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We identify an acoustic process in which the conversion of angular momentum between its spin and
orbital form takes place. The interaction between an evanescent wave propagating at the interface of two
immiscible fluids and an isolated droplet is considered. The elliptical motion of the fluid supporting the
incident wave is associated with a simple state of spin angular momentum, a quantity recently introduced
for acoustic waves in the literature. We experimentally observe that this field predominantly forces a
directional wave transport circling the droplet’s interior, revealing the existence of confined phase
singularities. The circulation of the phase, around a singular point, is characteristic of angular momentum in
its orbital form, thereby demonstrating the conversion mechanism. The numerical and experimental
observations presented in this Letter have implications for the fundamental understanding of the angular
momentum of acoustic waves, and for applications such as particle manipulation with radiation forces or
torques, acoustic sensing and imaging.
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It is widely accepted that the longitudinal nature of sound
waves cannot provide for a spin angular momentum (AM)
density in the supporting liquid or gas. Indeed, in the
absence of an efficient transverse restoring mechanism, the
motion of a lossless fluid carrying sound waves is often
thought to remain exclusively aligned with the propagation
direction, and therefore lacks the kind of rotational degrees
of freedom that lead to spin AM. While this is easily
verified for the ideal case of homogeneous plane waves, the
actual fluid motion in, e.g., nonparaxial beams, interfering
waves or surface waves is more complex, and the existence
of a finite spin AM density has recently been suggested
[1–4].
For light, in contrast, the separation of AM into a spin

part associated with the circular transverse polarization of
the electric field [5], and an orbital part associated with the
spatial distribution of the phase [6] is well established and
has been confirmed by several experiments two decades
ago [7–9]. Nevertheless, a recent interest in these quantities
in the context of highly structured or confined optical fields
has revealed other intriguing properties of the AM of light,
generically termed spin-orbit interactions, provided the full
vectorial character of Maxwell’s equations is considered,
comprising polarization components of the electric and
magnetic fields pointing in the direction of propagation,
transverse components of the spin AM density [10–12],
conversion mechanisms between the two forms of AM
[13,14], and interaction rules with quantum emitters
[15,16].
In lossless fluids, longitudinal soundwaves are frequently

termed “pressure” or “scalar”waves, and the analysis of the

vectorial properties of the velocity field are generally over-
looked, with the exception of a few reported seminal studies
[17,18], and more recent accounts on polarization singu-
larities and topological properties of sound [19,20]. In
particular, this may explain why only AM in its orbital
form,which arises from specific spatial phase properties of a
scalar potential field, has been previously investigated in
acoustic vortex beams [21–24]. Consequently, most
accounts of “spinlike” states of sound, or spin-orbit inter-
actions have been reported in artificial elastic structures [25–
28]. For transverse elastic waves in crystals (phonons)—
known to share several properties with light (photons)
[29,30]—the experimental evidence of an existing spin
AM is only very recent [31,32].
The renewed interest in the fundamental nature of the

AM density of sound waves in simple fluids, with the
recent proposition of its separation between well-defined
orbital and spin components, calls for the development of
experiments sensitive to both forms of AM through direct
wave field measurements or the mechanical evidence of
their transfer to matter [33,34].
Here, we identify a process by which the spin AM

density of a propagating longitudinal sound wave is
converted into AM in its orbital form. We characterize
the interaction between an isolated fluid droplet and an
incident evanescent (inhomogenous) field. By exploiting
minimally invasive and high resolution acoustic pressure
measurements, we were able to map the spatial properties
of the internal acoustic field. Our measurements reveal
the emergence of wave fronts circulating around phase
singularities confined in millimeter-sized resonant droplets.
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The circulation of the wave’s phase around singular points
is a hallmark for orbital AM imparted to the fluid, which is
found to coexist with a nontrivial spin AM density inside
the droplet.
Transverse spin density of the incident evanescent

wave.—In a lossless fluid of mass density ρ, the spin
AM density of a sound wave was recently derived as [2–4]

s ¼ ρ

2ω
Imðv� × vÞ ¼ 1

2ρω3
Imð∇p� × ∇pÞ; ð1Þ

where v is the complex velocity field in an Eulerian
description of the fluid motion, � denotes its complex
conjugate, Im denotes the imaginary part, and Euler’s
linearized momentum equation, iωρv ¼ ∇p was used for
a monochromatic pressure field, p, varying in time, t, as
e−iωt with a frequency, f ¼ ω=2π. Evanescent plane waves
are an example of inhomogeneous acoustic fields that give
rise to a simple state of transverse spin AM [3]. They are
plane wave solutions of the propagation equation obtained
using a complex-valued wave vector k ¼ kzez þ iκex. The
pressure field can be written as

pðx; z; tÞ ¼ pae−κxeiðkzz−ωtÞ; ð2Þ

where x denotes the vertical direction (unit vector ex) along
which the wave amplitude decays exponentially, z denotes
the propagation direction (unit vector ez), and pa is a
reference acoustic pressure amplitude (see Fig. 1). The
solution is invariant in the y direction. The dispersion
relation k · k ¼ k2z − κ2 ¼ k2 relates the propagation wave

vector kz to the spatial decay rate κ via the wave number
k ¼ ω=c, where c is the speed of sound in the fluid. The
local fluid displacement field is u ¼ iω−1v.
It is important to note that the wave field is longitudinal,

i.e., the acoustic displacement vector u and the wave vector
k are collinear. However, because k is complex valued, a
fluid particle initially located at a position x0 will follow the
displacement uðx0Þ that locally describes an elliptical
trajectory determined by the relative magnitude of kz
and κ [17,18]. Nevertheless, it is easy to verify that such
a “polarization” of the fluid motion does not violate its
fundamental irrotational nature (∇ × u ¼ 0), schematically
illustrated by the unchanged orientation of an isolated fluid
“particle” in Fig. 1(d) during its one-period center-of-mass
trajectory. The elliptical trajectory of the fluid motion is
somewhat similar to the orbits observed for gravity water
waves, for which a spin density has been introduced and
recently measured [35,36].
To experimentally generate an evanescent acoustic wave,

we designed a setup inspired by Refs. [37,38], that offers
appropriate conditions to obtain the total internal reflection
of an incident finite beam generated in medium (1) at the
interface with medium (2) (Fig. 1(a), and Supplemental
Material, Sec. I [39]). Critical reflection conditions are
obtained by using a “slow” incident medium (1) having a
low speed of sound relative to the “fast” transmission
medium (2). We chose for medium (1) a fluorinated oil
immiscible with water (Fluorinert FC-40), of mass density
(ρ1 ¼ 1850 kg=m3) and speed of sound, c1 ¼ 640 m=s
[44]. Medium (2) was a yield-stress gel prepared by mixing
distilled water with a carbomer (Carbopol®). The incident
angle θi relative to the x direction was adjusted to exceed
the critical angle θc ¼ sin−1ðc1=c2Þ ∼ 25°. The instanta-
neous pressure variation could be mapped in three dimen-
sions (3D) using a fiber optic hydrophone system
(Precision Acoustics, UK). The fiber is 100 μm in diameter,
with a sensitive area of 10 μm that defines our resolution.
Wave packets of 5 to 10 acoustic cycles were generated by
the transducer (central frequency of f ¼ 1 MHz, with
a 60% bandwidth) and sent toward the interface. The
amplitude decay in the x direction was obtained from
the Fourier transform (analyzed at 1MHz), p̃, applied to the
time-dependent pressure field as shown in Fig. 1(b) (dots).
The decay length was obtained from an exponential fit of
the data points (plain blue curve), and estimated to be
1=κ ∼ 0.64 mm. The red data point was supposed to lie at
the interface x ¼ 0 and excluded from the fit. Its value was
used as the reference pressure pa ¼ 50� 7 kPa.
A direct quantification of the spin density can be

obtained from the local estimate of the acoustic velocity
field from discrete pressure measurements [see Eq. (1)].
The high spatial resolution of the hydrophone was
exploited to map the velocity field in the ðx; zÞ plane from
pressure gradients. Figure 1(c) shows the normalized map
of the transverse acoustic spin density component sy

(a)

(c) (d)

(b)

FIG. 1. (a) Setup to generate an evanescent field by supercritical
reflection at the interface of two media (inset: experimental
pressure field propagating along z). (b) Exponential decay of the
amplitude along x. (c) Transverse spin AM density sy generated
by the evanescent wave (normalized). (d) Schematic representa-
tion of the periodic elliptical motion of a fluid particle about its
position at rest x0.
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generated by the evanescent wave. The handedness of the
elliptical motion is set by the wave propagation direction
(increasing z) and constrains the spin density sy to be
positive.
Confined phase singularities in a resonant droplet.—Let

us now illustrate how the incident inhomogenous wave
couples with an isolated object. A single fluorinated oil
droplet of radius a was directly injected using a syringe in
medium (2) [Fig. 2(a)]. The carbomer concentration com-
posing the hydrogel was sufficiently high to maintain in
place droplets ranging in size from a few hundred microns
to several millimeters, but remained low enough to preserve
propagation characteristics similar to those of water. This
strategy has previously been proposed to trap gas bubbles
[45]. A first droplet of radius a ¼ 1.12 mm was positioned
at a distance roughly equal to the incident wave’s decay
length 1=κ from the interface to ensure a strong and
detectable interaction. Furthermore, the large acoustic
contrast between the droplet and medium (2) favors the
existence of large amplitude Mie-type scattering resonan-
ces that we exploited [46]. Calculations of the resulting
acoustic field inside and outside of the droplet were
obtained using a semianalytical scattering model described
elsewhere [47]. All numerical and experimental results are
shown in the ðz; xÞ plane for y ¼ 0. The center of the
droplet is positioned at x ¼ y ¼ z ¼ 0 in the calculations.
Figure 2(b) shows a numerical projection of the incident

velocity field normal to the droplet surface. The elliptical
fluid motion characterizing the inhomogenous incident
wave in the outer fluid has the ability to generate nonzero
normal velocity components on the lower hemisphere of

the droplet. It is important to note that normal velocity
components also force the upper hemisphere, but are much
weaker in amplitude due to the evanescent nature of the
incident field. Consequently, in clear contrast with a
situation for which a droplet would be forced by a locally
homogeneous (z axisymmetric) wave front, here the
internal acoustic field is imparted with a progressive wave
front circulating anticlockwise around the droplet center,
from the lower hemisphere where it is generated, toward the
upper hemisphere. This is evidenced by the spatial proper-
ties of the wave’s phase shown in Figs. 2(c) and 2(d), for
the droplet forced on its hexapolar resonant mode (for f ¼
0.54 MHz or ka ∼ 2.55). The numerical phase map
[Fig. 2(c)] shows a particular variation pattern around a
circular path around the droplet center close to the drop
periphery. More precisely, we observe three phase ramps
from −π to π around three points where the phase is
undefined. These specific locations in space, known as
phase singularities, are well documented for wave fields
propagating in free space [48], which include the important
class of acoustical and optical vortex beams [21,22,49–51].
In the present case, however, the singularities are confined
within the resonant structure, and though we note similar
phase singularities should naturally emerge in optical
waveguides or resonators, there are, to our knowledge,
only a few experiments that have succeeded in detecting
such phase topologies [52]. Here, to experimentally detect
these singular regions, we maneuvered the hydrophone
through the droplet’s interface while inducing a limited
capillary distortion [Fig. 2(a)]. The region we managed to
map inside the immobilized droplet was approximately
500 μm wide and 1.2 mm high. The phase and magnitude

10010-20-(c) (d)

(b)

(a)

x
z

FIG. 2. (a) Photograph of a droplet positioned near the interface with the inserted hydrophone. (b) Normal projections of the modeled
incident velocity field forcing the droplet at t ¼ 0.2=f (gray) and t ¼ 0.7=f (red). (c) Numerical phase field, argðp̃Þ inside and outside of
the droplet (a ¼ 1.12 mm and f ¼ 0.54 MHz). (d) Experimental phase and magnitude (logarithmic scale) of the pressure field p̃. Scale
bar represents 500 μm.
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of the field were retrieved from the instantaneous pressure
measurements [Fig. 2(d)], and confirm the existence of the
confined phase singularities.
To further explore the relationship between droplet size,

frequency, and phase topology, we investigated other
properties of the internal wave. The energy flux, or
Poynting vector, is defined as Π ¼ pv, where p and v
can refer to the pressure and velocity fields of either the
incident or internal wave fields. Figure 3 shows a calcu-
lation of the angular component of the energy flux carried
by the internal field, hΠint

α iC, which has been normalized by
the energy flux carried by the incident wave along the
propagation direction, hΠinc

z iA. The latter was averaged
over the cross-section A ¼ πa2 orientated perpendicular to

z, whereas the internal angular energy flux was averaged
over the circular path C ¼ 2πa with an angle α defined
between the horizontal and vertical axes passing through
the droplet center, and varying from 0 to 2π. Doing so, the
circulating energy flux reveals clear amplification peaks
coinciding with the resonant modes of the droplet.
Remarkably, each peak is located in regions of ka-space
characterized by an integer value of the total topological
charge defined as l ¼ 1=2π

H
C dχ, where χ ¼ argðp̃Þ [53].

The insets in Fig. 3 show experimental phase and magni-
tude maps that we were able to measure exploiting the
position stability of two other droplets and the bandwidth of
the transducer (see Supplemental Material [39]). Our
summarized measurements for the approximate values
ka ¼ 1.9, 2.55, and 3.18 unambiguously show that the
integer total topological charge l originates from l coex-
isting, but not colocalized, phase singularities of topologi-
cal charge 1, and coincides with the resonance order of the
droplet, i.e., quadrupolar (l ¼ 2), hexapolar (l ¼ 3), and
octopolar (l ¼ 4). These locations are regions where the
head pulses of the circulating wave front interfere destruc-
tively with pulses that were delayed within the incident
wave train and interact with the droplet latter. The good
timing for these arrivals underpin the appearance of
resonance peaks in the angular energy flow hΠint

α iC.
Spin-to-orbital angular momentum conversion.—Wenow

analyze the AM density that is imparted to the fluid by
the internal wave described in the previous section for
the hexapolar mode (topological charge l ¼ 3). The spin
AM density can again be obtained from the highly reso-
lved pressure measurements performed inside the droplet.
Remarkably, the spin AM topology inside the droplet is
nontrivial [Figs. 4(a)–4(c)]. Its sign changes as the radial
distance from the droplet center is increased.Thismeans that,
in contrast with the elliptical polarization of the fluid motion
characterizing the incident wave [Figs. 1(c) and 1(d)], the
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FIG. 4. (a) Numerical spin AM density sy obtained for the internal wave shown in Fig. 2 (normalized data and saturated color map).
(b) Experimental measurement of the spin AM in the region delimited in (a). Scale bars represent 500 μm. (c) Comparison of
experimental and numerical data along two distinct lines traversing the droplet vertically. (d) Acoustic radiation torque Tspin

y induced on
an absorptive probelike particle (normalized by the maximum computed torque T0). Arrows: magnitude of the tangential scattering
radiation.

FIG. 3. Curve: modeled average angular energy flux of the
internal wave hΠint

α iC normalized by the average incident energy
flux hΠinc

z iA. Colored regions in ka space correspond to integer
values of the total topological charge l calculated for the
numerical internal field. Insets: experimental phase and magni-
tude maps of the internal pressure field measured for ka values
equal to 1.9, 2.55, and 3.18, and indicated by red circles on the
resonance curve. The pixel size is approximately 30 μm.
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handedness of the polarization inside the droplet can switch
from clockwise to anticlockwise in regions of negative and
positive spin AM densities, respectively. These oscillations
and changes in sign can be better appreciated in Fig. 4(c),
where the spin AM density is plotted along two arbitrarily
chosen vertical lines traversing the droplet.
Importantly, it is also expected that the circulation

of the wave’s phase around singularities as described in
Figs. 2(c)–2(e) will give rise to a nonzero orbital AM den-
sity, in analogy with optical or acoustical vortices [6,22].
According to Ref. [4], the orbital AM density can be
computed as l ¼ r × p, where p ¼ ðρ=2ωÞIm½v� · ð∇Þv� is
the canonical momentum density of the internal wave, and
r the position vector whose origin is the droplet center. To
quantify the AM conversion between the spin-carrying
incident wave and the internal circulating hexapolar mode,
we computed the integral values of the spin and orbital AM
densities generated inside the droplet volume from the
numerical data. The orbital AM to spin ratio of their
integral values is approximately equal to 92%, meaning
most of the AM exists in its orbital form, confirming an
efficient transfer of momentum to the internal circulating
mode. We additionally found that this ratio remains similar
for the other resonant modes.
Finally, we discuss the mechanical effects that would be

induced by the two distinctive forms of AM on an
absorptive probe particle placed inside the droplet. For a
small subwavelength particle (radius ap ≪ λ ¼ 2π=kz), a
radiation torque will be exerted and has been related in
Ref. [33] to the local value of the transverse spin density by
the simple equation, Tspin

y ¼ ωImðαdÞsy, where αd is the
dipolar polarizability coefficient of the particle (see also
Supplemental Material, Sec. II [39] for details on the torque
calculation). As seen in Fig. 4(d), the torque’s direction is,
as expected, directly related to the sign of the spin AM, and
the particle would rotate about its own axis clockwise or
anticlockwise, depending on its position within the droplet.
Simultaneously, the orbital AM is associated with a
scattering radiation force, Fscat, or alternatively a scattering
radiation torque Tscat

y , about the y axis passing through the
drop center (Supplemental Material, Sec. II [39]), that
accelerates the particle. The tangential component of the
force is represented by arrows in Fig. 4(d), and suggests the
particle will be set on an anticlockwise orbital trajectory
around the droplet center. We find that at the position
maximizing Tspin

y , the ratio between both torques Tscat
y =Tspin

y

approximates 91%, consistent with the dominant fraction of
orbital AM in the droplet.
Conclusion and perspectives.—Our results suggest that

the conversion of AM between its spin and orbital form
may be very common when an inhomogenous wave front
interacts with targets of simple geometrical forms, imping-
ing a clear acoustic signature to the internal field: the
presence of phase singularities. This Letter also shows that
complex spin “textures” can be accurately measured in

space, and therefore prepares for further investigations on
the central role the spin AM density can have in inducing
mechanical rotation, a role that has to date been over-
looked in previous studies [23,24,54,55]. Extending the
field analysis to objects having other geometries, or with
passive [56] or active [57] “chiral” scattering properties
could also reveal other routes to the conversion of angular
momentum.
Several applications including acoustic imaging and

sensing, particle manipulation [55,58–60], or developing
devices for chiral wave guiding [25–28,61] are expected to
benefit from a better understanding of the AM properties of
sound waves.
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