry flux of the

topmost band, i.e., band 2jþ 1 (see Supplemental
Material [28]). We note that the velocity ratio takes a
universal value independent of material specifics,
v2j=v2jþ1 ¼ −1, 0, and 1=3 for j ¼ 1=2, 1, and 3=2, only
when the effective Hamiltonian has isotropy, which
requires specific space group symmetries as we discuss
above.
The isotropic linearly dispersing Weyl fermion does not

show circular dichroism from the Fermi sea [42]. This is
because of the constraint from CP symmetry that imposes
Bab
mn ¼ 0 and vamm þ vann ¼ 0 between CP-related states m

and n, where C is particle-hole conjugation, and P is spatial
inversion [28]. The nontrivial circular dichroism of multi-
fold fermions is due to CP-asymmetric optical excitations
which generate the net change of the orbital magnetic

moment. This favors the absorption of one particular
circular polarization of light to the other polarization.
Let us consider shining linearly polarized or unpolarized

light. Then, the incident intensity is the same for L=R
helicity on average. The transmitted light intensity after
propagation of the distance d within the material is IL=R ¼
2−1I0j expð2πinL=Rd=λÞj2 for L=R helicity, where I0 is the
incident light intensity. The transmissive circular dichroism
is defined by

CD≡ IL − IR
IL þ IR

¼ tanh

�
χsμ

4παNj

3

d
λ

�
; ð8Þ

where α ¼ μ0ce2=2h is the fine structure constant.
In the clean limit, the Fermi surface part does not

contribute to the circular dichroism because it is real
valued, where

FIG. 3. The imaginary part of σxyz of a pseudospin-j fermion.
(a),(b) Spinless linearly dispersing fermion. (a) Fermi sea con-
tribution σ0xyz and (b) Fermi surface contribution σGxyz of the
linearly dispersing model in Eq. (1) without quadratic terms.
While we take ωτ → ∞ in (a), we introduce a finite relaxation
time in (b). We take μ > 0 for all plots. (c),(d) Band structure and
σ0xyz with quadratic terms in Eq. (10). μ¼0.01 eV, A¼
1.07ã2 eV, B¼−1.72ã2 eV, C¼3.26ã2 eV, and ℏv ¼ 1.79ã eV,
where ã ¼ aCoSi=ð2πÞ, aCoSi ¼ 4.45 Å is the lattice constant of
CoSi, ℏτ−1 ¼ 1 meV. The transparent plane in (c) shows the
Fermi level. The orange curve in (d) shows the isotropic case
(B ¼ C ¼ 0 with other parameters kept unchanged) for com-
parison. (e),(f) Band structure and σ0xyz with spin-orbit coupling in
Eq. (11). w ¼ 30a meV, Δ ¼ 30 meV, and ℏτ−1 ¼ 10 meV. In
(f), the spin part is due to spin magnetic moment, and the orbital
part refers to the other contributions.
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σGabc ¼ ϵabcχ
e2

3πh
μ

ℏω

�
μ2 − 3j2ðℏωÞ2=2
μ2 − j2ðℏωÞ2 þ fj

�
; ð9Þ

and f1=2 ¼ f1 ¼ 0, and f3=2 ¼ 7½μ2 − 3ðℏωÞ2=8�=
½μ2 − ðℏωÞ2=4�. But this contributes to the circular dichro-
ism when there is a finite relaxation and is proportional to
τ−1. Figure 3(b) shows the case with ℏτ−1 ¼ 0.01μ.
Effect of quadratic dispersion and spin-orbit coupling.—

To see the effect of Oðk2Þ terms, we consider H¼H0þH1

of a threefold fermion with an additional quadratic
Hamiltonian allowed by octahedral symmetry:

H1¼

0
BB@
Xk2−2Ck2z Bkykz Bkzkx

Bkykz Xk2−2Ck2x Bkxky

Bkzkx Bkxky Xk2−2Ck2y

1
CCA; ð10Þ

where X ¼ Aþ 2C=3, and J ¼ f−λ2; λ5;−λ7g for H0, and
λi is the Gell-Mann matrix [13].
Figure 3(c) shows the band structure with quadratic

terms included. We take μ ¼ 0.1 eV and the model
parameters for CoSi derived in Ref. [13], which are
A ¼ 1.07ã2 eV, B ¼ −1.72ã2 eV, C ¼ 3.26ã2 eV, and
ℏv ¼ 1.79ã eV, where ã has the dimension of length
(ã ¼ aCoSi=2π, where aCoSi ¼ 4.45 Å is the lattice constant
of CoSi).
When the quadratic terms are included, the value of

Imðσ0xyzÞ deviates from the quantized plateau [Fig. 3(d)].
The deviation originates from the momentum dependence
of the velocities of bands [28], and the effect of selection-
rule-breaking transitions is negligible (less than 1%).
Therefore, an isotropic quadratic dispersion that preserves
the selection rule can lead to a comparable deviation from
the quantization [orange curve in Fig. 3(d)].
The effect of spin-orbit coupling is twofold. One is the

spin-orbit splitting of the band structure, and the other is
contribution from the spin magnetic moment. The former
effect is absent in the case where Eq. (1) is realized in the
presence of spin-orbit coupling. Here, we consider the case
of a threefold fermion realized in each spin sector in the
absence of spin-orbit coupling, with application to CoSi in
mind. In this case, the spin-orbit coupling up to linear order
in k is given by

HSOC ¼ s · ðwkþ ΔJÞ; ð11Þ

where si¼x;y;z is the spin Pauli matrix. For a threefold (per
spin) fermion, this splits the sixfold (including spin)
degeneracy into fourfold and twofold degenerate points
by δESOC ¼ 3Δ [Fig. 3(e)]. Figure 3(f) shows that the
circular dichroism approaches to the quantized value as the
photon energy becomes larger than δESOC. The effect of
spin magnetic moment is negligible in the quantized
regime.

Chiral threefold semimetal CoSi.—We now turn the
discussion toward material-specific DFT-based calculations
to test our model analysis. We focus on the transition metal
monosilicide family of materials CoSi, which crystalizes in
the B20 cubic structure [43,44]. The crystal structure is
chiral, and it belongs to the P213 space group (SG198); it
lacks an inversion, mirror, and rotoinversion symmetry.
The structural chirality and the octahedral symmetries
lead to various types of multifold fermions in these
systems [21,43–45]. Specifically, in the absence of spin-
orbit interaction, CoSi host a threefold degenerate nodal
point at the zone center and double Weyl fermion state at
the corner of the cubic BZ [Fig. 4(a)].
We compute Imðσ0xyzÞ for CoSi using the Wannier

function-based tight-binding model (see Supplemental
Material for details [28]). The chemical potential (indicated
by the green dashed line) is set to be slightly above the
threefold degenerate crossing point to ensure full occu-
pancy of the flat band around the Γ point. The tuning of the
chemical potential has been experimentally achieved re-
cently in RhSi via Ni doping [46]. As shown in Fig. 4(c),
the calculated Imðσ0xyzÞ results strongly support our low
energy model analysis. Specifically, we found that in CoSi,
the Imðσ0xyzÞ starts from a finite value for low photon energy
and it quickly approaches the quantized value e2=3h,
developing a plateaulike region for 50≲ ℏω≲ 200 meV.
In this region, the optical transitions involving the threefold
fermion around the Γ point plays the important role. The
small deviation from the quantized value is attributed to the
presence of quadratic band dispersion, and it supports our
model analysis. For ℏω≳ 200 meV, the optical transitions

FIG. 4. Ab initio calculations for threefold semimetal CoSi
based on density functional theory. (a),(b) Band structure.
(a) Without and (b) with spin-orbit coupling. The insets show
the band structure near the Γ point. The horizontal green dashed
line denotes the chemical potential used for computing the σ0xyz
and σGxyz. (c),(d) The imaginary parts of Fermi-sea (σ0xyz) and
Fermi-surface (σGxyz) contributions (c) without and (d) with spin-
orbit coupling. ℏτ−1 ¼ 1 meV.
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involving the states around the R point become important,
and consequently, the Imðσ0xyzÞ changes sign, as it strongly
deviates from the quantized value. For comparison, we also
compute the Fermi surface contribution ImðσGxyzÞ for CoSi,
which was studied in a previous work [11]. In general,
ImðσGxyzÞ is smaller compared to the Imðσ0xyzÞ, and its value
depends strongly on the relaxation time, and in the clean
limit ωτ ≫ 1. This Fermi surface contribution should be
negligible in the quantized region.
We further consider the effect of spin-orbit coupling in

Figs. 4(b) and 4(d). Consistent with model analysis,
approximate quantization of Imðσ0xyzÞ still holds true even
after including the effect of spin-orbit coupling, and the
spin magnetic moment contributes negligibly compared to
the orbital part in the plateau region.
We also explored other material candidates in this family,

including RhSi, and PtAl (see Supplemental Material [28]
and [47,48]). Our analysis suggests that in the absence of
spin-orbit coupling, the approximate quantization of
Imðσ0xyzÞ holds true both in RhSi and PtAl. However,
due to the presence of large spin-orbit coupling in these
compounds, the Imðσ0xyzÞ deviates from the quantized
value. Interestingly, this deviation is still approximately
within 10% for RhSi and 20% for PtAl, despite the spin-
orbit coupling being significantly stronger compared
to CoSi.
Conclusion.—Our analysis establishes that topological

circular dichroism is the unique feature of multifold
fermions in the k dot p regime. Thin films will be ideal
for an observation of this effect because transmitted light
intensity is exponentially suppressed in bulk samples.
Topological circular dichroism is similar to the quantized
absorption in graphene [49] because it requires linear
dispersion. The quantization is expected to be robust as
long as photon energy is much larger than thermal energy.
However, disorder and interaction effects can give devia-
tions from quantized optical responses [50,51], in contrast
to the quantum Hall effect. We leave detailed analysis of
these effects for future studies.
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