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R. Deblock,1 S. Guéron,1 M. Ferrier,1 J. N. Fuchs,6 G. Montambaux,1 F. Piéchon,1 and H. Bouchiat1
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The recent detection of the singular diamagnetism of Dirac electrons in a single graphene layer paved
a new way of probing 2D quantum materials through the measurement of equilibrium orbital currents
which cannot be accessed in usual transport experiments. Among the theoretical predictions is an intriguing
orbital paramagnetism at saddle points of the dispersion relation. Here we present magnetization
measurements in graphene monolayers aligned on hexagonal boron nitride crystals. Besides the sharp
diamagnetic McClure response at the Dirac point, we detect extra diamagnetic singularities at the satellite
Dirac points of the moiré lattice. Surrounding these diamagnetic satellite peaks, we also observe
paramagnetic peaks located at the chemical potential of the saddle points of the graphene moiré band
structure and relate them to the presence of van Hove logarithmic singularities in the density of states.
These findings reveal the long ago predicted anomalous paramagnetic orbital response in 2D systems when
the Fermi energy is tuned to the vicinity of saddle points.
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Landau diamagnetism originates from the quantum
orbital motion of delocalized electrons at low magnetic
field. In systems with a periodic potential, this orbital
magnetism depends on the specific properties of the lattice.
The orbital susceptibility of a single band system is propor-
tional to the curvature of the energy dispersion relation (i.e.,
the inverse effective mass of carriers). This is known as the
Landau-Peierls result [1,2]. In multiband systems, the
coupling induced by the magnetic field between Bloch
wave functions of different bands gives rise to new effects.
The zero-field susceptibility is then not only determined by
the curvature of the bands, but also by geometrical properties
of Bloch functions such as the Berry curvature in reciprocal
space [3–5]. For instance, a divergent diamagnetism of
graphene at the Dirac point (DP) was predicted by McClure
[6] and linked to the anomalous π Berry phasewhich leads to
a zero energy Landau level in magnetic field [7,8].
It was also predicted that orbital magnetism can be

paramagnetic rather than diamagnetic. In particular,

graphene is expected to exhibit two paramagnetic character-
istics: (i) a paramagnetic plateau [4,5,9,10] on either side
of the Dirac (DP) or charge neutrality point (CNP) and
(ii) logarithmic paramagnetic divergences when the Fermi
energy coincides with saddle points (SP) of the graphene
band structure [4]; see Fig. 1(a). Such paramagnetic orbital
susceptibility peaks proportional to the van Hove (vH)
singularities in the density of states (DOS) ρðϵÞ were
predicted long ago at saddle points of the band structure
of any 2D crystalline materials by Vignale [11]. A simple
physical explanation of the paramagnetic sign lies in the
opposite signs of effective masses mx and my at the saddle
points and the fact that the Landau-Peierls susceptibility is
proportional to −ρðϵÞ=mxmy. In a magnetic field, near a
saddle point, carriers follow hyperboliclike trajectories
in reciprocal space. Tunneling between these trajectories
gives rise to reconstructed quasicircular paramagnetic tra-
jectories around the saddle points; see Fig. 1(c). Reaching
these saddle points in pure graphene requires doping to
unattainable Fermi levels of the order of the nearest neighbor
hopping energy t ¼ 2.7 eV. However, in the following we
show how, by inducing a largewavelengthmoiré periodicity
in graphene aligned to a hexagonal boron nitride crystal
(h-BN), we can reach such saddle points in the moiré band
structure at reasonable doping and detect the expected
singular paramagnetic orbital response.
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Because of the small difference between h-BN and
graphene lattice parameters, the moiré lattice parameter
aM of graphene aligned on h-BN is much larger than the
size of the unit cell of graphene [see Fig. 1(d)]. The large
period moiré potential leads to the formation of low energy
minibands centered on each Dirac point [see Fig. 1(e)] and
the occurrence of low energy satellite Dirac points (sDP) (at
μsDP ≃�t=10). These sDPs, accessible by applying mod-
erate gate voltages, were observed experimentally by
several groups including Refs. [12–16]. They are sur-
rounded by saddle points whose associated vH singularities
were detected via DOS measurements [12]. Saddle points
were also revealed in electron focusing experiments [17]
and more indirectly in magnetic field dependent patterns in
Josephson junctions [18]. Field dependent peaks in photo-
emission spectra [19] as well as in thermoelectric Hall
measurements [20] were interpreted as related to orbital
magnetization at low energy vH singularities.
In this Letter we present direct magnetization measure-

ments on graphene=h-BN moiré samples in a wide range
of chemical potential. Our experiments reveal the para-
magnetic susceptibility singularities predicted long ago at
saddle points of the moiré dispersion relation.
Moiré samples and magnetic detection.—In order to

reach the satellite Dirac points and the neighboring saddle
points at moderate doping, we fabricated samples where the
h-BN and graphene lattices were nearly aligned, leading to
themaximumvalue of the graphene=h-BNmoiré superlattice

parameter as described in Supplemental Material (SM) [21].
We investigated two different samples, MA and MB. Raman
spectroscopy was used to verify the alignment (see SM and
Refs. [16,24]) and determine the lattice parameters yielding
aMA

¼9.5�0.5 nm and aMB
¼ 12.5� 0.5 nm correspond-

ing to 1° and 0.6° mismatch angles, respectively (see SM for
more details).
The magnetization experiments were performed at 4.2 K

using the technique described in Ref. [25]. The encapsu-
lated samples are deposited on a magnetic field detector
based on a pair of highly sensitive giant magnetoresistance
(GMR) probes [26–28]. The key point of using these
sensors is that whereas the orbital magnetism in the system
is generated in response to the out-of-plane external field,
the GMR probes are only sensitive to the in-plane compo-
nents of the stray field created by the orbital currents.
Connecting the two GMR strips in a Wheatstone bridge
configuration and modulating dc gate voltage Vg with an ac
bias [Fig. 2(c)] eliminates most of the extraneous spurious
magnetic contributions. In this way, one obtains the Vg

derivative of the magnetization of the graphene area
situated below the gate electrode between the GMR
detectors. Additional electrodes outside the GMR detection
region allow for transport measurements and an indepen-
dent determination of the main and satellite Dirac point
positions. For an applied out-of-plane magnetic field of
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FIG. 1. (a) Orbital susceptibility of graphene. Diamagnetic
divergent susceptibility is expected at μ ¼ 0 and paramagnetic
divergences at the saddle points at μ ¼ �t (adapted fromRef. [9]).
(b) Qualitative expectation of the orbital susceptibility of a
graphene=h-BN moiré at low energy as a function of the chemical
potential. (c) Explanation of the existence of paramagnetic
currents in the reciprocal space close to a saddle point in a 2D
crystal (adapted from Ref. [11]). (d) Schematic representation of
a moiré lattice obtained with the superposition of two honeycomb
lattices of different periods. (e) Miniband structure obtained from
the diagonalization of the low energy Hamiltonian of graphene in
the presence of a moiré potential of amplitude tM ¼ −23 meV.
The two highest energy hole bands are represented below the
main graphene Dirac point. They display satellite Dirac points at
themS points of the mini-Brillouin zone. (f) Isoenergy lines of the
lowest hole band (H2).

(a)

(b)

(c)

(d)

h-BN

FIG. 2. Low doping data on sampleMA. (a) Solid line: derivative
of the magnetic field detected by the GMR detector as a function of
the gate voltage Vg close to the DP at B ¼ 0.2 T. Dashed line:
theoretical gate dependence of ∂M=∂Vg. (b) Magnetization per unit
surface obtained by integration of the data in (a) with, on the right-
hand axis, units of the equivalent measured magnetic field by the
GMR detector. (c) Evolution of the McClure peak and dHvA
oscillations for different magnetic fields. On the y axis the detected
magnetic signal on the GMR detector is normalized by the applied
field. On the x axis ν ¼ nΦ0=B is the Landau level’s filling factor
where n is the carrier density. (d) Sketch of the experimental setup.
∂M=∂Vg is measured by the voltage between the two dc current
biased GMR detectors R1 and R2 at the modulation frequency of
the gate voltage.
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0.1 T, the in-plane sensitivity of the GMR probes coupled
to MA and MB are, respectively, 2.5 and 1 Ω=mT and their
field equivalent noise is about 1 nT=

ffiffiffiffiffiffi

Hz
p

.
Main Dirac point region.—As shown in Fig. 2, the

magnetization close to Dirac or charge neutrality point (DP)
features the diamagnetic McClure peak [25]. This peak
broadenswith out-of-planemagnetic field, and deHaas–van
Alphen (dHvA) oscillations appear with increasing doping.
Figure 2 shows both the derivative of the magnetization and
the integrated curve as a function of the gate voltage for
sampleMA at 0.2 T. The amplitude of the detected signalBM
is 15 nT at the DP. This data can be precisely described
deriving the magnetization from the field dependence of the
grand potential of graphene at a chemical potential fixed by
the gate voltage [25]. The Landau energy levels in graphene
are ϵN ¼ � ffiffiffiffi

N
p

ϵB, with ϵB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ev2ℏB
p

, where v is the
Fermi velocity and N is an integer [6]. Disorder is modeled
by a Gaussian distribution of chemical potential μ whose
standard deviation σμ decreases at high doping, due to
screening effects which are more efficient. The magnetiza-
tion was shown to be a universal function of the variables
μ=ϵB and σ=ϵB. The McClure peak at low field has a width
σ0 ¼ 80� 5 K at the DP. dHvA oscillations observed at
larger doping exhibit a characteristic energy scale of
σ∞ ¼ 20 K. Both σ0 and σ∞ are twice smaller than in
our previous work [25] and indicate a better quality of the
present samples. The dashed curve in Fig. 2(a) is the
theoretical fit for ∂M=∂Vg using those parameters.
Figure 2(c) shows the evolution of the magnetization with
Landau level filling factor for different field values. The
magnetization is renormalized by the appliedmagnetic field,
which in the linear regime is the magnetic susceptibility
χ ¼ M=B. One notes the increased dHvA oscillations
relative to theMcClure response asmagnetic field increases.
Satellite Dirac points, paramagnetic singularities.—We

now turn to the higher doping regime. Figure 3(a) shows the
four-terminal resistance of sample MA in a wide range
of gate voltage. Both satellite peaks are clearly visible at
−16 and 15.5 V from the DP. Figure 3(b) shows the
magnetization response at 0.2 T in the same range of gate
voltage, using a 100mVmodulation of the gatevoltage. This
strong Vg modulation increases the detection sensitivity at
high gate voltage but, because the chemical potential scales
as

ffiffiffiffiffiffiffiffijVgj
p

, damps the previously discussed diamagnetic
McClure response and dHvA oscillations. In the high
doping region of interest here, in particular in the region
where the sDPs are found in the resistancemeasurement, we
find a series of three antisymmetric peaks, compatible with
the expected moiré band orbital magnetism as shown below.
The integrated trace displayed in Fig. 3(c) features a
diamagnetic peak (red arrow) in the hole doped region at
Vg − VDP ¼ −17 V surrounded by two paramagnetic peaks
(black arrows). In the electron doped region, we find similar
features showing though somehow different positions of the
peaks with an asymmetry in the position of the two

paramagnetic peaks with respect to the diamagnetic one.
From the value of moiré lattice parameter we find that the
gate voltage positions of the diamagnetic peaks correspond,
as expected, to a carrier density of 4n0, where n0 is the
number of carriers per moiré cell (the factor 4 comes from
spin and valley degeneracies). The peak positions differ
slightly from those observed on the resistancemeasurements
shown in Fig. 3(a), a discrepancywe attribute to the different
sample region probed in the resistance measurements [29].
We assign the paramagnetic peaks to the expected magnetic
orbital response at the saddle points of the moiré miniband
structure. This is the main result of our Letter. Using the gate
capacitance of sampleMA, we determine the energy splitting
between the paramagnetic and diamagnetic peaks and
therefore the expected positions of the vH singularities to
be in the range of 10–20 meV. This yields an estimate of the
amplitude tM of themoiré potential [see Fig. 1(b)], as will be
discussed more precisely below.

FIG. 3. (a) Four-terminal resistance of sample MA. Inset:
optical image of the sample MA on the top of the GMR detector
(red scale bar is 10 μm). (b) Derivative of the magnetization as a
function of the gate voltage and carrier density (renormalized to
the moiré filling factor n0) for a wide doping range in an external
magnetic field of 0.2 T for the same sample. (c) Magnetization
(in units of the magnetic field detected on the GMR probes,
renormalized by the out-of-plane applied field) obtained by
integration of the data in (b. In the region of the secondary
Dirac peaks we observe diamagnetic peaks (red arrows) sur-
rounded by paramagnetic peaks (black arrows). (d),(e) GMR data
measured on sample MB. at �0.2 T (D) and 1 T (E).
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Figures 3(d) and 3(e) present equivalent data on sample
MB. At high hole and electron doping one identifies several
peaks of similar amplitude. The diamagnetic satellite peaks
occur also at n0 ¼ �2 corresponding to smaller gate
voltages �12 V than for MA, consistent with the larger
moiré cell area of this sample. There as well, dHvA
oscillations are attenuated by the gate voltage modulation
of 100 mVand invisible at�0.2 T, but are visible at 1 T due
to their larger period. The data taken at �0.2 T display
peaks of opposite sign, approximately at the same positions
and with 5 times smaller amplitude than the 1 T data which
is consistent with a linear field dependent magnetization.
However, in contrast with the MA data, whereas the
diamagnetic satellite Dirac peaks and outer paramagnetic
peaks are clearly visible, the inner smaller paramagnetic
peaks are nearly undetectable at �0.2 T. They are, how-
ever, clearly visible at 1 T. In that case, the magnetic energy
scale ϵB is equal to 30 meV at 1 T; i.e., it is of the order of
the moiré potential tM. The zero-field miniband spectrum
discussed below can explain the tM dependent asymmetry
in position and amplitude of paramagnetic singularities but
cannot describe this last data at 1 T significantly different
from the lower field data (ϵB ≪ tM).
Comparison with a simple theoretical model.—The

orbital magnetic susceptibility reflects the zero-field moiré
miniband structure: at zero temperature and in the absence
of disorder, a Dirac point leads to a McClure diamagnetic
δ-function divergence [6] and a saddle point to a Vignale
paramagnetic logarithmic divergence [11]:

χV ≃ μ0
e2

24π2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijmxmyj
p ln

ϵc
jμj ; ð1Þ

where mx;y are effective masses and ϵc is a cutoff
(see SM [21]).
The computation of energy minibands relies on a specific

model for the moiré potential [12,30–32]. Here, we use
the simplest model (see SM [21]), initially derived in
Ref. [12], which considers graphene Dirac electrons mov-
ing in the presence of a C6-symmetric moiré potential of
lattice parameter aM and amplitude tM. We do not consider
inversion symmetry breaking [19,31]. The minibands can
easily be calculated as shown in Figs. 1 and 4 and the SM.
The main features are satellite Dirac cones and saddle
points. There is a clear electron-hole asymmetry deter-
mined by the amplitude and sign of tM. This is illustrated in
Fig. 4 showing cuts along the K, κS,mS, K directions of the
three lowest electron (E1, E2, and E3) and highest hole (H1,
H2, and H3) minibands around the main DP. The sDPs (red
arrows in Fig. 4) occur between E1 and E2 at mS and κS,
between H1 and H2 at mS, and between H2 and H3 at κS.
Saddle points (indicated as vHs by arrows in Fig. 4) occur
in E1 and H1 close to ms along ½mS; κS�, in E2 close to κS
along ½κS; mS�, and in H2 close to κS along ½κS; K�.

We determine tM by comparing the chemical potential
position of the measured satellite diamagnetic and para-
magnetic peaks (at low magnetic field) with their expected
energy positions according to the band structure calculation
(at zero magnetic field). The best agreement is obtained for
tM ¼ −15 meV (sample MA) and tM ¼ −23 meV (sample
MB) as shown in SM [21] and Fig. 4 for sampleMB. On the
electron side, the sDPs at mS and κS are at slightly different
energies, which is compatible with the split diamagnetic
peak shown in Fig. 4. On the hole side, the measured
splitting is larger, also consistent with the calculated sDPs
at mS and κS that are more separated in energy. As seen in
Fig. 4, the sequence of paramagnetic and diamagnetic
peaks is different on the electron and hole sides. This
sequence can be reproduced by choosing tM < 0.
The shape and curvature of the minibands (see Fig. 4 and

SM [21]) in the vicinity of the κS and mS points help
explain the asymmetry in position and amplitude of the
paramagnetic peaks. These are clearly more pronounced on
the high doping sides of sDPs. We find that the curvatures
are much larger in E2 and H2 compared to E1 and H1. As a
result the position in energy of the saddle points on the low
doping minibands (E1 and H1) are very close to the mS
sDP, in contrast with their position at large doping (E2 and
H2) located further in energy above κS. We show in SM
(Secs. I.C and I.E) that these observations explain why the
outer paramagnetic peaks are more intense than the inner

FIG. 4. Comparison between band structure (left) and exper-
imental data at 0.2 T and 4.2 K for sampleMB (right). We present
cuts along the three K, mS, mS, κS, and κS, K axes of the moiré
band structure calculated for tM ¼ −23 meV matching the
position of the observed diamagnetic peaks (red arrows) and
paramagnetic peaks (black plain and dotted arrows) in magneti-
zation data function of the chemical potential. Dotted black
arrows point toward barely visible paramagnetic peaks at saddle
points because they are very close in energy to the satellite mS
Dirac points, as shown more precisely in SM [21].
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peaks (tending to overlap with the diamagnetic peaks at the
mS sDPs), both on electron and hole sides. This asymmetry
is more pronounced for sampleMB whose moiré amplitude
jtMj is stronger than for MA.
In order to compare the amplitudes of the measured

magnetization singularities to theoretical predictions, we
first estimate the ratio between the diamagnetic peaks at the
satellite and main Dirac points. The orbital susceptibility
χM of graphene at the main Dirac point depends on the
square of the Fermi velocity v and the disorder standard
deviation σ0 according to χM ∝ −v2=σ0 [6,25]. We assume
that such a relation remains true for the susceptibility
χS ∝ −v2S=σS at an mS sDP with vS ≃ 0.35v and σS ≃
0.65σ0 (see SM [21]). Taking into account that there are
3 times more mS than K points, this leads to the ratio
r ¼ 3ðχS=χMÞ ¼ 3ðv2Sσ0=v2σSÞ ≃ 0.55� 0.1 for sample
MB to be compared to the measured r ¼ 0.33� 0.1.
Turning to the paramagnetic susceptibility peaks, we

show in SM [21] how one can also estimate their amplitude
from Eq. (1) and the calculated effective masses of the
saddle points. The average curvature jmxmyj−1=2 is of the
order of 200m−1

e for all investigated bands, where me is
the free electron mass, explaining the large amplitude of the
paramagnetic peaks.
Experiments show that the paramagnetic peaks above the

sDPs in the electron doped region are of the same order of
magnitude as the diamagnetic peaks at the sDPs. This
surprising feature can be explained by taking disorder into
account. Despite the logarithmic (paramagnetic) diver-
gence being weaker than the δ function (diamagnetic)
divergence, the disorder rounding is stronger for the
diamagnetic than for the paramagnetic peak, rendering
the two peaks of similar magnitude (see SM [21]).
In conclusion, our measurements of the orbital magneti-

zation of graphene with a moiré potential show a rich set of
singularities of the orbital magnetization in the vicinity of
sDPs. These consist of diamagnetic peaks at the satellite
Dirac points surrounded by paramagnetic peaks which can
be associated to the van Hove singularities of the DOS at
the saddle points of the miniband structure induced by the
moiré potential. These experiments therefore confirm the
long-standing theoretical predictions of the existence of
paramagnetic orbital magnetism in 2D materials at van
Hove singularities which, in the case of the graphene=h-BN
moiré investigated here, exceeds by far the Pauli suscep-
tibility (see SM [21]). A natural prolongation of this
Letter would be to measure the orbital magnetization of
graphene bilayer moiré structures also extensively inves-
tigated [33–36] with the possibility to obtain ferromagnetic
orbital phases [35]. It is also interesting that the typical
amplitude of the paramagnetic susceptibility peaks we
measure is of the same order of magnitude as the values
predicted for graphene bilayer moirés close to the magic
angle [36]. This singular paramagnetic orbital magnetism is
shown to possibly lead to the emergence of new kinds of

correlated phases when the sample is embedded in a
quantum electromagnetic cavity. Our results also motivate
the extension of this Letter to twisted graphene bilayers
with larger moiré periods in which field periodic orbital
currents are expected [37].
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