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We study theoretically a junction consisting of a normal metal, PT-symmetric non-Hermitian super-
conductor, and an insulating thin layer between them. We calculate current-voltage characteristics for this
junction using left-right and right-right bases and compare the results. We find that in the left-right basis,
the Andreev-scattered particles move in the opposite direction compared with the right-right basis and
conventional Andreev scattering. This leads to profound differences in current-voltage characteristics.
Based on this and other signatures, we argue that the left-right basis is not applicable in this case.
Remarkably, we find that the growth and decay with time of the states with imaginary energies in the right-

right basis are equilibrated.
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Introduction.—Non-Hermitian systems are of high inter-
est due to numerous potential applications, exotic behavior
[1,2], and even reformulated quantum mechanics forma-
lism [3,4]. Among them, PT-symmetric non-Hermitian
systems [5] have brought new effects in optics and
photonics [6—10]. PT-symmetry denotes combined space-
inversion symmetry (parity) P and time-inversion sym-
metry 7. In condensed matter physics, non-Hermitian
formalism and in particular PT-symmetric systems have
also started to receive interest [11-18]. This topic is
developing, and many chapters characteristic for condensed
matter physics are still missing. For example, transport and
thermodynamical properties of non-Hermitian systems,
where imaginary energies gives divergences [19], are
largely not understood. Among known related works are
the ones about wave transport in non-Hermitian tight-
binding models [20-24] and semiclassical equations of
motion for Bloch electrons [25,26].

Non-Hermitian Hamiltonians H in general have non-
orthogonal eigenstates HI|R;) = E;|R;), (Rj|R;) # 6;;
[1,27,28] forming a so-called right-right (RR) basis. This
nonorthogonality can be corrected by introducing a differ-
ent scalar product, e.g., a CP7 product [27], 1 product for
pseudo-Hermitian systems [28], or left-right (LR) basis
with the left eigenstate defined as H'|L;) = E}|L;) and
(Lj|R;) = 6, ;. Both RR and LR bases are used in modern
physics [29]; however they can give different results. For
example, the probability of the eigenstate with imaginary
energy grows or decays with time in the RR basis, while it
is constant in the LR basis [29]. We think that in order to
understand which basis to use and what are the limits of
their applicability, we need to consider a physical observ-
able and compare it in LR and RR bases.

In this Letter, we study current-voltage characteristics of
a junction formed by a normal metal, an insulating thin
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layer, and a PT-symmetric non-Hermitian superconductor
(N-I-PTS junction) in LR and RR bases and compare them.
We show that the LR basis gives drastically different
Andreev scattering: the Andreev-scattered particles move
into the direction of the junction, not away from it. Thus, in
the LR basis Andreev scattering gives a negative shift of
current in contrast to the RR case and conventional N-I-S
junctions [30]. We analyze the bands with imaginary
energies in LR and RR formalisms and in particular the
distribution function there, that formally has divergences at
imaginary energies. We argue that %[E] should be used in
the distribution function at least in the LR basis.
Remarkably, the decaying and growing in time states in
the RR basis appear to be connected through the source
term, and thus the overall probability is conserved in-
stead of exponential growth that is often obtained for
PT-symmetric systems.

PT-symmetric non-Hermitian superconductor.—The
Hamiltonian of PTS in the basis W (x) = (1111T (X)w, (x)) is

%

¥ Tom

Hprs = / ¥ (x) _m
iAd,

where m is the effective mass of an electron, u is the

chemical potential, and w,(x) is an electron field annihi-

lation operator with the spin o. The superconducting part

with the mean field A has p-wave symmetry, but is non-
Hermitian. In the momentum representation, in the basis

W (k) = [y (K (<K it is

B Ak
Hprg(k) = Ak e, ) (2)
- 1

T om

—iAd,
)‘P(x)dx, (1)

%
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It is PT-symmetric, (P7)Hprs(k)(PT)~' = Hprs(k).
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FIG. 1. Scattering of a right-moving electron (black solid circle)
from the normal metal at the interface with PTS through a thin
insulating barrier at x = 0. It scatters back into the normal metal
as an electron (amplitude b;) and, due to Andreev scattering, as a
hole (a;). It transfers into PTS as an electronlike quasiparticle
(c1) and a hole-like quasiparticle (d;). The spectrum of the
normal metal is shown in green. The real part of the spectrum of
PTS is shown in red, and the imaginary part is shown with the
dotted blue line.

Physically, the opposite signs of the off diagonal super-
conducting terms in Hprg (k) imply that electron-electron inte-
raction is asymmetric: He_ezzp_qy/}r (p+q)y/1 (=p—q)x
W(q)y,(-p)w1(p) and W(q) = -W(=q). Thus, when
electrons interact attractively, the corresponding holes inter-
act repulsively and vice versa. We have proposed that such
an interaction can occur due to the spatiotemporal modu-
lations of the material [31], which can induce assymmetry of
the phonon spectrum and consequently asymmetric phonon-
mediated electron-electron interaction.

The spectrum of PTS is Ek:i\/ [(k2/2m) -] 2= (AK)2.
Thus, there is no gap, in contrast to conventional super-
conductors, and there is a regime of imaginary energies E;
(see Fig. 1, right). This regime is called a PT-broken
regime, while the regime with real £} is PT unbroken [27].
These two regimes are connected by the exceptional points
at £ =0.

Charge continuity equation.—We now consider charge
evolution in PTS, where the charge operator is Q(x) =
ep(x) =ed 4, wi(x)w,(x). We can define its average
using the LR basis or RR basis, yielding different evolution
equations [29,32]. In the LR basis, it is the usual
Heisenberg evolution equation:

d .
EQ(X) = i[Hprs. Q(x)]. 3)

while in the RR basis it is

%Q@C) = i[HlthQ(x) — O(x)Heprs)- (4)

Using evolution Egs. (3) and (4), we derive charge
continuity equations in the LR and RR bases that have
the form

d
2.0 +0.Jg(x) = S (5

Here, J (x) is the current operator, and S is the source
term. The source term physically means that there is a
source or drain of the quasiparticle charge in the system. In
conventional superconductors it is due to a conversion of a
quasiparticle current to a condensate one [30].

As the kinetic energy is Hermitian and has a quadratic
spectrum, the current operator J is the same in the LR and
RR bases and has the conventional form

Jo(x) = % ;l{[axwl(X)]%(X) —ye(x)0,(x)}. (6)

However, the source terms are different:

Sir =AY {10, (s (x) —wix)owa(x)}.  (7)
o="1.1

Sgr=eA [4 / dy{p(x)w | ()91 (v) =y} () 0yw| (") (x)}

= > @)W L () + s (we ()} . (8)

o="1.)

Here, the terms with p(x) in Sgr indicate exponentially
growing and decaying states. S;r and the quartic part of
Sgr are Hermitian; consequently they conserve the overall
charge current.

Electron field operators in LR and RR representation.—
In order to perform averaging, we need to find the
eigenvectors and eigenvalues of Hpyg(k). For that, we
express electron field operators in terms of particles and
holes of Landau-Fermi liquid formalism taking into
account that Hprg(k) is non-Hermitian, i.e., Bogoliubov
transformation in a non-Hermitian case.

The Hamiltonian Hprg(k) can be diagonalized in terms
of the LR basis: D} Hprg(k)Dg = diag{E;, —E;}. The
matrices D; and Dy consist of the left and right eigen-
vectors of Hprg(k), respectively. For real eigenvalues E,
we have

, _(Wd@ wgm> o)
LR = .
Vee(k)  Vip(k)
Here, the superscript > denotes eigenstates with

M[E;] > 0, and the superscript < the eigenstates with
M[E;] < 0. For imaginary energies, we need to exchange
superscripts > and < in D;, denoting J[E] > 0 and
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S[E] < 0, respectively. Note that D} Hprs(k)Dg is not
diagonal.

We express electron field operators W(k), W' (k) in
terms of particles and holes in the following way: In the
LR basis, ¥(k) = Dg['g(k) and W' (k) = '} D} . In the RR
basis, we take the Hermitian conjugate for ‘P}(k):
Wl (k) = [DgIr(k)]*. For clarity, we note that [g(k)T =

(r4 (k)7 (=K))" and T3 (k) = (r] 4 (K)ye, (=K)).

Now, we need to study distribution functions of
y operators. Distribution function and other thermo-
dynamic quantities in a PT-broken regime is a very
nontrivial question. Here, we have derived the distri-
bution function in the LR basis and used anticommu-
tation relations between y operators [32], obtaining
Lotk)rra (k) = (rio(ki)rLe (k) = n(kn)s(k; —
k2)50,0’ and <7R,5(k1)725/(k2)> = <yL,0<k1)y-1ra,g’(k2)> =
(1 —n(ky)]6(k; — k,)6,., where the distribution function
is n(k) = 1/[exp (E;/T) + 1], i.e., the Fermi-Dirac distri-
bution. Notably, we obtain such a distribution function
assuming that creation operator acts as y7y(k)|N.) =
VI =Nl =Ny), ie., in a fermionic way. The Fermi-
Dirac distribution was also derived in the LR basis in
Ref. [19] from the partition function. However, when
energy is imaginary, this function diverges, changes sign,
and has an imaginary part.

The RR basis is complete and normalized. Its wave
functions are orthogonal with the exception of wave
functions with the same k and opposite energies. At the
exceptional points E = 0, the eigenvectors coalesce. Thus,
we can define occupation numbers of the states in the RR
basis, if we consider only one sign of energies in our
calculations of averages. This indeed holds, as we consider
particle and hole excitations in Landau-Fermi liquid, where
they are defined for positive energies. Thus, we will
use (vgq(k1)7ro (k2)) = n(ki)d(ki — k2)8,,.

As the first check, we calculate the average density of

electrons, (y (K)yy (k) g /Ry

W (k)y (k) rjrr = (U7 (0] Uz (K)n (k)
+ UL r I Ug (k)[1 = n(k)]. (10)

In the RR basis, it is < 1 with a local plateau at E€ S,
where it is strictly 0.5, because [Ug(k)]*Ug(k) =
[Uz (k)]*Ux (k) = 0.5 for E€X.

In the LR basis, the density has divergences, which are
not compensated for by the wave functions, as it was in the
RR basis [for imaginary energies, the signs > and < should
be exchanged in left wave functions in Eq. (10)]. Since
electrons in PTS are electrons in a nonequilibrium state,
this is already a strong indication toward using the RR
basis. We have plotted the electron density in Fig. 2 for
m=1,u=10, T =0.01, Akp = 1.
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FIG. 2. Averaged density of electrons with respect to mo-
mentum k, with red lines for momenta at real energies, and
blue lines for momenta at imaginary energies (see Fig. 1).
(@) 0 < (] (k)wy (K)rg < 1; () (W} (K)yy (k)i has divergen-
ces at exceptional points, £ = 0, and in the region with E € J; see
the inset.

Using wave functions and the distribution function of y
operators, we obtain the average current (J)gg g in PTS:

o sre = >_k(n(O{[V (k)] Vi (=k)

+HUL ()] U (k) } = [1=n(k)]
XAVL (VR (k) + UL (=R Uz (=K)})-
(11)

For imaginary energies, we need to exchange superscripts
> and < in left wave functions.

Bands with imaginary energies in the LR and RR
bases.—Here, we analyze bands with imaginary energies
in the bulk PTS. These bands have R[E] = 0, i.e., are flat
bands in the real energy spectrum; see Fig. 1. In the
Hermitian case, the states in flat bands have an infinite
density of states, but zero group velocity, i.e., they are
localized. In non-Hermitian systems, the probability cur-
rent is not necessarily o< 0E/0k [33]. In PTS, the density of
states is not infinite due to the imaginary part of energy. We
know that |Uz=(E)]>=|Vx=(E)?=0.5 for E€X.
Therefore, the current induced by any state with imagi-
nary energy and momentum k averaged in the RR basis
is (j(k))gr =« k[2n(k) — 1]. If we integrate the quadra-
tic part of Sggr over x and average, we obtain
(jRR(k))rgr o 1-2n(k). Thus, the divergences in (j(k))gr
and —(jRR (k))gg at E €3 coincide. This looks like super-
conducting condensate induces huge currents acting as a
whole. However, these currents are imaginary. Therefore, it
is clear that we need to omit this contribution from (/).
We believe that we can put £ = 0 into the distribution
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function, and obtain (j(k))gg = (jRR(k))gg = 0. This
means that the states are localized in these bands, because
Q(x) = ep(x).

In the case of the LR basis, we have [V; (—k)]*Vz(—k)+
(UL (0)]" Ug (k) = 1+ iA={[VE(K)]" Vg (k) + [UL (=k)]"x
Ur(=k)}*, where AeNR. This leads to (j(k)) g
k[2n(k) — 1 4+ iA], that has divergences coming from
n(E) at E € 3. However, the average current that is derived
from Sy is zero: (j5R(k));x = 0. Thus, it is unclear where
the divergences can come from. The current stays imagi-
nary, even if we put E = 0 in the distribution function. We
will omit it when we calculate current-voltage character-
istics in the LR basis below.

We now underline the physical meaning of Sgr. For
EeN, (Sgr)rr = 0. For E€ Y, the quartic terms are in
general not zero (the quadratic terms we have discussed
above), where we have used the fact that Wick’s theorem is
valid for the RR basis [29]. Thus, Sgr acts only in PT-
broken regime and indeed denotes the growth and decay of
the states with imaginary energies. Physically, this means
that the non-Hermitian electron-electron interaction indu-
ces and destroys quasiparticles. Since Sgg is Hermitian,
these two processes are equilibrated, i.e., as many are
induced, as many are destroyed. Therefore the overall
probability does not grow in the system, even though it can
be not noticeable in other calculations, e.g., eigenfunctions
of Hprg(k), from where it follows that there are separate
growing and decaying in time states.

N-I-PTS junction.—Measuring current in PTS can be
complicated due to the necessary nonequilibrium condi-
tions applied to it. Therefore, we study the junction of a
normal metal with PTS and a thin insulating barrier in
between them; see Fig. 1. The junction is described by the
Bogoliubov-de Gennes equations
(v

iAB(x)0, %_LA;{G—(XI);;) ) <ZE2 )
()

Here, I5(x) denotes the insulating barrier and ©(x)
divides the normal metal part x < O and the PTS part
x>0. We search for wave functions in the form
(u(x) v(x)) = > (u(k) v(k))e™ /+/L, where the summa-
tion is over all states that are involved in the scattering
process, and L is the length of the corresponding material,
L — oo. In order to find these wave functions, we use the
condition of the continuity of the wave function and a jump
in its derivative derived from Eq. (12); see the
Supplemental Material [32]. We study all scattering proc-
esses: (1) electron and (2) hole incident from the left;
(3) electronlike quasiparticle and (4) holelike quasiparticle
incident from the right.

Let us consider process (1) (see Fig. 1): an incident from
the normal metal electron scatters back at the interface as an
electron with the amplitude b;. There is also Andreev
scattering into the hole state with the amplitude a;.
Penetrating into the PTS particles are an electronlike
quasiparticle (c;) and a holelike quasiparticle (d;). All
other processes are described with the amplitudes analo-
gously, where coefficients a and d correspond to the
reflected and transmitted particles, respectively, of the
different type compared to the incident one.

We perform this calculation for four scattering processes
at positive and negative energies and for the left vectors
[32]. Thus, we derive the wave functions uz7 (x) and
vgf (x) that describe the N-I-PTS junction as a whole. We
note that these wave functions are later used as a linear
transformation, where energy substituted there has the
same sign for all of them. In conventional superconductors,
there are usually two types of eigenvectors: (U V) and
(V* — U*) due to particle-hole symmetry. Here, the par-
ticle-hole symmetry can be defined in two ways [15,34];
therefore we decided to explicitly take into account all
eigenvectors.

The whole current through the junction is (Jo); g/rr =

S jg))LR /RR> Where i denotes scattering processes. The

currents ( jg>>LR /rr have the same formula as Eq. (11), but

with k;, n;(k;), u; g, v7 " [32]. The summation is over all

momenta k; that participate in the scattering process i. We
then move to the energy representation and integrate over
all necessary states. We take the density of states in PTS as
Ners(E) = 1/L Y, 8(R[E] — R E(k;))3(3(E] - 3[E(k,)).
analogously to Ref. [35]. PTS has either real or imaginary
energy; therefore Nprg(E) eventually converts to the
conventional definition of the density of states. Each

( j(é)>LR /Rr contains the density of states of the incident
particle in the process i [32].

Comparison of average current in LR and RR bases.—
Here, we compare (Jy)pg and (Jo) g, assuming that
voltage is applied to the normal metal part and is a shift
of the chemical potential there [32]. In Fig. 3, we plot
current-voltage characteristics of the N-I-PTS junction in
(a) RR and (b) LR bases. The current from the states with
E e is conserved through the junction, in contrast to
conventional N-I-S junctions; therefore it does not matter if
we measure it in the normal metal part or PTS. We have
used the parameters shown in Fig. 3 and m = 1, u = 10,
T = 0.01. Thus, the coefficients Jy, =V, = e.

We plot the case of no barrier I = 0 (blue and green dots)
and a rather strong barrier / = 10 (red dots). The blue and
green dots have different strengths of superconducting
pairing, i.e., Akr: the green dots represent almost normal
metal-insulator-normal metal junction. The green dots show
linear (Ohmic) dependence on voltage, but the blue dots in
LR and RR have opposite shifts with respect to it: lower and
higher, respectively. This means that the contribution from
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FIG. 3. Current-voltage characteristics of N-I-PTS junction in
(a) the RR basis and (b) the LR basis. The green dots correspond
to no barrier (/ = 0) and almost no superconducting pairing. The
blue and red dots correspond to / = 0 and I = 10, respectively,
and a noticeable effect of superconducting pairing. Remarkably,
Andreev scattering has opposite effects in different bases:
(a) enhancing current and (b) suppressing current. The sign of
the effect in (a) is the same as in conventional N-I-S junctions.

Andreev scattering has opposite signs in LR and RR bases.
Indeed, in the LR basis, (af',)*af’, (for both < and >) has the
negative sign in contrast to the conventional positive sign of
|af,|? in the RR basis. For the transmitted hole and electron
from the incident electronlike quasiparticle and holelike
quasiparticle, respectively, (d% 4)*d§ 4 also have negative
sign for both > and <. Thus, the conversion of electron to
hole or vice versa gives the current of the opposite sign in the
LR basis, i.e., they move toward the junction. Scattered
particles (reflected or transmitted) should move away from
the scattering region unless there is some attraction force
there, which is not the case here. Notably, if we change the
sign of these currents, Fig. 3(b) becomes Fig. 3(a).

The effect of the barrier is in general the same in LR and
RR bases for large voltages: the slope is much lower for
I =10 than for I = 0. However, there is an opposite
behavior in the LR basis for small voltages. It is due to
the interplay of the current flows with a and b coefficients.
To conclude this analysis, the exotic properties of the LR
basis do not eventually lead to the same observable values
as the RR basis; see Fig. 3. We think that additional
corrections to the definition of probability in LR formalism
might eliminate the issue related to the scattering direction.

Conclusions.—In this Letter, we show that current-
voltage characteristics for the N-I-PTS junction in RR
and LR bases are profoundly different, especially for the
weak barrier strengths, because Andreev-scattered particles
move toward the scattering region at £ € R in the LR basis.
We argue that LR formalism is not universal and does not
apply to this setup taking into account the unphysical
Andreev scattering, the divergences in the density of
electrons, and imaginary current contributions from the
bands with E € 3. Importantly, we have shown that there is
no infinite probability growth in the RR basis, but the
growth and decay are equilibrated, in contrast to results
usually obtained for PT-symmetric non-Hermitian systems.
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