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We investigate the spectral properties of buoyancy-driven bubbly flows. Using high-resolution
numerical simulations and phenomenology of homogeneous turbulence, we identify the relevant energy
transfer mechanisms. We find (a) at a high enough Galilei number (ratio of the buoyancy to viscous forces)
the velocity power spectrum shows the Kolmogorov scaling with a power-law exponent −5=3 for the range
of scales between the bubble diameter and the dissipation scale (η). (b) For scales smaller than η, the
physics of pseudo-turbulence is recovered.
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The flow behind an array of cylinders or a grid, either
moving or stationary, provides an ideal testbed to verify and
scrutinize the statistical theories of turbulence [1]. What is
the flow generated when a fluid is stirred by a dilute
suspension of bubbles as they rise due to buoyancy? This
question has intrigued researchers for the past three decades
due to their occurrence in both industrial and natural
processes [2–7]. Experiments [8–13] and numerical simu-
lations [14–16] show that flows generated by dilute bubble
suspensions are chaotic and originate due to the interplay of
viscous, inertial, and surface tension forces. The complex
spatiotemporal flow is called “pseudo-turbulence” or
“bubble induced agitation” [3,5].
As is typical for chaotic flows, pseudo-turbulence is

characterized by the power spectrum of its velocity fluc-
tuations EðkÞ, which shows a power law scaling EðkÞ ∼ k−α

with an exponent α ≳ 3 in the wave number range k≳ kd,
where kd ¼ 2π=d and d is the bubble diameter [8,12].
Lance and Bataille [8] argued that the balance of energy
production with viscous dissipation may explain the
observed scaling. Recent numerical studies conducted
for experimentally accessible Galilei numbers Ga (the ratio
of buoyancy to viscous dissipation), show that the net
production has contributions both from the advective
nonlinearity and the surface tension [11,14–16].
In homogeneous and isotropic turbulence (HIT) the

energy injected at an integral scale L is transferred to
dissipation scale η ≪ L, via the advective interactions
without dissipation while maintaining a constant energy
flux. This intermediate range of scales between η and L is
called the inertial range. At scale smaller than η the
advective interactions balance viscous dissipation [17].
Clearly within the phenomenology of homogeneous and
isotropic turbulence, pseudo-turbulence is a dissipation
range phenomena with the additional complexity due to

surface tension forces. Is it possible to have an inertial
range in buoyancy driven bubbly flows?
In this Letter, we present state-of-the-art direct numerical

simulations of buoyancy driven bubbly flows, at high
resolution, which allows us to access Ga > 1000 which
has never been achieved before in either experiments or
numerical simulations. Our multiphase simulations model a
dilute suspension of “gas” bubbles of lighter phase (density
ρ1) dispersed in the heavier “liquid” phase (density ρ2). The
density contrast is parametrized by the Atwood number,
At≡ ðρ2 − ρ1Þ=ðρ2 þ ρ1Þ. We consider both small (0.04)
and large (0.8,0.98) values for At. We use two different
codes for these two cases. In both of these cases, we find,
for the first time, a direct evidence for Kolmogorov scaling,
EðkÞ ∼ k−5=3, for kd ≤ k≲ 1=η. For scales smaller than η,
the physics of pseudo-turbulence is recovered. By analyz-
ing the scale-by-scale energy budget we uncover the
mechanism by which the Kolmogorov scaling emerges:
for high enough Ga, for both small and larger At, there is an
intermediate range of scales over which the contribution
from advection dominates over all other contributions
(including surface tension) in the kinetic energy budget.
This is the range over which Kolmogorov scaling is
observed.
We study the dynamics of bubbly flow using multiphase

Navier-Stokes equations [14] for an incompressible veloc-
ity field u ¼ ðux; uy; uzÞ,

ρð∂tuþ u ·∇uÞ ¼ μ∇2u −∇pþ Fσ þ Fg; where ð1aÞ

Fg ≡ ½ρðcÞ − ρa�g ¼ Atðρ2 þ ρ1Þðc − caÞg; and ð1bÞ

Fσ ≡
Z

σκn̂δðx − xbÞds; ð1cÞ
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where the bulk viscosity μ is assumed to be identical in both
the phases, and p is the pressure. An indicator function c,
distinguishes the liquid (c ¼ 1) and the gas (c ¼ 0) phase
[18,19]. The density field ρðcÞ ¼ ρ2cþ ρ1ð1 − cÞ. In
Eq. (1), the buoyancy force is Fg, ca ≡ ð1=VÞ R cdV is
the indicator function averaged over the volume V of the
simulation domain, ρa ¼ ρ1 þ ðρ2 − ρ1Þca is the average
density, g≡ −gẑ is the acceleration due to gravity, and ẑ is
the unit vector along the vertical (positive z) direction. The
surface tension force is denoted by Fσ, where σ is the
coefficient of the surface tension, κ is the local curvature of
the bubble-front located at xb, n̂ is the unit normal, and ds is
the infinitesimal surface area of the bubble.
For the small At ¼ 0.04 case, we invoke Boussinesq

approximation [20] wherein the density variations can be
ignored ρ ≈ ρa, and the buoyancy force simplifies to Fg ¼
2ρaAtðc − caÞ [14,15]. We solve Eq. (1) numerically using
the pseudo-spectral method [21] in a three-dimensional
periodic domain where each side is of length L, discretized
uniformly into N collocation points. We numerically
integrate the bubble phase using a front-tracking method
[14,19,22]. For time evolution, we use a second-order
exponential time differencing scheme [23] for Eq. (1) and a
second-order Runge-Kutta scheme to update the front. For
the large At ¼ 0.8, and 0.98, we use the front tracking
module of an open-source multiphase solver PARIS [24],
where both spatial and temporal derivatives are approxi-
mated using a second-order central-difference scheme.
Consistent with the experiments designed to study

buoyancy driven bubbly flows [8,12,13] we choose the

volume fraction of the bubbles ϕ ≤ 5%. At these volume
fraction, the effects coalescence or breakup of the bubbles
can be ignored [25]. The front-tracking scheme is ideally
suited to study this parameter range because it ignores both
coalescence and breakup. For one representative case we
also perform volume-of-fluid (VOF) simulation (vof-R5)
using PARIS—VOF simulations allow coagulation and
breakup—to confirm that coalescence plays no signifi-
cant role.
In what follows, the following nondimensional numbers

will be used: Atwood number At defined previously, the
Galilei number, Ga≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðρ2 − ρ1Þgd3=ρ2ν2
p

, the Bond
number Bo≡ ðρ2 − ρ1Þgd2=σ, the integral scale Reynolds

number Re3=4L ≡ L=η, the Taylor-microscale Reynolds num-

ber Reλ ≡ u2rms
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15ρ2=ðνϵgÞ

p
. Here we have used kinematic

viscosity ν¼μ=ρ2, the large eddy turnover time τL ≡ L=urms,
the root-mean-square velocity, urms, the energy injection rate
by the buoyant forces [26], ϵg ≡ ð1=VÞ R Fg · udV, integral
length scale L≡ ð3π=4Þ½Pk EðkÞ=k�=

P
k EðkÞ, and the

Kolmogorov dissipation scale η≡ ðρaν3=ϵgÞ1=4 The different
parameters of our simulations are given in Table I.
We start our simulation by placing Nb bubbles randomly

in the domain. It takes around 4.5τL for our simulation
attain a statistically stationary state. Once it is reached, all
our data are averaged over at least 5τL. In Fig. 1 we show
the isocontour plot of the z component of vorticity
ωz ¼ ð∇ × uÞ · ẑ. As the Ga (Reλ) is increased, not only
the intense vortical regions in the field increases, we
observe flow structures at much smaller scales as well.

TABLE I. Parameters of simulations. The Bond number Bo ¼ 1.75, number of bubblesNb ¼ 12, the diameter of the bubble d ¼ 1.08,
L ¼ 2π, ρ2 ¼ 1.0, and the volume fraction of the bubbles ϕ ¼ 3.2% are same in all the runs. For all the runs L ∼ d, and the statistics
are averaged over a period of at least 5τL in the stationary state (see Supplemental Material [27]). Total energy injection rate
ϵg ¼ 0.031� 0.002 in all the cases.

runs R1 R2 R3 R4 R5 R6 vof-R5 R7 R8 R9

N 256 512 512 512 720 720 1024 288 504 504
Ga 103 302 403 605 1029 2057 1029 340 1059 1489
At 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.8 0.8 0.98
Reλ 11.8 30.7 37.9 47.8 60.7 96.9 60.7 28.8 69.3 88.1
L=η 12.6 26.3 29.5 38.8 50.4 80 50.4 20.5 46 56.0

FIG. 1. The isocontour plot of the z component of the vorticity ωz ¼ ð∇ × uÞ · ẑ for (left to right) Ga ¼ 302, 605, 1029, and 2057. We
show the contour corresponding to �hðωzÞ2i1=2 in purple and orange, respectively. The bubbles are represented using gray contours.
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Next we investigate the power spectrum of velocity
fluctuations:

EðkÞ ¼ 1

2

X
k

hûðkÞûð−kÞiδðjkj − kÞ; ð2Þ

where ûðkÞ is the Fourier transform of the velocity field u, k
the wave vector, and h·i denotes the spatiotemporal average
over the statistically stationary state of turbulence.
Kolmogorov theory of turbulence shows that, in homo-
geneous and isotropic turbulence, EðkÞ for different
Reynolds numbers collapses onto a single curve if we use
η as the characteristic length scale andE0 ¼ ðϵgν5=ρ2Þ1=4 as
the characteristic energy scale, which we use henceforth. In
Fig. 2(a) we show that, even for buoyancy driven bubbly
turbulence, the same data collapse holds for scales k≳ kd.
For small Ga number we obtain the pseudo–turbulence
regime [8,12–14] for k≳ 0.3=η. As the Ga increases a
scaling range with an exponent of approximately −5=3
emerges for kd ≲ k≲ 0.3=η. This is a novel, previously
unobserved scaling in bubbly flows. The scaling range
increases with Ga; it is almost nonexistent for Ga ¼ 100
and extends up to almost half a decade for Ga ¼ 2057. The
−5=3 scaling range is best seen in Fig. 2(b)wherewe plot the

spectra compensated with k5=3. As we have used η as our
characteristic length scale the Fourier mode kd, shown by an
arrow, appears at different locations in this plot. As Ga is
increased kd moves to the left thereby the−5=3 scaling range
emerges.
Note that due to rising bubbles, in principle, our flow is

anisotropic. Here and henceforth, following the standard
practice in bubbly turbulence [8,14,16], we use the iso-
tropic spectra which is the projection of the general
anisotropic spectra on to the isotropic sector [32]. In the
Supplemental Material [27], which includes Ref. [32], we
show that for our simulations the anisotropic contribution is
negligible at all scales except k in the neighborhood of kd.
We now describe how Kolmogorov scaling emerges at

both small and large At by studying the scale-by-scale
energy budget equation:

∂tEK ¼ −ΠK − F σ
K þ PK −DK þ F g

K: ð3Þ

Here EK is the kinetic energy contained up-to wave number
K. Here ΠK , F σ

K , PK , DK, and F g
K are the contributions

from the advective term, surface tension, pressure, viscous
dissipation, and buoyancy from Eq. (1) [27].
The scale-by-scale budget for low At ¼ 0.04.—We

follow Refs. [17,28,29,33] to derive Eq. (3). We consider
stationary state, hence ∂tEK ¼ 0 and we use Boussinesq
approximation, hence PK ¼ 0. We plot all the others terms
of Eq. (3) as a function of K in the top row of Fig. 3 for
large and small Ga. As expected [14], bubbles inject energy
into the flow at scales comparable to the bubble diameter
—F g

K monotonically increases and saturates around
K ≈ kd. From the perspective of the Kolmogorov theory
of turbulence [17] the buoyancy injection term F g

K is the
large scale driving force active at scales around kd.
Following Ref. [17], consider a fixed K ≫ kd and take
the limit ν → 0 (Ga → ∞). Then limν→0DK ≈ 0, holds and
the flux balance equation reads

ΠK þ F σ
K ¼ ϵg: ð4Þ

Because the injection is limited to Fourier modes around kd,
for K ≫ kd, F

g
K ≈ ϵg is a constant. In homogeneous and

isotropic turbulence in absence of bubbles the dissipative
effects become significant around 8 to 10η [34]. We find 3η
is a reasonable approximation in our case. Thus, Eq. (4) is
expected to be valid for kd < K ≲ 0.3=η—this range is
shaded with light blue in Fig. 3. Within the shaded region
ΠK ≫ F σ

K, hence ΠK ≈ ϵg=2 is a constant leading to the
Kolmogorov −5=3 scaling in the energy spectrum [17].
Even at Ga ¼ 2057, the −5=3 scaling range is at best close
to a decade. In Fig. 3(b), for Ga ¼ 302 the shaded region
has practically disappeared. For this and other runs with
smaller Ga, we expect to observe pseudo-turbulence
where none of the three fluxes, F σ

K, ΠK, and DK , can
be ignored. A detailed discussion on the flux balance in the

FIG. 2. (a) Log-log plot of the normalized velocity power
spectra EðkÞ as a function of kη for various Ga. We observe
Kolmogorov scaling EðkÞ ∼ k−5=3 for kη≲ 0.3, and the pseudo-
turbulence scaling EðkÞ ∼ k−3 for kη≳ 0.3. (b) The velocity
power spectra for different Ga compensated by k5=3. In (b) the
vertical arrows show the wave number corresponding to the
bubble diameter kdη.
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pseudo-turbulence regime for Ga ≤ 360 can be found in
our earlier studies [14,15,22].
The scale-by-scale budget for high At ¼ 0.8, 0.98.—We

follow Refs. [28,30,31] to derive Eq. (3). We again consider
statistical stationarity, hence ∂tEK ¼ 0. In Figs. 3(c) and
3(e), we plot all the terms of Eq. (3) as a function of K for
both high and low Ga. The “baropycnal work,” PK , now
provide alternate routes for nonlinear energy transfer. The
baropycnal term has contributions from the barotropic
generation of strain and baroclinic generation of vorticity
due to density variations [31]. Remarkably, for large enough
Ga there is a range of scales, shaded in Figs. 3(c) and 3(e)
where the dominant balanceΠK ≈ ϵg=2 is a constant leading
to the Kolmogorov −5=3 scaling in the energy spectrum.
The other transfer mechanisms F σ

K and PK are sub-
dominant. A positive slope of F σ

K (PK) indicates that the
energy is absorbed (injected), whereas a negative slope
indicates energy being injected (absorbed). Thus surface
tension absorbs energy at large scales and injects it at
small scales, whereas the opposite is the case for the
baropycnal term.

Several earlier experimental and numerical studies [9–
12,14–16,35,36] have shown that the power spectrum of
velocity fluctuations is insensitive to variation in At for
Ga ⪅ 350. We have now shown that this is also true for
large Ga. Thus, the following scenario emerges. For a fixed
but small At, where the Boussinesq approximation is valid,
the baropycnal flux is negligible. For a fixed but large At it
is not. But even for the latter case as the Galilei number Ga
is increased beyond some critical value Ga�, the advective
flux can become the dominant contribution to the net flux.
In such cases, Kolmogorov-like scaling holds. A systematic
study to find out the how Ga� depends on At is outside the
scope of this work.
We comment that the resolution required to conduct a

fully resolved pseudo-turbulent simulation increases pro-
portionally with both At and Ga [16,37]. However, a
comparison of different experimental and numerical studies
[11,14–16,36] reveals that the statistics of the velocity
fluctuations, in particular, the PDF and the power spectra,
are robust to the variation in both At and grid resolution.
The effect of resolution is only observed at very small
scales (see Supplemental Material [27], which includes
Ref. [16]) and therefore we expect all our results will be
valid at resolutions higher than the current study.
To conclude, we demonstrate, for the first time, that at

large enough Ga > 1000, the power spectrum of velocity
fluctuations shows the Kolmogorov scaling for range of
scales between the bubble diameter and the dissipation
scale. For scales smaller than η, the physics of pseudo-
turbulence is recovered. Most of the earlier experiments on
buoyancy driven bubbly flows have considered air bubbles
of diameter d≲ 5 mm in water, which correspond to
Ga≲ 1000 [10,12]. Our study suggests that experiments
with air bubbles of diameter d ≥ 7.5 mm are needed to
achieve Ga > 1000 and observe the Kolmogorov scaling
range. At both high and low Atwood, we expect the −5=3
scaling range to increase further as the Ga is increased. Due
to computational challenges [16], although such a study is
currently not possible, it demands future investigations.
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FIG. 3. Semi-log plot of the different terms in scale-by-scale
budget for low Atwood number At ¼ 0.04 (top row) with Ga ¼
2057 (a) and Ga ¼ 302 (b); At ¼ 0.8 (middle row) for Ga ¼
1029 (c), Ga ¼ 345 (d); and At ¼ 0.98 (bottom row), Ga ¼ 1489
(e). The abscissa is normalized by the total energy injection rate
ϵg. The dashed vertical line represents the wave number corre-
sponding to bubble diameter, kd. The continuous vertical line
shows the wave number where the advective flux and the
dissipative flux crosses. The region between these two lines,
where the advective contribution dominates, is shaded with light
blue color.
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