
Nonreciprocal Dicke Model

Ezequiel I. Rodríguez Chiacchio,1 Andreas Nunnenkamp ,2,* and Matteo Brunelli 3,†
1Entropica Labs, 186B Telok Ayer Street 068632, Singapore, Singapore

2Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
3Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland

(Received 20 February 2023; accepted 15 August 2023; published 13 September 2023)

We investigate the physics of an open two-component Dicke model, where the light field mediates
nonreciprocal interactions between two spin species. We show that the model, which we dub nonreciprocal
Dicke model, exhibits a discrete parity-time (PT ) symmetry and we characterize the emergence of a
nonstationary phase, so far explained in terms of dissipation-induced instability, as spontaneous breaking of
PT symmetry. We further show that such PT symmetry breaking embodies an instance of a nonreciprocal
phase transition, a concept recently introduced by Fruchart et al. [Nature (London) 592, 363 (2021)].
Remarkably, the phase transition in our model does not necessitate the presence of any underlying broken
symmetry or exceptional points in the spectrum, both believed to be essential requirements for
nonreciprocal phase transitions. Our results establish driven-dissipative light-matter systems as a new
avenue for exploring nonreciprocal phase transitions and contribute to the theory of nonreciprocal
collective phenomena.
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Introduction.—Newton’s third law states that to every
action there is always an equal and opposed reaction [1]. For
nonequilibrium agents, this principle can be broken, giving
rise to nonreciprocal interactions, namely, interactions
which are not symmetric upon the exchange of agents.
This universal phenomenon has been observed in active
matter [2–8], interface growth [9,10], neural systems [11],
and social dynamics [12]. Recently, Fruchart et al. [13]made
a seminal contribution to a general theory of nonreciprocal
phase transitions (NRPTs), showing that nonreciprocal
interactions can lead to nonstationary phases of matter
and exceptional points (EPs). Their findings were illustrated
in paradigmatic nonequilibrium models, such as flocking,
pattern formation, and synchronization. In contrast, for
engineered photonic and coupled light-matter systems,
nonreciprocity has been mostly investigated in the context
of signal transmission [14–21], with the role of many-body
interactions left almost entirely unexplored [22].
In this Letter, we provide the characterization of a NRPT

in a many-body light-matter system by studying an open
Dicke model [23] featuring two different spin species, with
photons mediating nonreciprocal interactions between
them. We show that nonreciprocal interactions account
for the key features of the model, such as its steady-state
phase diagram and dynamics, hence we dub it nonrecip-
rocal Dicke model (NRDM).
The most distinctive feature of the NRDM is arguably

the emergence of a nonstationary phase, which we asso-
ciate with the presence of a NRPT. Going beyond the
paradigm of Ref. [13], we show that this transition takes
place (i) in the absence of any initial spontaneously broken

symmetry and (ii) in the absence of EPs, when nonrecip-
rocal interactions are mediated by a dynamical degree of
freedom. Excitingly, we find that the NRPT is robust
against spin frequency imbalance and spin decay. Our
study suggests that NRPTs are a more general phenomenon
than currently appreciated.
Specifically, we show that the NRDM is characterized by

a parity-time (PT ) symmetry, in addition to the parity
symmetry associated to the normal-to-superradiant phase
transition, which is spontaneously broken in the NRPT.
Remarkably, thisPT symmetry breaking occurs at the level
of the steady state and thus supersedes standard treatments

FIG. 1. The nonreciprocal Dicke model. Two spin species,
labeled �, each consisting of N identical spins, interact with a
light field â with frequency ωl and decay rate κ, with coupling of
modulus λ and phase �ϕ. This results in photon-mediated
nonreciprocal interactions between the spins. The two species
may have different frequencies ω0 � δ and be affected by spin
relaxation at a rate Γ↓.
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restricted to transient growth or decay, as obtained from the
eigenvalues of associated non-HermitianHamiltonians [24].
The nonstationary phase of the NRDM has previously

been characterized in terms of a dissipation-induced insta-
bility and chiral forces [25–27] and even observed in a
spinor Bose-Einstein condensate in an optical cavity [27].
Here, we go beyond these considerations by identifying it
as a symmetry broken phase belonging to the novel class of
nonequilibrium NRPTs. We further uncover a rich nonsta-
tionary behavior, including frequency locking between the
light and collective spin oscillations and the coexistence of
superradiant and nonstationary behavior.
Our results bridge the fields of nonreciprocal critical

phenomena and driven-dissipative light-matter systems and
can be tested in state-of-the-art atom-cavity experiments
[27–33].
Model and symmetries.—The NRDM is an open Dicke

model consisting of two different spin species and a light
field featuring complex coupling amplitudes [25–27],
see Fig. 1. The coherent dynamics are given by the
Hamiltonian (ℏ ¼ 1)

Ĥ ¼ Ĥ0 þ
λ

2
ffiffiffiffi

N
p

X

N
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X

m¼�
ðe−imϕâþ eimϕâ†Þσ̂xj;m; ð1Þ

with Ĥ0 ¼ ωlâ†âþ 1
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P

j;mðω0 þmδÞσ̂zj;m, â the annihila-
tion operator of the light field, ωl the photon frequency,
σ̂zj;m the z Pauli matrix of the jth spin of speciesm ¼ �, ω0

the mean spin frequency, and 2δ the frequency splitting
between species. The interaction is collective, i.e., of Dicke
type, with N the number of spins of each species. Crucially,
the light-matter coupling amplitudes are complex with
modulus λ and a species-dependent phase �ϕ, which
cannot be removed from the Hamiltonian by a gauge
transformation. Dissipative terms are incorporated in the
model via a Lindblad master equation of the form
˙̂ρ ¼ −i½Ĥ; ρ̂� þ κD½â�ρ̂þ Γ↓

P

j;mD½σ̂−j;m�ρ̂, where κ is
the photon loss rate, Γ↓ is the spin decay rate, with σ̂− ¼
ðσ̂x − iσ̂yÞ=2 the spin lowering operator, and the dissipator
defined as D½R̂�ρ̂ ¼ R̂ ρ̂ R̂† − 1

2
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In the thermodynamic limit, N → ∞, the semiclassical
equations of motion become exact
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with α ¼ hâi and sðx;y;zÞ;� ¼ hσ̂ðx;y;zÞj;� i.

As many Dicke models, the NRDM features a Z2 parity
symmetry, ðα; sx;�; sy;�Þ → −ðα; sx;�; sy;�Þ. Spontaneous
breaking of this symmetry leads to a superradiant phase
transition [23,34,35]. This corresponds to a transition
between a normal phase (NP), where the light field is
empty and the spins point down, and a superradiant phase
(SP), where the spins acquire a finite x component and the
light field is macroscopically populated.
The distinctive trait of the NRDM is that the light field

mediates nonreciprocal interactions between the spin spe-
cies. Their origin can be traced back to the joint presence of
the energy nonconserving terms characteristic of the Dicke
model, responsible for the gauge-invariant phase 2ϕ in
Eq. (1), and photon losses [36]. Nonreciprocal interactions
give rise to a region in the phase diagram displaying
nonstationary steady states, called the dynamical phase
(DP) [25–27]. Nonreciprocal interactions also affect the
superradiant region, resulting in the emergence three
different phases [25]: one in which the spins are almost
aligned (SP↓↓), another in which they are almost anti-
aligned (SP↑↓), and a third one corresponding to a
coexistence region between the two.
From Eqs. (2) we notice that the NRDM exhibits a

second discrete symmetry, associated with the transforma-
tion ðsj;�;ϕÞ → ðsj;∓;−ϕÞ with j ¼ x, y, z, which com-
bines a parity transformation that swaps the two species

(c)(a)

(d)

(b)

FIG. 2. Effective nonreciprocal interactions. (a) Steady-state
phase diagram as a function of coupling λ and phase ϕ, and of
photon loss rate κ and ϕ (out-of-plane view), in the limit of
adiabatic elimination and for δ ¼ Γ↓ ¼ 0. Lines made of EPs are
marked in violet. The solid blue line in (b) is the real part of the
spectrum around the NP for λ ¼ 2.5ω0; violet dots mark EPs.
Photon-mediated nonreciprocal interactions. Phase diagram in
the case where nonreciprocal interactions are dynamically medi-
ated by the light field for (c) δ ¼ 0.05ω0, Γ↓ ¼ 0, and (d) δ ¼ 0,
Γ↓ ¼ 0.02ω0. The dashed yellow curve (b) is the real part
of the spectrum for δ ¼ Γ↓ ¼ 0 and λ ¼ 2.5ω0. Parameters:
(a)–(d) ωl ¼ 20ω0, κ ¼ 12.5ω0.
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with a change of sign of ϕ. Since the phase ϕ acts as a
syntheticmagnetic flux, a change in sign describes the action
of time reversal, so that the combined transformation is
equivalent to PT symmetry. We stress that this is an exact
symmetry of the nonlinear set of Eqs. (2), valid for all values
of parameters. This has to be contrasted with standard
treatments of PT symmetry in linear models, formulated
in terms of non-Hermitian operators. A similar notion ofPT
symmetry has been studied in a dimerwith saturable loss and
gain [37].PT symmetry has also been discussed at the level
of Lindblad dynamics [38–41]. We will show that, in the
absence of explicit symmetry breaking terms, i.e., when
δ ¼ 0, the spontaneous breaking of PT symmetry is the
hallmark of the NRPT, as it is spontaneously broken when
entering the DP, but unbroken in the NP and SPs.
Nonreciprocal phase transition.—Our analysis begins

with the steady-state phase diagram, which we obtain by
setting Eqs. (2) to zero, solving the set of algebraic equa-
tions, and performing linear stability analysis [36]. We first
illustrate the NRPT in the regime ðωl; κÞ ≫ ðω0; δ;Γ↓; λÞ,
where the photonic degree of freedom can be adiabatically
eliminated.We refer to this regime as effective nonreciprocal
interactions, because nonreciprocity is encoded as effective
asymmetrical coupling constants in the equations of motion
for the two spin species [36]. In this scenario we recover the
treatment of Ref. [13]. The steady-state phase diagram is
shown in Fig. 2(a) for δ ¼ Γ↓ ¼ 0. We observe the emer-
gence of the DP in the central region. We characterize this
phase exploiting the fact that the spectrumof the fluctuations
around the NP can be computed analytically [25]. In
Fig. 2(b), we show in blue the real part of the spectrum,
associatedwith the growth rates of fluctuations, as a function
ofϕ. As the systemcrosses theNP-DPboundary,weobserve
the instability of the NP, heralded by the presence of EPs,
resulting from nonreciprocity. While not shown, we also
observe eigenvector coalescing, a characteristic feature
accompanying EPs. The occurrence of EP and a finite real
part of the spectrum is a manifestation of PT symmetry
breaking at the level of fluctuations [13]. Note that for λ ¼ 0,
the system is trivially noninteracting, and thus remains in
the NP.
In Fig. 2(a) we also show an out-of-plane section of the

phase diagram as a function of the photon loss rate κ and
phase ϕ. Starting at κ ¼ 0, where interactions are recipro-
cal, we observe how the DP emerges as soon as non-
reciprocity (κ ≠ 0) is turned on, with the phase boundaries
made of EPs. Again, this agrees with the analysis in [13]:
nonreciprocal interactions can open up a nonstationary
region in the phase diagram, with lines of EPs present at the
boundary. We thus conclude the NP-DP transition indeed
corresponds to a NRPT. Nevertheless, there is a funda-
mental difference between the NRDM we consider and the
models in [13]: the NRPT does not necessitate an under-
lying broken continuous symmetry. In fact, the NRPT here
takes place in the absence of any initially broken symmetry.

We now take our investigation beyond adiabatic elimi-
nation and show that NRPTs can take place in the absence
of EPs in the spectrum, if the nonreciprocal interactions are
mediated by a dynamical degree of freedom; we refer to this
scenario as photon-mediated nonreciprocal interactions.
We highlight two major findings. First, the DP remains
present in the phase diagram, displaying robustness against
finite frequency imbalance and spin decay, see Figs. 2(c)
and 2(d). In fact, for both δ ≠ 0 (c) and Γ↓ ≠ 0 (d), we find
the NP to remain stable for a finite region, see also [36] for
the corresponding dynamical spectra. We also note that for
δ ¼ Γ↓ ¼ 0 (not shown), photon fluctuations erase the
entire NP (except when interactions are reciprocal, i.e.,
ϕ ¼ 0; ðπ=2Þ) [25] so, strictly speaking, this case does not
correspond to a NRPT; we, nevertheless, recover a NRPT
for any small perturbation δ;Γ↓ ≠ 0. Second, and most
strikingly, the NP and DP are no longer separated by a
boundary of EPs. Instead, the fluctuations of the light field
soften this feature, resulting in a smooth spectrum as a
function of ϕ [36], see Fig. 2(b). We insist that this still
corresponds to a NRPT, as it is nonreciprocal interactions
that give rise to the dynamical phase. We expect this

(b)

(c)

(d)

(e)

(a)

FIG. 3. Dynamics and PT symmetry breaking. (a) The two
steady-state attractors of Eqs. (2) are related by a PT trans-
formation, for ϕ ¼ π=4, λ ¼ 3ω0, and δ ¼ Γ↓ ¼ 0; the light field
phase locks at the angles ðπ=2Þ � ϕ and the spin trajectories of
the two species are depicted on the Bloch sphere. The compo-
nents sz;� are shown in (b) and in (c) for Γ↓ ≠ 0. (d),(e) After the
transient has elapsed, quenching the phase ϕ → −ϕ reveals that
the DP is a PT broken phase (d) and SP↓↓ is PT unbroken (e).
Parameters: (a)–(e) ωl ¼ 20ω0, κ ¼ 12.5ω0; (d) λ ¼ 2.5ω0,
ϕ ¼ ðπ=4Þ; (e) λ ¼ 5.5ω0, ϕ ¼ ðπ=8Þ.

PHYSICAL REVIEW LETTERS 131, 113602 (2023)

113602-3



behavior to emerge whenever nonreciprocity is mediated by
dynamical degrees of freedom.
Steady-state dynamics and PT symmetry breaking.—

We now connect the occurrence of a NRPT to the
spontaneous breaking of PT symmetry. Inside the DP,
spins and light field undergo persistent oscillations in the
form of limit cycles [25].
For δ ¼ Γ↓ ¼ 0, the long-time dynamics is in fact deter-

mined by two limit-cycle attractors, shown in Fig. 3(a); the
z component of the Bloch sphere trajectories is further
highlighted in panel (b). We notice that light field oscillates
with the phase locked at the angles ðπ=2Þ � ϕ. Comparing
the two attractor solutions we see that they are related by an
exchange of the two species and a change of sign in the
phase, i.e., via PT . Depending on the initial conditions, the
system settles into one of the two available steady states:
the PT symmetry of Eqs. (2) is therefore broken in the
steady state, namely the onset of the DP is accompanied by
the spontaneous breaking of PT symmetry. We stress that,
due to the nonlinear character of Eqs. (2), this is truly a
spontaneous breaking of PT symmetry, unlike for PT
symmetric linear systems.
Noticeably, for Γ↓ ≠ 0, δ ¼ 0, Eqs. (2) are still PT

symmetric, as spin decay acts homogeneously on the spins,
yielding again two different steady-state attractors and a
PT breaking phase transition. As shown in Fig. 3(c), both
projections sz;� now display oscillations, while the light
displays imperfect phase locking, however, still about well
defined angles ðπ=2Þ � ϕ. We conclude that the NRPT
present in the phase diagram Fig. 2(c) is accompanied by
the spontaneous breaking of PT symmetry. In contrast, a
finite frequency imbalance δ ≠ 0 explicitly breaks the PT
symmetry of the NRDM at the level of the equations of
motion, resulting in the erasure of one of the attractors, and
leaving only a single nonstationary solution in the steady-
state dynamics (not shown).
To show that PT symmetry breaking is a phenomenon

uniquely associated to NRPTs, and not to normal-to-
superradiant phase transitions, we perform additional
simulations, in which we first let the system relax to the
steady state then quench the phase ϕ → −ϕ. When the
system is in the DP, following the quench, it relaxes back to
the same attractor, see Fig. 3(d). This characterizes the
steady state as a PT broken state, since a further swap of
the spin species (exchanging their colors) shows that the
action of PT does not leave the steady state invariant. In
panel (e) we perform the same numerical experiment
starting from SP↓↓, from which we see that the action
parity and time reversal (exchanging the species and
reversing the sign of ϕ) undo each other, i.e., the super-
radiant steady state is PT invariant; the same conclusion
applies when starting from SP↑↓ and NP.
Frequency spectrum and dynamical superradiance.—

Another remarkable feature shown in Figs. 3(a) and 3(b) is
that, inside each attractor, the trajectories of the two spins

are qualitatively different, with one species oscillating
in-plane with constant sz, and the other one featuring
oscillations also along sz. To obtain further insight, we
perform a Fourier decomposition of the steady-state
dynamics for the case δ ¼ Γ↓ ¼ 0, and we find the
ðx; yÞ components of both species to oscillate at the natural
frequency ω0, while the nonstationary z component pre-
cesses at frequency 2ω0, see Fig. 4(a). This behavior can be
understood as follows: the phase of the light field locks at
the angles ðπ=2Þ � ϕ and decouples from the spin species
� by spontaneously choosing either αe∓iϕ þ α�e�iϕ ¼ 0.
This naturally leads to in-plane (constant sz) coherent
dynamics at ω0 only for the species �. We also find that
the light field oscillation frequency locks to the natural
frequency of the spins, as visible from the corresponding
spectrum in Fig. 4(a), which peaks at �ω0 [36].
The frequency analysis provides us with additional

information and allows us to uncover new features of
the NRDM, beyond those captured by the stability analysis.
In Fig. 4(b) we show the light frequency spectrum as a
function of λ, for ϕ ¼ π=5, Γ↓ ≠ 0, δ ¼ 0; the case
corresponds to the phase diagram in Fig. 2(d). Deep into
the DP, i.e., for sufficiently small values of the coupling,
we observe simple harmonic motion, with positive- and
negative-frequency components that move closer to each
other for increasing λ. The cut in Fig. 4(c) further shows an
asymmetry in the peaks of the two frequency components,
in agreement with the ellipses in the inset of Fig. 3(c), and
that the spin motion also locks at the same frequency. For

(a) (b)

(c)

(d)

(e)

FIG. 4. Frequency spectrum. Absolute value of the Fourier
spectrum F (arbitrary units) of the time evolution inside the DP
for (a),(c),(d) the light field and x and z spin components, and
(b) for the light field as a function of λ. The color shading in (b) is
saturated at a cutoff value for better visualization. Dashed lines in
(c) and (d) highlight the height difference between peaks in the
spectrum. (e) Time-averaged intensity of the light field in the
steady state as a function of λ. Parameters: (a)–(e) ωl ¼ 20ω0,
κ ¼ 12.5ω0, and ϕ ¼ π=5; (b)–(e) Γ↓ ¼ 0.02ω0.
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large coupling values, on the other hand, we recover the
static phase SP↓↓, with its zero-frequency component.
However, close to the SP we also find an intermediate
range of values where the steady states simultaneously
break both parity symmetry and PT symmetry: although
competing, the two symmetry breaking processes are not
mutually exclusive. Correspondingly, we observe the two
main light frequency components repelling each other, see
Fig. 4(b), and the spin motion acquiring additional fre-
quency components, see Fig. 4(d). The coexistence of
nonstationary and superradiant behavior, or dynamical
superradiance for short, is another remarkable finding of
our work. The time-averaged intensity of the light field,
shown in Fig. 4(e), provides further information on the
superradiant behavior of the NRDM: the transition to static
superradiance (SP↓↓) is marked by an abrupt jump, while
the onset of dynamical superradiance occurs without jumps
but is signaled by an increase in the steepness of the
intensity as a function of λ, compared to the rest of the DP.
Finally, for values of the phase approaching ϕ ¼ π=4,

i.e., maximum nonreciprocity, we also find that the regular
attractors are lost and, as λ increases, the system cascades
into a chaotic regime with many emerging frequencies,
which dominates until the superradiant phase transition
occurs (not shown). An in-depth investigation of these
regimes is left for future studies.
Conclusion.—We introduced the nonreciprocal Dicke

model (NRDM) as a minimal setting to study nonreciprocal
interactions in many-body light-matter systems. We iden-
tified the presence of a nonreciprocal phase transition
(NRPT), showed that NRPTs can occur in a broader class
of systems than previously known [13], and linked the
NRPT to spontaneous breaking of PT symmetry at the
level of steady states.
Our results can be tested in state-of-the-art atom-cavity

experiments [27–32]. These platforms further provide the
opportunity to explore the effects of finite-range inter-
actions [31,32], or the possibility to include a lattice and
probe the competition between nonreciprocal and Hubbard-
type interactions [42]. From a theory point of view, it would
also be interesting to contrast nonreciprocal interactions
with other ways to stabilize limit-cycle phases in Dicke-
type models [43–45].
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