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Atomic spectroscopy is used to search for the space-time variation of fundamental constants which may
be due to an interaction with scalar and pseudoscalar (axion) dark matter. In this Letter, we study the effects
that are produced by the variation of the nuclear radius and electric quadrupole moment. The sensitivity of
the electric quadrupole hyperfine structure to both the variation of the quark mass and the effects of dark
matter exceeds that of the magnetic hyperfine structure by 1–2 orders of magnitude. Therefore, the
measurement of the variation of the ratio of the electric quadrupole and magnetic dipole hyperfine constants
is proposed. The sensitivity of the optical clock transitions in the Ybþ ion to the variation of the nuclear
radius allows us to extract, from experimental data, limits on the variation of the hadron and quark masses,
the QCD parameter θ and the interaction with axion dark matter.
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Introduction.—The present Letter has two aims. The first
aim is to extract new limits on temporal variation of the
fundamental constants and interactions of dark matter
from existing atomic spectra measurements. The second
aim is to propose new experiments where these effects of
the variation and dark matter interactions are strongly
enhanced. As intermediate steps, we consider variation
of the fundamental constants due to interaction with dark
matter fields, dependence of nuclear radius on variation of
hadron parameters, and effects of variation of nuclear
radius on atomic spectra. Note that all effects considered
in this Letter are related to the variation of the nuclear
radius.
One of the most important unsolved problems in physics

is uncovering the nature of dark matter. Among other
things, it is hypothesized that dark matter is made up of
light bosonic particles, which are not accounted for in the
standard model of elementary particles. The candidate
particles in this class are the pseudoscalar axion (and
axionlike particles) and the dilatonlike scalar particle [1–
3]. If the mass of the cold dark matter is very light
(mDM ≪ 1 eV), it may be considered to be a classical
field oscillating harmonically at every particular point in
space. For axions, we may write this as

a ¼ a0 cosðωtþ φÞ; ω ≈ma; ð1Þ

where φ is a (position-dependent) phase andma is the mass
of the axion. Assuming that axions saturate the entire dark
matter density, the amplitude a0 may be expressed in terms
of the local dark matter density ρDM ≈ 0.4 GeV=cm3; see,
e.g., Ref. [4],

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
ma

: ð2Þ

Similar expressions are used to describe the case of a scalar
field dark matter.
Variation of fundamental constants due to interaction

with dark matter fields.—The effects of the interaction
between scalar field dark matter and fermions may be
presented as the apparent variation of fermion masses. This
immediately follows from a comparison of the interaction
of a fermion with the scalar field −gfMfϕ

nψ̄ψ and
the fermion mass term in the Lagrangian −Mfψ̄ψ .
Adding these terms gives M0

f ¼Mfð1þ gfϕnÞ, n ¼ 1, 2.
Similarly, the interaction of scalar dark matter with the
electromagnetic field may be accounted for as a vari-
able fine structure constant α0 ¼ αð1þ gγϕnÞ; see, e.g.,
Refs. [5,6]. Note that variation of quark and electron
masses and variation of α are determined by different
interaction constants and may be treated as independent
effects.
The dependence of atomic transition frequencies on α

and the quark masses was calculated in Refs. [7–12].
Atomic spectroscopy methods have already allowed one to
place improved limits on the interaction strength of the low
mass scalar field ϕ with photons, electrons, and quarks by
up to 15 orders in magnitude [6,13]. The experimental
results have been obtained by the measurements of the
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oscillating frequency ratios of electron transitions in Dy=Cs
[14], Rb=Cs [15], Yb=Cs [16], Sr=H=Si cavity [17],
Cs=cavity [18], and Ybþ=Ybþ=Sr [19,20].
Note that if the interaction is quadratic in ϕ, we may

replace the scalar field by the pseudoscalar (axion) field as
ϕ2 always has positive parity [6]. The corresponding theory
has been developed in Ref. [21], in which limits on the
axion interaction from atomic spectroscopy experiments
were obtained (see also [22]).
Dependence of the nuclear radius on hadron and quark

masses.—Reference [19] proposed that the dependence of
the electronic atomic transition frequencies on the nuclear
radius (and, subsequently, on the hadronic parameters) may
be used in the search for dark matter fields. Previously, in
Ref. [23], the dependence on the nuclear radius and
hadronic parameters was studied in hyperfine transitions
with the aim of searching for the variation of the funda-
mental constants.
Calculations of the dependence of nuclear energy levels

and nuclear radii on fundamental constants were performed
in Refs. [24,25]. Specifically, in Table VI of Ref. [25], the
sensitivity coefficients of nuclear radii to the variation of
hadron masses for several light nuclei have been presented.
These results may be extended to all nuclei. This is due to
the fact that nuclear radii in all nuclei are quite accurately
described by a universal formula RN ¼ A1=3r0, so in fact it
is sufficient to calculate the dependence of r0 in any
nucleus. The sensitivity coefficients are defined by the
relation

δr0
r0

¼
X

h

Kh
δmh

mh
: ð3Þ

The sum over hadrons in Refs. [24,25] includes contribu-
tions of π, nucleon, Δ, and vector mesons. The sensitivity
to the pion mass is given by the coefficient Kπ ¼ 1.8 and
the sensitivity to the nucleon mass is given by KN ¼ −4.8.
Subsequently, the variation of hadron masses may be

related to variation of the quark mass, see, e.g., Ref. [26]:

δmh

mh
¼ Kh;q

δmq

mq
; ð4Þ

where mq ¼ ðmu þmdÞ=2 corresponds to the average light
quark mass. The sensitivity coefficient for the pion mass is
an order of magnitude bigger than that for other hadrons
since the pion mass vanishes for zero quark mass
(mπ ∝ m1=2

q ) while other hadron masses remain finite.
Indeed, according to Ref. [26] for the pion Kπ;q ¼ 0.498,
while for nucleonsKN;q ¼ 0.06. The sensitivity coefficients
to the quark mass for light nuclei have been calculated in
Ref. [25]. The average value is given by

δr0
r0

¼ 0.3
δmq

mq
: ð5Þ

Note that here there are partial cancellations of different
contributions, so the sensitivity is smaller than that follow-
ing from pion mass alone. References [24,25] have
also presented calculations of the dependence of the
nuclear energies and radii on variation of the fine structure
constant α.
Limits on the drift of the nuclear radius and quark

mass.—Now, using these results, along with the measure-
ment of the drift of ratio of optical transition frequencies in
Ybþ clock transitions from Ref. [20], we can extract limits
on the drift of the quark mass. This experiment measured
the ratio of the 2S1=2ðF ¼ 0Þ ↔ 2F7=2ðF ¼ 3Þ electric
octupole (E3) and 2S1=2ðF ¼ 0Þ ↔ 2D3=2ðF ¼ 2Þ electric
quadrupole (E2) transition frequencies, and was used to
measure the drift of the fine structure constant α. However,
due to the dependence of atomic transition frequencies on
the nuclear radius, their results are also sensitive to any
variation of the quark mass, see Eq. (5).
The dependence of atomic transition frequencies on the

nuclear radius has been calculated for many atomic
transitions with the aim to find isotope shifts. For E2
transitions in Ybþ such calculations have been performed
in Refs. [27,28]. For E3 transitions the dependence may be
found using the measured ratio of isotope shifts for E3 and
E2 transitions [29]. The result of such calculations is in
excellent agreement with the result of the calculation of the
sensitivity of the ratio of the E3 and E2 Ybþ transition
frequencies to the variation of the nuclear radius from
Ref. [19],

δðνE3=νE2Þ
νE3=νE2

¼ 2.4 × 10−3
δhr2ni
hr2ni

: ð6Þ

Using the measurements of the drift of atomic transition
frequencies from Ref. [20],

δðνE3=νE2Þ
νE3=νE2

¼ −1.2ð1.8Þ × 10−18 yr−1; ð7Þ

we obtain

δhr2ni
hr2ni

¼ −0.50ð0.75Þ × 10−15 yr−1: ð8Þ

Using Eq. (5), we obtain the variation of the quark mass as

δmq

mq
¼ −0.83ð1.25Þ × 10−15 yr−1: ð9Þ

This result is an improvement compared to the best limit
obtained from measurements of the Cs=Rb hyperfine
transition frequency ratio, 7.1ð4.4Þ × 10−15 yr−1, presented
in Eq. (3) and in the fit of all available limits in Table III
of Ref. [30].
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Note that when discussing the variation of dimensionful
parameters, we should show the units we measure them in
as units can also vary. For example, the SI units of
frequency and time are defined by the Cs atom hyperfine
structure constant which has a complicated dependence on
the fundamental constants—see Eq. (20). In other words,
we should consider the variation of dimensionless param-
eters which do not depend on any measurement units.
Nuclear properties depend on the quark mass and ΛQCD. As
we keep ΛQCD constant, we may say that we measure the
variation of the dimensionless parameter Xq ¼ mq=ΛQCD,
i.e., we measure the quark mass in units of ΛQCD—see
Refs. [10,25]. A similar choice of units is assumed for the
variation of hadron masses, considered below.
Limits on the drift of the hadron masses and the QCD

parameter θ.—For some applications, such as considering
the limit on variation of the QCD parameter θ, it is
convenient to consider the problem at the hadron level,
without going to the quark level. In Ref. [25], the sensitivity
of the nuclear radius to the masses of the pion, nucleon,
vector meson and delta has been calculated. In the
following estimate, we do not include contributions from
the vector meson and delta as their contributions are
smaller. These contributions also have opposing signs,
meaning they partially cancel each other out making their
contribution less reliable. The variation of the nuclear
radius may be written in terms of the pion and nucleon
mass as

δr0
r0

¼ 1.8
δmπ

mπ
− 4.8

δmN

mN
¼ 1.2

δmπ

mπ
; ð10Þ

where in the last equality we have used the following result
from Ref. [21]:

δmN

mN
¼ 0.13

δmπ

mπ
: ð11Þ

From Eqs. (8), (10) we can obtain a limit on the drift of the
pion mass

δmπ

mπ
¼ −0.21ð0.31Þ × 10−15 yr−1: ð12Þ

The pion mass depends on the QCD parameter θ. The shift
of the pion mass due to a small θ relative to the pion mass
for θ ¼ 0 is given by [31]:

δmπ

mπ
¼ −0.05θ2: ð13Þ

Using Eqs. (12), (13) we obtain constrains on the linear
drift of θ2:

dθ2

dt
¼ 4ð6Þ × 10−15 yr−1 ð14Þ

Limit on the interaction with the axion dark matter
field.—Standard model spinor fields ψ , photon Fμν and
gluon Gl

μν fields can have the following interaction vertices
with a pseudoscalar field a:

V ¼Cf

fa
∂μaψ̄γ5γμψ þCγ

a
fa

F̃μνFμνþCg
a
fa

G̃lμνGl
μν: ð15Þ

Here Cf, Cγ, and Cg are some dimensionless constants
which are of order Oð1Þ for the QCD axion model, but are
arbitrary for the general pseudoscalar (axionlike) particle.
In particular, upon the substitution Cg ¼ g2=ð32π2Þ, or

θ ¼ 32π2Cga

g2fa
ð16Þ

the last term in Eq. (15) reduces to the standard QCD
θ-term

g2θ
32π2

G̃lμνGl
μν; ð17Þ

where θ ¼ a=fa, fa is the axion decay constant, g is the
strong interaction coupling constant, Gl

μν is the gluon field
strength, and G̃lμν is its dual. Thus, the classical axion dark
matter field a ¼ a0 cosðmatþ φÞ may be interpreted as a
dynamical QCD parameter θ ¼ a=fa [1–3].
According to Ref. [19], the measurement of the oscil-

lation of the ratio of frequencies νE3 and νE2 in Ybþ clock
transitions may be used to study the axion dark matter field
a ¼ a0 cosðmatþ φÞ. This is due to the dependence of the
nuclear radius on θ. However, our result for the dependence
of the nuclear radius on the pion mass Eq. (10) is 6 times
bigger in magnitude and has a different sign: our coefficient
is β ¼ 1.2 while the coefficient in Ref. [19] is β ¼ −0.2.
Therefore, according to our calculations, the limits on the
axion interaction should be 6 times stronger than those
presented on the exclusion plot on Fig. 2 of Ref. [19].
Note that the sign of β may be determined without

calculation. An increase in the pion mass leads to a
decrease of the interaction range, i.e., a decrease of the
effect of pion exchange potentials and a decrease of nuclear
binding which leads to an increase in the nuclear radius.
Thus, β must be positive. The difference in sign is due to
the assumption in Ref. [19] that the nuclear radius is
proportional to the nucleon radius. However, the internu-
cleon distance r0 is actually determined by the position of
the minimum of the internucleon potential. Similarly, the
sign of the coefficient−4.8 describing the dependence of r0
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on the nucleon mass mp is explained by the decrease of
kinetic energy p2=2mp, increase of binding energy and
decrease of r0 if the nucleon mass increases.
Variation of the nuclear electric quadrupole moment

and quadrupole hyperfine structure due to scalar and
axion dark matter.—The variation of the nuclear radius also
leads to the variation of the nuclear electric quadrupole
moment Q and quadrupole hyperfine structure constant B,
which are proportional to r20. Using Eq. (5) we obtain the
following for the effect of the quark mass, with Kq ¼ 0.3,

δB
B

¼ 0.6
δmq

mq
: ð18Þ

We see that the sensitivity of the quadrupole constant B to
quark mass variation is 1–2 orders of magnitude higher
than the sensitivity of the magnetic hyperfine constant A
calculated in [10]. Indeed, the dependence of the magnetic
moment on quark mass in Cs is given byKq ¼ 0.009, while
in Rb it is given by Kq ¼ −0.016 [10]. One may measure
the variation of the ratio of B=A in the same atom and
achieve a significant improvement in the sensitivity to the
variation of the quark mass, θ and the interaction with
the scalar or axion dark matter field. The variation of the
magnetic hyperfine constant ratio in Cs and Rb and the
corresponding effect of the scalar dark matter field have
been measured in Refs. [15,30].
Let us start by stating the dependence of the electric

quadrupole hyperfine constant B on the fundamental
constants:

B ∝
eQ
a3

∼
e2r20
a3B

; ð19Þ

where aB is the Bohr radius. The dependence of the
magnetic hyperfine constant is given by the following
expression:

A ∝
μBμN
a3B

∼
e2ℏ2gN

mempc2a3B
; ð20Þ

where μB and μN are the Bohr and nuclear magnetons and
gN is the nuclear magnetic g-factor. Therefore, the ratio of
the electric quadrupole and magnetic dipole constants may
be written as

B
A
∝
r20mempc2RBðZαÞ

gNℏ2RAðZαÞ
: ð21Þ

Here, we have added the relativistic factors RBðZαÞ and
RAðZαÞ for the electric quadrupole and magnetic dipole
constants, respectively, which are presented, e.g., in the
Letter [10] and the book [32]. These factors may be of
interest if one searches for the variation of the fine structure

constant α. Oscillations of α and the electron and quark
masses may be due to linear or quadratic interaction of the
scalar field ϕ ¼ ϕ0 cosðmϕtþ φÞ with photons, electrons,
and quarks [5,6]. Therefore, measurements of the ratio B=A
may be used to search for scalar dark matter (and axion
dark matter in the case of interaction with ϕ2).
The dependence of the magnetic hyperfine constant A on

hadron parameters is different for different nuclei and rather
weak [10,21]. Thus, in performing a zeroth order approxi-
mation we may neglect this dependence and present general
estimates which are valid for all nuclei. The dominating
effect comes from the variation of r20 in Eq. (21). Using
Eqs. (5), (10), (13), (18), we obtain

δðB=AÞ
B=A

≈ 0.6
δmq

mq
≈ 2.4

δmπ

mπ
≈ −0.12θ2: ð22Þ

Substituting θ ¼ a=fa, we see that measurements of B=A
may be used to search for the axion dark matter
field a ¼ a0 cosðmatþ φÞ.
Atoms and ions with nuclear spin I > 1=2 in a state with

electron angular momentum J > 1=2 have both electric
quadrupole and magnetic dipole hyperifine interactions. In
principle, any such systems are suitable for the measure-
ments of B=A variation, with the sensitivity defined by
Eqs. (21), (22).
An interesting possibility may be the measurement of the

variation of the electric quadrupole hyperfine structure in
diamagnetic polar molecules. In this case, the nuclear
electric quadrupole moment interacts with the electric field
of the polar molecule. There is no electron angular
momentum involved and no magnetic hyperfine structure.
This may reduce systematic effects. One can measure, for
example, the variation of the ratio of the frequency of the
transition between the components of electric quadrupole
hyperfine structure in such molecules to the transition
frequency in Cs or Rb clocks which is defined by the
magnetic hyperfine constant. A similar electric quadrupole
interaction exists in solids where a large number of atoms
reduces the statistical error.
Summary.—Atomic spectroscopy allows one to search

for the space-time variation of fundamental constants and
low mass scalar and pseudoscalar (axion) dark matter
fields, which may be a source of such variation. The
effects of varying fundamental constants include a variation
in the nuclear radius. One method of placing constraints on
the variation in the nuclear radius is via a measurement of
the variation in optical clock transition frequencies. Our
calculation of the sensitivity of the Ybþ transition frequen-
cies to the variation of the nuclear radius agrees with that
from Ref. [19]. Using the measurements of the drift of
atomic transition frequencies from Ref. [20], we place
constraints on the variation of the nuclear radius. We use
this result and nuclear calculations to significantly improve
limits on the variation of the quark masses. We then obtain
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limits on the variation of the QCD parameter θ and on the
interaction with axion and scalar dark matter.
Any variation in the nuclear radius leads to a variation in

the nuclear electric quadrupole moment, and thus a
variation in the quadrupole hyperfine structure constant
B. The sensitivity of the quadrupole constant B to the
variation of quark masses and to the interaction with dark
matter is 1–2 orders of magnitude higher than the sensi-
tivity of the magnetic hyperfine constant A, considered in
previous publications. This implies that one may measure
the variation of the ratio B=A in the same atom, and achieve
a significant improvement in the sensitivity to the variation
of the quark mass, θ and the interaction with the scalar or
axion dark matter fields. As such, we estimate the depend-
ence of B=A on these quantities. One can also measure
variation of the ratio of the frequency of the transition
between the components of electric quadrupole hyperfine
structure in a diamagnetic molecule to the transition
frequency in Cs or Rb clocks which is defined by the
magnetic hyperfine constant.
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