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We study the kinematics and dynamics of a highly compliant membrane disk placed head-on in a
uniform flow. With increasing flow velocity, the membrane deforms nonlinearly into increasingly
parachutelike shapes. These aerodynamically elongated materials exhibit a modified drag law, which is
linked to the elastohydrodynamic interactions. We predict the unsteady structural response of the
membranes using a nonlinear, aeroelastic model—in excellent agreement with experimental measurements
of deformations and force fluctuations. With simultaneous membrane interface tracking, force measure-
ments and flow tracing, we reveal that a peculiar skewness in the membrane’s oscillations triggers
turbulence production in the wake, thereby modulating the drag. The present work provides a
demonstration of the complex interplay between soft materials and fluid turbulence, leading to new,
emergent system properties.
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The interaction of elastic structures with fluids is a
problem of central importance to the mechanics of continua
and interfaces. When a flexible structure is placed in a flow,
its shape change can induce modified interactions between
the structure and surrounding flow [1–13]. This coupling
can lead to complex, fluid-structure interactions; common
examples range from the fluttering of a flag or a flexible
structure in the wind, to the swimming of fish [14–22].
Often, these interactions affect the thrust-drag response of
the systems involved [2,4,6,8–10,23–28]. A few studies
have focused on the steady and unsteady interactions of
elastic materials [29,30], wherein the materials were
typically operated within the linear elastic limit of small
strains (e.g., [10,31,32]). In contrast, a broader class of
highly deformable (nonlinear) materials can be envisioned,
with a complex, strain-dependent, elastofluidic response. In
such situations, the interplay between the nonlinearities of
the material and the nonlinearities in the flow could pave
the way for emergent system properties.
A circular disk placed head-on in a uniform stream

represents a classic example of a bluff body flow that has
been extensively studied [33]. Ganedi et al. [9] recently
studied how an oil film suspended by a circular ring
deformed in an external flow. When large stretchability,
coupled with strain-stiffening behavior (or strain soften-
ing), is introduced to this problem, the resulting system can
exhibit rich variability in its dynamical behavior. The
unsteady behavior in such situations emerges out of
interactions between the material’s oscillations and the
induced flow field around it.
In this Letter, we present a combined experimental, theo-

retical, and numerical study of the unsteady fluid-structure

interactions of an ultrasoft, compliant membrane placed
head-on in a uniform flow. The incoming fluid flow de-
forms the membrane into parachutelike shapes [Fig. 1(a)].
We will quantitatively show how these aeroelastically
morphed membranes can enter a state of skewed resonance,
triggering a modified drag-thrust response when compared
to similarly shaped rigid shells. Our analysis, which

(a)

Liquid film

Linear e
lasti

c

Hyper elastic

(b)

FIG. 1. (a) Schematic of the side view of an initially circular
membrane disk of diameter D, deforming in response to a
uniform incoming flow of velocity U∞, where r and z are the
radial and axial coordinates, respectively. The membrane disk is
placed inside a low-speed wind tunnel and the membrane bulges
to a mean maximum deformation w0, where wðrÞ is the
deformation profile of the membrane. The two squares at the
top and bottom denote the cut section of the rigid circular ring
that is used to hold the prestretched membrane. The unsteady
oscillations induced about the mean bulge are denoted as w0. The
inset depicts a small portion of the membrane with a force balance
between pressures pi and pe, and tension T developed across the
membrane due to stretching (quasistatic approximation). (b) A
representative schematic showing the normalized tension (T =T 0)
with increasing strain rate (ϵ) for different classes of materials.
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combines theoretical predictions with membrane interface
tracking and time-resolved flow field tracing, reveals that
the unsteady motions of the soft, elastic membrane can
induce turbulence in the far wake.
The membranes were fabricated using an addition-cure

type of silicone rubber material with a range of thicknesses,
h ¼ 250–3500 μm. The shear modulus G ranged between
4–34 kPa, controlled by adding different amounts of thinner
[34]. A circular sample of the curedmembranewasmounted
with a desired prestretch, λ0, onto a rigid acrylic ring
with inner diameter D ¼ 120 mm, outer diameter of
128 mm, and thickness 3 mm (see Supplemental Material
for details [35]).
The membrane disk was fixed to a nonintrusive steel

“claw,” attached to a six-axis load cell and mounted head-on
in the uniform air stream, in a low-speed wind tunnel, with a
test section of 1.2 m× 1.2 m cross section, and 3.6 m
length. Tests were conducted over a range of flow speeds,
U∞ ¼ 8–25 m=s (Reynolds number, Re≡U∞D=ν ¼
105–106). The membrane’s centerline deflection w0 was
varied in uniform steps fromw0=D ¼ 0.08–0.5 by adjusting
the flow speed, and force and torque data were collected at
20 kHz at each of the mean deflection values. A high-speed
camera recorded side-view images at 500 frames=s. In a
separate experiment, conducted in a different wind tunnel
(test section: 0.612 m), velocity fields were measured, at
700 Hz, using particle image velocimetry (PIV) (see
Supplemental Material for details [35]).
As the velocity increases, the membrane starts to balloon

from a flat disk shape toward increasingly parachutelike
shapes, with a maximum deformation w0 at the centerline.
The resulting steady state deformations [Fig. 2(a)] show
dependency on all of the experimental parameters: G, h,
U∞, and λ0, and varies monotonically, but nonlinearly with
flow speed. At all deformations the membrane shape is well
approximated by a spherical cap (Supplemental Material
[35]), with curvature,

κ ¼ 16w0

D2 þ 4w2
0

: ð1Þ

The corresponding drag coefficient,Cd¼Fd=ð0.5ρU2
∞AÞ,

where Fd is the drag force and A is the projected area of the
disk, is shown inFig. 2(b). The drag coefficient for 3D-printed
rigid shells [Fig. 2(b); black circles] increases monotonically
fromavalue of 1.17 to a value of 1.42, in agreementwith prior
work [33]. In contrast, the membranes with the same mean
shape experience a higher drag. The drag coefficient for the
membranes with the same shape varies nonmonotonically
with the membrane thickness [Fig. 2(b)]. Furthermore, when
compared to a rigid spherical cap the soft membranes exhibit
oscillations about themean shape (seemovie in Supplemental
Material [35]).
We can understand the membrane behavior using a

simple analytical model, the unsteady deformation of a

membrane, wðr; tÞ, is given by [36]

ρmh
∂
2w
∂t2

þ T κ ¼ Δp; ð2Þ

where ρm is the membrane’s mass density, Δpðr; tÞ is the
pressure difference across the membrane, and T is the
membrane tension. Nondimensionalizing Eq. (2) using
length scale D, time scale D=U∞, and pressure scale
0.5ρU2

∞, where ρ is the fluid density, we obtain

R
∂
2w�

∂t�2
þ Aei κ� ¼ Cp; ð3Þ

where w� and κ� are the dimensionless deformation and
three dimensional curvature, respectively, R ¼ 2ρmh=ρD is
the mass ratio, Aei ¼ T =ð0.5ρU2

∞DÞ is the so-called
aeroelastic number [23], and Cp is the pressure coefficient
(see also Supplemental Material [35]).
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FIG. 2. (a) Normalized mean deformation w0=D of various
membranes as a function of the flow velocity U∞. Each of the
dashed lines represents one value of thickness of membrane. The
corresponding shear moduli values were G ¼ ½1.7; 1.9; 2.1; 3.5;
5.4; 9.5; 19.1� kPa. (b) Drag coefficient, Cd of various mem-
branes as a function of mean deformation. The color map de-
notes the membrane thickness. Both the plots demonstrate the
wide scatter (nonmonotonic) in the deformations and drag
measurements.
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While Eq. (3) appears to be linear, the membrane’s
material response and curvature introduce nonlinearity into
the second term. The silicone material exhibits a hypere-
lastic stretch-strain response and strain stiffens at large
deformations [34]. Using a two-parameter Gent model for
biaxial deformation [34,37], the tension in the membrane
can be expressed as T ¼ Gmhð1 − λ−6Þ, where Gm ¼
GJm=ðJm − I1 þ 3Þ, G is the material shear modulus, Jm
is the locking parameter, and I1 is the first invariant of the
left Cauchy-Green deformation gradient tensor [38].
Further, the stretch ratio for the spherical cap geometry
can be written in terms of the curvature and prestretch as
λ ¼ ð4λ0=κ�Þ sin−1ðκ�=4Þ. Combining these, we can
express the tension T or the aeroelastic number Aei in
terms of the membrane curvature κ� and other material and
fluid properties in Eq. (3).
At steady state, Eq. (3) yields a relation for w0=D in

terms of Aei, which needs to be solved implicitly for the
entire range of deformation [Fig. 3(a)]. In the small
deformation limit (or large Aei), the solution can be
approximated as

w0

D
≈

1

16Aei
: ð4Þ

The measured mean deformation w0=D is in excellent
agreement with the model predictions for all values of Aei,
λ0, and R. Additionally, uniaxial and biaxial character-
izations were conducted in order to model the material
stresses in response to prescribed strains (see Supplemental
Material for details [35]).
We turn our attention to the unsteady kinematics of the

membrane. The origin of these fluctuations can be linked to
vortex shedding, which is commonly observed to occur in
flows over bluff bodies, with a characteristic frequency, ωs
at a constant Strouhal number, St ¼ ωsD=2πU∞ [39,40].
The shedding generates an unsteady force, and one can

expect the membrane to experience an inertial reaction
force F0

d ¼ mma0m, where mm and a0m are the membrane
mass and characteristic scale of membrane acceleration,
respectively. The spectra of the force measurements at all
speeds show a nearly constant Strouhal number, St ¼ 0.12
(see Supplemental Material, Fig. S-1 [35]). The acceler-
ation of the oscillating membrane can be expected to scale
as a0m ∝ w0ω2

s , where w0 is the oscillation amplitude.
Therefore, we can express F0

d ¼ ρmhAw0ω2
s , and corre-

spondingly a fluctuating drag coefficient, C0
d ≈ 8π2St2Rw0.

Comparing the experimental measurements of the force
fluctuations with this inertial prediction [Fig. 3(b)], we
observe an excellent agreement. This demonstrates that the
measured drag fluctuations (second moment of w0) are
predominantly due to the breathing mode of membrane
oscillations (first mode).
Considering the oscillating membrane as a dynamical

system, forced at the vortex shedding frequency, we adopt a
forced harmonic oscillator model to understand the oscil-
lation amplitude, and to explain the nonmonotonic variation
of w0 with R. By invoking axisymmetry, and considering
small oscillations about amean shape,we linearize Eq. (2) to
obtain

ρmh
∂
2w0

∂t2
− 2T

∂
2w0

∂r2
¼ CsFdyn sinωst: ð5Þ

Here the prefactor Cs is the relative strength of the unsteady
vortex shedding forceswith respect to the dynamic pressure.
A typical bluff body experiences unsteady vortex-induced
forces that are about 10% of Fdyn ¼ 0.5ρU2

∞A [41,42].
Measurements of the force fluctuations for a rigid hemi-
sphere yield Cs ∼ 0.1 (see Supplemental Material [35]).
The unsteady membrane equation [Eq. (5)] supports

modes that resonate when the natural frequency of the
membrane ωm coincides with the frequency of the vortex
shedding ωs. Approximating that the membrane oscillates
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FIG. 3. (a) Comparison of steady state membrane deformation from experiment with the model predictions. Here, the normalized
mean deformation is plotted against the effective aeroelastic number Aei. In the small deformation limit the model approaches a slope of
−1. (b) Normalized drag fluctuation measurements vs prediction based on inertial scaling. (c) Amplitude of membrane oscillations w0=D
vs membrane mass ratio R for a fixed mean deformation (w0=D ¼ 0.5). The dotted line shows the prediction of resonance from the
analytical model [Eq. (5)]. The solid green line incorporates the membrane damping.
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similar to a stretched drum (small curvature), the first mode
of Eq. (5) has a natural frequency, ωm ¼ 3πc=2D, where
c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2T =ρmh
p

is thewave speed [43]. This can be rewritten
in terms of the aeroelastic parameter and the mass ratio:

ωmD
2πU∞

¼ 3

2
ffiffiffi

2
p

ffiffiffiffiffiffiffi

Aei
R

r

: ð6Þ

Resonance will occur when ωs=ωm ¼ 1, a prediction that is
confirmed in our experimental measurement shown in
Fig. 3(c), for w0=D ¼ 0.5. (See also Supplemental
Material [35].) By measuring the amplitude decay of an
oscillating membrane (a “ring-down” test—see Supple-
mental Material [35]), we can include an empirical damping
term to Eq. (5), which provides an upper bound on the
amplitude at resonance [solid green curve in Fig. 3(c)]. We
observe a nearly parameter-independent-resonance point,
i.e., a single physical membrane (with R ¼ 18� 2) can
resonate at a broad range of flow conditions. This has been
achieved because the membrane passively adapts its shape
and natural frequency in proportion to the change in the flow
speed (see Supplemental Material [35] for further details).
Note the subtle asymmetry observed in the measure-

ments of w0=D about the resonance point [Fig. 3(c)]. The
origin of this asymmetry lies in the nonlinearity introduced
by finite curvature of the membrane—unaccounted in the
simplified drum head model—which is captured numeri-
cally by solving the unsteady membrane structural equation
at large oscillation amplitudes (see Supplemental Material
[35] for details). Last, with the mean deformation and
unsteady oscillations explained, we focus on the mecha-
nism responsible for the modified mean drag coefficient Cd
for the membranes. Despite the relatively low oscillation
amplitude of the membrane: w0=D ∼Oð10−2Þ, the drag
coefficient for the membrane is noticeably higher (by up to
20%) than that of a similarly shaped rigid shell [Fig. 2(b)].
It is interesting to note that such small amplitudes of
oscillations could induce a significant drag modification.
The drag on the body is reflected in the wake momentum

deficit which can be obtained by radial integration of the
mean and unsteady wake momentum contributions (see
Supplemental Material for details [35]):

Cd ¼
16

D2

Z

R

0

�

ūz
U∞

�

1 −
ūz
U∞

�

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

mean

þ −u02z
U2

∞
þ 1

2

u02r
U2

∞
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

unsteady

�

r dr: ð7Þ

We perform two-dimensional PIV of the wake behind the
membrane and a similarly shaped rigid shell, measuring the
axial, uz, and radial, ur, velocities. Comparing the velocity
fields from these two cases, we find that the mean wake
velocity profiles ūz are nearly identical [Fig. 4(a)], and
hence the contribution to the drag from the steady term in
Eq. (7) is comparable for the two cases. However, the

turbulent kinetic energy TKE ≈ 3=4ðu02z þ u02r Þ in the wake
behind the membrane is significantly greater than for the
rigid shell [Figs. 4(b) and 4(c)], and when one includes the
unsteady velocity terms in the calculation of Cd, we find
excellent agreement between the force measurements and
the PIV estimations for both the membranes and the rigid
shells [Fig. 4(d)]. Downstream in the wake, the small-scale
fluctuations are expected to tend toward local isotropy, and
the periodic signature of vortex shedding has nearly
disappeared [44]. Remarkably, the increase in the wake
TKE exceeds the energy density of the oscillating mem-
brane by an order of magnitude, i.e., u02z =ðw0ωsÞ2 ∼Oð10Þ
and it is this energy that accounts for the increase in the
mean drag coefficient. The weak correlation between TKE
production and w0 can be rationalized by noting that it is
the subtle skewness of oscillations that drives turbu-
lence production. We performed a set of interface-resolved
numerical simulations of a membrane oscillating within a
fluid flow field. The membrane’s rate of stretching as
compared to its relaxation rate, i.e., the skewness of motion,
dictates the degree of drag modulation (drag increase vs
drag reduction; see Supplemental Material [35]). A detailed
exploration of this is part of an ongoing investigation.
In summary, we have conducted a systematic study of

the aeroelastic response of an ultrasoft membrane disk in a
uniform flow. We observe that the material deforms
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FIG. 4. Comparison of the (a) mean axial velocity profile ūzðrÞ
and (b) turbulent kinetic energy (TKE), at z=D ¼ 1.5 down-
stream of the body with w0=D ¼ 0.5. The TKE field (c) down-
stream of a rigid shell and deformed membrane disk, with
w0=D ¼ 0.5. The hatched region represents an area where
velocity vectors were not available due to laser light reflections.
(d) Comparison between the drag coefficient calculated inde-
pendently from (i) direct force measurements (circles and
squares) and (ii) a control volume analysis based on the velocity
field (diamond symbols). The black and green symbols are for the
rigid shells and the membranes, respectively.
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nonlinearly into parachutelike shapes. The time-averaged
shape of the membrane can be accurately modeled using a
hyperelastic Gent constitutive model [37] that depends on a
single dimensionless parameter—the aeroelastic number
Aei. The unsteady membrane vibrations are driven by
vortex shedding, and the fluctuations are accurately mod-
eled using a simple spring-mass system that depends on the
aeroelastic number and the membrane mass parameter R.
Through shape morphing, the membrane adapts its natural
frequency with the flow speed, resulting in a single physical
membrane exhibiting (or avoiding) resonance over a broad
range of flow conditions. We anticipate that triggering the
nonlinear elastic response of materials within fluid flows
may open up a number of opportunities for drag control
using soft, stretchy materials.
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