
Low-Velocity-Favored Transition Radiation

Jialin Chen ,1,2,3 Ruoxi Chen,1,2 Fuyang Tay,4,5 Zheng Gong,1,2 Hao Hu,6 Yi Yang ,7 Xinyan Zhang,1,2 Chan Wang,1,2,8

Ido Kaminer,3,* Hongsheng Chen,1,2,8,9,† Baile Zhang,10,11 and Xiao Lin 1,2,‡
1Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation,

ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering,
Zhejiang University, Hangzhou 310027, China

2International Joint Innovation Center, the Electromagnetics Academy at Zhejiang University,
Zhejiang University, Haining 314400, China

3Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
4Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA

5Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, USA
6School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore

7Department of Physics, University of Hong Kong, Hong Kong 999077, China
8Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University,

Zhejiang University, Jinhua 321099, China
9Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China

10Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore 637371, Singapore

11Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore

(Received 29 November 2022; accepted 10 August 2023; published 13 September 2023)

When a charged particle penetrates through an optical interface, photon emissions emerge—a
phenomenon known as transition radiation. Being paramount to fundamental physics, transition radiation
has enabled many applications from high-energy particle identification to novel light sources. A rule of
thumb in transition radiation is that the radiation intensity generally decreases with the decrease of particle
velocity v; as a result, low-energy particles are not favored in practice. Here, we find that there exist
situations where transition radiation from particles with extremely low velocities (e.g., v=c < 10−3)
exhibits comparable intensity as that from high-energy particles (e.g., v=c ¼ 0.999), where c is the light
speed in free space. The comparable radiation intensity implies an extremely high photon extraction
efficiency from low-energy particles, up to 8 orders of magnitude larger than that from high-energy
particles. This exotic phenomenon of low-velocity-favored transition radiation originates from the
interference of the excited Ferrell-Berreman modes in an ultrathin epsilon-near-zero slab. Our findings
may provide a promising route toward the design of integrated light sources based on low-energy electrons
and specialized detectors for beyond-standard-model particles.
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Transition radiation occurs whenever a charged particle
moves across an inhomogeneous region [1–8]; as shown in
Fig. 1. One unique feature of transition radiation is that its
radiation intensity is linearly proportional to the Lorentz
factor γ ¼ ð1 − v2=c2Þ−1=2 [9], if the particle velocity v
approaches the light speed c in free space. This feature lays
the foundation for many applications, including transi-
tion radiation detectors [10–12], useful for the identi-
fication of particles with extremely high momenta (e.g.,
P > 100 GeV=c or γ > 105) [9], as well as advanced light
sources at the terahertz, ultraviolet, and x-ray regimes [13–
21]. However, all these transition-radiation-based devices
rely on high-energy particles, whose generation requires a
giant and complex acceleration infrastructure and thus
hinders the enticing on-chip applications of transition
radiation.

Another feature of transition radiation is that its occur-
rence has no specific requirements on the particle velocity
[1–8]. This feature is distinct from Cherenkov radiation
[22–27], which occurs when a charged particle moves
inside a homogeneous material with a velocity exceeding
the phase velocity of light, namely the Cherenkov threshold
[28–32]. As such, all applications of Cherenkov radiation
are limited by the Cherenkov threshold, despite its enor-
mous applications [33–39], including particle detectors,
light sources, imaging, and photodynamic therapy. By
contrast, transition radiation is applicable to develop novel
light sources without fundamental restrictions on the
particle velocities. However, the application of transition
radiation based on low-energy particles remains largely
unexplored. One reason is that the transition-radiation
intensity generally decreases when the particle velocity
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decreases. For example, the intensity of conventional
transition radiation from low-energy particles with v=c ¼
0.1 can be 2 orders of magnitude weaker than that from
high-energy particles with v=c ¼ 0.9, as exemplified in
Fig. 2. The enhancement of transition radiation from low-
energy particles remains an open challenge in science and
technology.
Here, we reveal a feasible route to enhance transition

radiation from low-energy particles (e.g., free electrons) by
exploiting the Ferrell-Berreman mode, which was first
identified by Ferrell in 1958 in metal films at the ultraviolet
regime [40] and later separately discussed by Berreman in
1963 in cubic ionic films at the midinfrared regime [41].
This mode is intrinsically radiative and appears near the
frequency at which the relative permittivity of materials
approaches zero. Moreover, the Ferrell-Berreman mode has
enabled many applications [42–45] from imaging, sensing,
to thin-film characterization. The transition radiation of
Ferrell-Berreman modes has also been extensively studied
since 1958 [4,46–49]. However, among these studies, the
intensity dependence of the emitted Ferrell-Berreman mode
on the particle velocity has been rarely discussed so far.
Moreover, whether the Ferrell-Berreman mode can largely
enhance the transition radiation from low-energy particles
remains unknown.
Here, we find that due to the excitation of Ferrell-

Berreman modes, low-energy particles with an extremely
low velocity (e.g., v=c < 10−3) could emit equally strong
transition radiation as high-energy particles (v=c ¼ 0.999).
Consequently, the photon extraction efficiency from

low-energy particles could be 8 orders of magnitude larger
than that from high-energy particles, while the intensity of
transition radiation from these particles is the same. This
exotic phenomenon of free-electron radiation is then
denoted as low-velocity-favored transition radiation, which
is in a similar rationale but fundamentally different from
low-velocity-favored Smith-Purcell radiation [50]. The
revealed low-velocity-favored transition radiation indicates
a promising route to enhance the particle-matter interaction,
which may be exploited to design specialized detectors
for beyond-standard-model particles with extremely low
kinetic energy (e.g., detection of unknown millicharged
dark matter [51–53]) and integrated light sources from low-
energy electrons.
We begin with the introduction of transition radiation;

see derivation in Supplemental Material, Sec. S1 [54]. An
electron moves along the þẑ direction and perpendicularly
penetrates through a thin epsilon-near-zero slab with a
thickness d [Fig. 1]. The epsilon-near-zero slab (namely,
region 2), for example, is constructed by hexagonal boron
nitride (BN) [55–61] with a relative permittivity of
½ε⊥; ε⊥; εz�, which has εz → 0 around 24.5 THz. Both
the superstrate (region 1) and the substrate (region 3) are
free space with a relative permittivity of ε1 ¼ ε3 ¼ 1.

FIG. 2. Frequency spectral feature of low-velocity-favored
transition radiation. (a) Radiation spectrum WðωÞ of the ex-
cited propagating waves as a function of the electron velocity v
and the frequency. (b) Radiation spectrum as a function
of v at three representative frequencies. Here and below, when
ω=2π ¼ 24.5 THz, the value ofWðωÞ at v ¼ vA or v ¼ vB is de-
fined to be 90% of the maximum within the range of v∈ ½vA; vB�.
(c),(d) Photon extraction efficiency ηðωÞ ¼ WðωÞ=ðℏω · EkÞ,
where Ek is the kinetic energy.

FIG. 1. Schematic of low-velocity-favored transition radiation
from a uniaxial epsilon-near-zero (ENZ) material. A swift
electron perpendicularly penetrates through a BN slab with a
relative permittivity of ½ε⊥; ε⊥; εz�, where jεzj → 0 near 24.5 THz.
Unless specified otherwise, the material loss is considered in this
work. Both the propagating waves and phonon polaritons would
be excited during the electron’s penetration. Below, we focus on
the light emission propagating into the far field, which is
irrelevant to the excited phonon polaritons.
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Within the framework of macroscopic Maxwell equa-
tions, the induced radiation fields in regions 1 and 3 can be
calculated, and the total angular spectral energy density of
transition radiation is obtained as Uðω; θÞ ¼ U1ðω; θÞþ
U3ðω; θÞ, where θ is the radiation angle between the wave
vector of excited propagating waves and −ẑ (þẑ) for the
backward (forward) radiation. U1ðω; θÞ and U3ðω; θÞ are
the angular spectral energy densities of backward and
forward radiation, respectively, whose calculation includes
the light emission from the interface and that from the bulk.
Accordingly, the total energy spectrum can be expressed
as WðωÞ ¼ R π=2

0 Uðω; θÞð2π sin θÞ dθ. The detailed calcu-
lation of angular spectral energy densities and energy
spectra of excited propagating waves is provided in
Supplemental Material, Sec. S2, and their calculation is
not related to the excited guided modes (e.g., BN’s phonon
polaritons [55–58]) and is thus not necessary to apply the
Sommerfeld integration [3,5,62–64].
As shown in Fig. 2(a),WðωÞ is not only a function of the

particle velocity but also sensitive to the frequency, due to
the dispersive nature of BN. The BN thickness is 1 nm; see
the influence of thickness on low-velocity favored tran-
sition radiation in Fig. S7. One may drill a hole at the slab
along the electron trajectory to avoid the potential scatter-
ing of swift electrons; the hole diameter should be small
enough, for example, around the scale of vλ=ð2πcÞ, in order
to enable sufficient interaction between the BN slab
and the evanescent waves carried by swift electrons, where
λ is the working wavelength of light in free space; see
Supplemental Material, Sec. S10 [54]. Figure 2(a) shows that
the frequency spectral feature of transition radiation near the
frequency with εz → 0 is different from the other frequency
regimes. For better illustration, Fig. 2(b) shows WðωÞ as a
function of the electron velocity at three representative
frequencies, namely 24.5 THz (within the first Reststrahlen
band of BN) with ε⊥¼7.7þ0.01i and εz ¼ −0.05þ 0.04i,
42 THz (within the second Reststrahlen band) with ε⊥ ¼
−34.8þ 4.6i and εz ¼ 2.7þ 0.0005i, and 35 THz (outside
these two Reststrahlen bands) with ε⊥ ¼ 11.6þ 0.1i and
εz ¼ 2.5þ 0.001i. At 35 or 42 THz without εz → 0, WðωÞ
monotonically increases with v in Fig. 2(b). By contrast, at
ω0=2π ¼ 24.5 THz with εz → 0,Wðω0Þ first increases with
v if v < vA, becomes insensitive to the variation of v if
v∈ ½vA; vB�, then decreases with v if v∈ ½vB; vC�, and in-
creases again with v if v > vC, where vA ¼ 4.5 × 10−4c,
vB ¼ 2.6 × 10−1c, and vC ¼ 0.9c. Remarkably, Fig. 2(b)
also shows that the radiation intensity at the frequency with
εz → 0 can be 2 orders of magnitude larger than that at the
frequency without εz → 0 if v=c < 10−1. Moreover, the
values of Wðω0Þ are the same, if the electron velocity is
equal to vA, vB, or vD, where vD ¼ 0.999c. For these
velocities, the corresponding kinetic energy varies from
Ek;A ¼ 51.7 meV, Ek;B ¼ 18.2 keV to Ek;D ¼ 10.9 MeV.
This exotic feature at 24.5 THz in Figs. 2(a) and 2(b) indicates
that the transition radiation from low-energy particles can

achieve the same radiation intensity as that from high-energy
particles.
Upon close inspection, we find that the analytical limit of

total energy spectrum WðωÞ is essentially irrelevant to v,
under the conditions of εzðωÞ → 0, ωd=c ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijεz=ε⊥j
p

, and
ωd=c ≪ v=c ≪ 1; see Supplemental Material, Sec. S5, as
well as Figs. S2 and S3 [54]. Moreover, the limit ofWðωÞ is
almost proportional to 1=jεzj2 in Fig. S3. This mathemati-
cally explains the emergence of low-velocity-favored
transition radiation from an ultrathin epsilon-near-zero
slab, which is featured with a plateau of largely enhanced
radiation spectrum within the velocity range of v∈ ½vA; vB�
in Fig. 2(b). Since the condition of ωd=c ≪ v=c ≪ 1 is
dependent on d, this velocity range within which the low-
velocity-favored transition radiation could occur is sensi-
tive to d in Fig. S2.
According to Figs. 2(a) and 2(b), the photon extraction

efficiency is further obtained as ηðωÞ ¼ ½WðωÞ=ðℏω · EkÞ�,
where Ek ¼ mec2ðγ − 1Þ is the kinetic energy, me is the
rest mass, and γ ¼ ð1 − v2=c2Þ−1=2 is the Lorentz factor.
Figure 2(c) shows the photon extraction efficiency as a
function of frequency and velocity. From Fig. 2(c), if
v=c < 10−2, the maximum value of ηðωÞ always appears
near the frequency with εz → 0. Upon close inspection,
Fig. 2(d) shows ηðωÞ as a function of velocity at three
representative frequencies. When v=c < 10−2, the photon
extraction efficiency at 24.5 THz is nearly 3 orders of
magnitude greater than those at 42 and 35 THz. Moreover,
at ω0=2π ¼ 24.5 THz, the value of ηðω0Þ at point A with
vA=c ¼ 4.5 × 10−4 is 8 orders of magnitude higher than
that at point D with vD=c ¼ 0.999 in Fig. 2(d), although the
values of Wðω0Þ at these two points are the same in
Fig. 2(b).
Besides the unique frequency spectral features in Fig. 2,

this low-velocity-favored transition radiation also has exo-
tic angular spectral features in Fig. 3. Figures 3(a)–3(d)
illustrate the angular spectral energy density Uðω; θÞ as a
function of velocity and radiation angle θ. At the frequency
with εz → 0, the dependence of Uðω; θÞ on v is not
monotonical but rather complex in Figs. 3(a) and 3(b).
Moreover, if the electron velocity is small (e.g., v=c < 0.3),
the maximum of Uðω; θÞ still appears at a relatively large
radiation angle (>80°) with a relatively large angular width
(>50°) in Figs. 3(a) and 3(b). This feature for low-energy
electrons is different from that for high-energy electrons.
Generally, if v → c or γ ≫ 1, the maximum of Uðω; θÞ
would appear at θ → 0° with a very narrow angular width
(<0:1°) [9]. Since the resonance transition radiation is able
to simultaneously improve the directivity and intensity of
light emission [2], the relatively poor directivity of low-
velocity-favored transition radiation might be overcome
through the formation of resonance transition radiation by
letting the moving electron interact with an epsilon-near-
zero-material-based photonic crystal.
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Besides, the angular spectral feature of transition radi-
ation at the frequency with εz → 0 in Figs. 3(a) and 3(b) is
entirely different from those at frequencies without εz → 0
in Figs. 3(c) and 3(d). At the frequency without εz → 0,
Uðω; θÞ in Figs. 3(c) and 3(d) monotonically increases with
v. Meanwhile, the maximum ofUðω; θÞ starts to appear at a
relatively small radiation angle (<45°) if v=c > 0.3 in
Figs. 3(c) and 3(d).
To confirm the unique angular feature above, Figs. 3(e)

and 3(f) show the field distribution of the excited waves at
the frequency with εz → 0. Remarkably, the field strength
with v=c ¼ 0.001 in Fig. 3(f) is comparable to that with
v=c ¼ 0.999 in Fig. 3(e). However, the excited waves
mainly propagate to the directions almost parallel to the
interface (with θ → 90°) if v=c ¼ 0.001 in Fig. 3(f), which
is similar to the dipolar radiation induced by a dipole
oscillating in a direction vertical to the epsilon-near-zero
slab, while most of the excited waves would propagate to
the direction almost perpendicularly to the interface (with
θ → 0°) if v=c ¼ 0.999 in Fig. 3(e). For comparison, we
show the excited waves at the frequency without εz → 0
[e.g., in Figs. 3(g) and 3(h), and in Fig. S6 [54] ] By
contrast, the field strength with v=c ¼ 0.001 in Fig. 3(h) is
much weaker than that with v=c ¼ 0.999 in Fig. 3(g).
Since the low-velocity-favored transition radiation

mainly occurs near the frequency with εz → 0, its origin
is closely related to the excitation of Ferrell-Berreman
modes [4,40,41]. Essentially, the underlying mechanism for
the transition radiation of Ferrell-Berreman modes is that
the bulk plasmons provide a unique route to extend the

electron-interface interaction time, then create light emis-
sion far beyond the conventional formation time histor-
ically defined for free-electron radiation, and thus help to
greatly enhance the radiation intensity [4]. In other words,
the emergence of a long tail of bulk plasmons following
the electron’s trajectory deep into the epsilon-near-zero
material mixes surface and bulk effect, and it provides a
sustained channel for electron-interface interaction [4]. In
addition, the consideration of the nonlocal response of
epsilon-near-zero materials and the excitation of longi-
tudinal waves has a minor influence on the angular spectral
energy density and the radiation spectrum of excited
propagating waves [4]. On the other hand, the low-
velocity-favored transition radiation can occur if a moving
electron penetrates through an epsilon-near-zero slab in
Figs. 2 and 3 but would not appear if the electron crosses a
single interface between an epsilon-near-zero material and
free space in Fig. S1, despite the excitation of Ferrell-
Berreman modes in both scenarios. In this way, the revealed
phenomenon of low-velocity-favored transition radiation,
including the plateau and the dip in Fig. 2(b), could be
ascribed to the interference between the excited Ferrell-
Berreman modes, instead of merely the excitation of
Ferrell-Berreman modes.
The Ferrell-Berreman mode itself has been extensively

studied, including that in anisotropic systems [41,65–67].
The transition radiation of Ferrell-Berreman modes has also
been extensively discussed but is focused on the isotropic
materials (e.g., a metal slab) [4,40,46–49]. However, the
study of transition radiation of Ferrell-Berreman modes in

FIG. 3. Angular spectral feature of low-velocity-favored transition radiation. (a)–(d) Angular spectral energy density Uðω; θÞ of
transition radiation as a function of the radiation angle θ and the electron velocity v. Each red dashed line indicates the angular trajectory
of the maximum of Uðω; θÞ. The y axis is plotted on a linear scale in (a),(c) but on a log scale in (b),(d). (e)–(h) Distribution of the
excited magnetic field Hr

ϕ, where each green line represents the BN slab. At the frequency of 24.5 THz, the relative permittivity of BN
has ε⊥ ¼ 7.7þ 0.01i and εz ¼ −0.05þ 0.04i.
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other complex anisotropic systems, including uniaxial
materials (e.g., BN), has been relatively less explored.
For uniaxial materials, εz → 0 and ε⊥ → 0 are in principle
both possible. It is then natural to ask whether εz → 0 or
ε⊥ → 0 is the crucial parameter to create the low-velocity-
favored transition radiation.
To address this issue, Fig. 4(a) replots the radiation spec-

trum of transition radiation from BN in Fig. 2(a) under three
fixed velocities. For BN, we have ε⊥ → 0 near 48.2 THz
(namely ε⊥ ¼ 0.02þ 0.08i and εz ¼ 2.8þ 0.0003i), in
addition to εz → 0 near 24.5 THz. A radiation peak, which is
a characteristic signature of the Ferrell-Berreman mode,
always shows up near 24.5 THz but does not emerge near
48.2 THz in Fig. 4(a). Hence, εz → 0, instead of ε⊥ → 0,
plays a crucial role in the excitation of Ferrell-Berreman
modes. Moreover, Fig. 4(b) shows the transition radiation
from various uniaxial epsilon-near-zero materials with
jεzj → 0, where the material loss is neglected and the other
structural setup is the same as that in Fig. 2(a). The
phenomenon of the low-velocity-favored transition radiation
always appears, no matter ReðεzÞ > 0 or ReðεzÞ < 0.
Meanwhile, the appearance of this phenomenon is relatively
insensitive to the values of ε⊥ in Fig. 4(b). Figure 4(b) also
indicates that the occurrence of low-velocity-favored tran-
sition radiation does not necessarily require the existence of
high-k modes in epsilon-near-zero materials (Fig. S5 [54]),
since it is not caused by Cherenkov radiation of high-k
modes (Fig. S9) (e.g., that inside a hyperbolic material
[28–32]). From Figs. 4(a) and 4(b), we then conclude that
jεzj → 0 plays a determinant role in the creation of the low-
velocity-favored transition radiation. Therefore, it is better to
exploit jεzj → 0, instead of jε⊥j → 0, for the design of novel
light sources based on low-energy electrons.

In conclusion, we have demonstrated a feasible route to
achieve the low-velocity-favored transition radiation by
exploiting the Ferrell-Berreman mode in epsilon-near-zero
materials. Such an exotic phenomenon of free-electron
radiation can simultaneously achieve strong emission
intensity and high photon extraction efficiency readily
from low-energy electrons. Because of the abundance of
epsilon-near-zero materials in nature or through judicious
nanofabrication [68–73], our finding of low-velocity-
favored transition radiation can apply to a broad range
of frequencies, e.g., microwave, terahertz, midinfrared,
visible, and ultraviolet. Therefore, our finding not only
enriches the physics of free-electron radiation but also
broadens potential applications of Ferrell-Berreman modes,
especially for the design of integrated free-electron light
sources that are highly efficient and tunable.
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