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We investigate the effects of quantum fluctuations on the low-energy collective modes of two-
dimensional (2D) s-wave Fermi superfluids from the BCS to the Bose limit. We compare our results to
recent Bragg scattering experiments in 2D box potentials, with very good agreement. We show that
quantum fluctuations in the phase and modulus of the pairing order parameter are absolutely necessary to
give physically acceptable chemical potential and dispersion relation of the low-energy collective mode
throughout the BCS to Bose evolution. Furthermore, we demonstrate that the dispersion of the collective
modes change from concave to convex as interactions are tuned from the BCS to the Bose regime, and
never crosses the two-particle continuum, because arbitrarily small attractive interactions produce bound
states in two dimensions.
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The study of collective modes is a fundamental compo-
nent of many-particle physics, because for every sponta-
neously broken continuous symmetry there are low-energy
modes that emerge as expected from Goldstone’s theorem
[1], and additional higher-energy excitations such as the
Higgs mode [2,3]. Collective modes are essential in under-
standing a variety of systems ranging from condensed
matter (quantum magnets, superconductors) [4,5], high
energy physics (standard nuclear matter, quantum chromo-
dynamics) [6,7], and astrophysics (neutron stars, black
holes) [8,9] to atomic (Bose and Fermi superfluids) physics
[10,11]. Unfortunately, in condensed matter it is not easy to
tune parameters such as interactions, density, and dimen-
sionality over a wide range, in high energy physics it is very
difficult, and in astrophysics it is impossible. However, in
atomic physics this is relatively easy via well established
techniques [12,13]. This makes it possible to investigate
collective modes in superfluids, particularly important
because they reveal the effects of quantum fluctuations
above the superfluid ground state.
Superfluids in 2D are inherently different from their 3D

counterparts, due to the importance of fluctuations [14,15]
leading to a Berezinskii-Kosterlitz-Thouless (BKT) tran-
sition [16,17]. In the context of ultracold atoms, the desire
to study 2D Fermi superfluids is driven not only by connec-
tions to high-temperature superconductors [18–21], but
also by the high degree of experimental control that allows
the measurement of the equation of state [22–24], the
observation of the BKT transition [25,26], and the exami-
nation of collective modes [27–30].
Ultracold fermions with tunable interactions in nearly

2D configurations were studied using harmonic traps and
optical lattices [31–34]. With the very recent advent of box

potentials, it is now possible to study experimentally homo-
geneous 2D fermions [28,30,35]. Inspired by recent mea-
surements of collective excitations via Bragg-spectroscopy
[30,36,37], we investigate the low-energy collective modes
of 2D s-wave Fermi superfluids in box potentials, and find
very good agreement with experiments. We establish that
mean field (saddle point) results in two dimensions [38]
produce incorrect values of the chemical potential and lead
to the erroneous conclusion that the sound velocity is a
constant throughout the BCS to Bose evolution [39–41]. In
sharp contrast, we show that the inclusion of quantum
fluctuations [42] is crucial to produce physically acceptable
results for the dispersion of collective modes and leads to a
varying speed of sound in the crossover from BCS to Bose
regimes at low temperatures [43]. Furthermore, we demon-
strate that phase and modulus fluctuations of the pairing
order parameter become increasingly more coupled with
growing interaction strength. Importantly, we clarify the
longstanding confusion about the difference between the
resulting sound mode arising from the broken U(1) sym-
metry and Landau’s phenomenological first sound.
Based on weakly coupled s-wave Fermi superfluids and

a linear dispersion of the collective mode, it has been long
thought [44] that the low-energy collective modes in neutral
Fermi superfluids are strongly damped (due to Landau
damping) when the energy of the collective mode is
sufficiently large to reach the pair-breaking energy thresh-
old. In three dimensions, this view is still valid, even when
taking into account the changing concavity of the
dispersion [45,46]. However, we show that the situation
is fundamentally different in two dimensions, where the
inclusion of the ubiquitous bound states and of higher-order
momentum corrections to the collective mode dispersion
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show that the collective mode energy never reaches the two-
particle continuum, and thus there is no damping of the
collectivemode at theGaussian level for s-wave superfluids.
Hamiltonian.—To analyze the low-energy collective

modes of 2D s-wave Fermi superfluids in box potentials,
we start from the Hamiltonian density

H¼ ψ†
sðrÞ ð−iℏ∇Þ

2

2m
ψ sðrÞ− gψ†

↑ðrÞψ†
↓ðrÞψ↓ðrÞψ↑ðrÞ; ð1Þ

whereψ sðrÞ is a fermion field operatorwith spin s at position
r. The first term is the kinetic energy and the second
represents local attractive interactions. The associated action
is Sðψ†;ψÞ ¼ R

d3rfψ†ðrÞ½ℏ∂τ − μ�ψðrÞ þHðrÞg, where
r ¼ ðr; τÞ, R d3r ¼ R β

0 dτ
R
d2r, β ¼ ℏ=kBT, and μ is the

chemical potential. Thegrand canonical partition function of
the system is Z ¼ R

Dψ†Dψe−S=ℏ. We introduce the
Hubbard-Stratonovich complex pair field ΦðrÞ to decouple
the contact interactions and integrate out the fermionic fields
to obtain an effective action SeffðΦ†;ΦÞ. We write ΦðrÞ ¼
jΦðrÞjeiθðrÞ in terms of its modulus jΦðrÞj ¼ jΔj½1þ λðrÞ�
and phase θðrÞ, and expandSeffðΦ†;ΦÞ up to quadratic order
in both the phase θðrÞ and modulus fluctuations λðrÞ around
the saddle point jΦspðrÞj ¼ jΔj. The resulting Gaussian
action is

Seff ¼ Ssp þ βjΔj2
X
q

�
iθ−q λ−q

�
MðqÞ

�−iθq
λq

�
; ð2Þ

where q ¼ ðq; iνÞ and ν ¼ 2πn=β are bosonic Matsubara
frequencies, Ssp ¼ β

P
kðξk − EkÞ þ βL2jΔj2=g is the sad-

dle-point action, and MðqÞ is the symmetric Gaussian
fluctuation matrix [47]. Using the analytic continuation
iν → ωþ iδ, the matrix elements of MðqÞ, at zero temper-
ature, are

M��
L2

¼
Z

d2k
4π2

�
Eþ þ E−

2EþE−

EþE− þ ξþξ− � jΔj2
ℏ2ω2 − ðEþ þ E−Þ2

þ 1

2Ek

�
;

Mþ−

L2
¼

Z
d2k
4π2

�
ℏω

2EþE−

Eþξ− þ ξþE−

ℏ2ω2 − ðEþ þ E−Þ2
�
;

where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k þ jΔj2

p
is the quasiparticle energy, ξk ¼

ϵk − μ is the energy of the free fermions of mass m
(ϵk ¼ ℏ2jkj2=2m) with respect to μ, and jΔj is the modulus
of the order parameter.Wehave used the shorthandnotations
E� ¼ Ek�q=2 and ξ� ¼ ξk�q=2, Mþþ ¼ Mθθ, M−− ¼ Mλλ,
and Mþ− ¼ Mθλ.
Equation of state.—In Eq. (2), the action Seff is fully

characterized by jΔj and μ or by the dimensionless para-
meters x ¼ μ=jΔj and jΔj=ϵF, where ϵF is the Fermi energy
for a specified density n ¼ k2F=2π, with kF being the Fermi
momentum. However, to study the evolution from the BCS
to the Bose limit, it is experimentally more relevant to relate

jΔj and μ to the 2D scattering length a and the density n.
The order parameter is found from ½∂Ωsp=∂jΔj�T;V ¼ 0,
where Ωsp ¼ Ssp=β is the saddle-point thermodynamic
potential. Replacing the interaction strength g in favor of
the (positive) two-body binding energy ϵb, using the
Lippmann-Schwinger relation L2=g ¼ P

k 1=ð2ϵk þ ϵbÞ
[48], one finds jΔj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵbð2μþ ϵbÞ
p

Θð2μþ ϵbÞ, which is
explicitly only a function of μ and ϵb. The chemical poten-
tial can be found by solving the saddle-point number
equation nsp ¼ −½∂Ωsp=∂μ�T;V=L2, while fixing the density

nsp ¼ n ¼ k2F=2π, resulting in μsp ¼ ϵF − ϵb=2, which sub-
stituted in the order parameter relation leads to jΔjsp ¼ffiffiffiffiffiffiffiffiffiffiffiffi
2ϵFϵb

p
. These expressions are connected to the 2D scatte-

ring length a via the relation ϵb¼8ϵF=expð2γEþ2lnkFaÞ,
with γE ≈ 0.577 the Euler-Mascheroni constant [49].
However, as discussed below, this analysis leads to the
unphysical result of a constant sound velocity c ¼ vF=

ffiffiffi
2

p
,

where vF is the Fermi velocity, over the entire BCS-to-Bose
evolution, because μ is inaccurately calculated.
A more precise determination of μ for fixed density n

requires not only Ωsp, but also the Gaussian contribution
Ωg ¼ ðkBT=2Þ

P
q ln det½jΔjMðqÞ�, found by integrating

the bosonic fields in the second term of Eq. (2). The full
number equation n ¼ nsp þ ng, including fluctuations of
the order parameter at the Gaussian level, is necessary to
determine μ. This is important both in three [50,51] and two
dimensions [42,48]. Here, ng ¼ −½∂Ωg=∂μ�T;V=L2 must be

always positive and nðμÞ ¼ k2F=2π must be solved numeri-
cally, leading to a significant reduction of μ in the Bose
regime [52], see Fig. 1.
Collective modes.—As seen from Eq. (2), the fluctuation

matrix MðqÞ acts as the inverse propagator of modulus and
phase fluctuations. The collective mode frequency ωq is
found from the poles of ½MðqÞ�−1 or, equivalently, from
detMðq;ωqÞ ¼ 0 [47]. As shown in the Supplemental
Material [53], at T ¼ 0, these poles are identical to the poles
of the density-density response function, as probed by ex-
periments measuring the dynamical structure factor [30].

FIG. 1. The ratio x ¼ μ=jΔj for different approximations of the
equation of state: the saddle-point approximation (dashed blue
line) and including Gaussian fluctuations (solid red line). The
BCS and Bose limits are shown as dotted black and dot-dashed
green lines.
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A real solution is found below the two-particle continuum
ϵcðqÞ ¼ minkðEþ þ E−Þ, above which it is energetically
more favorable to break pairs. In a 3D Fermi gas, ωq can hit
the two-particle continuum at some finite value of q causing
damping [45]. However, for a 2D Fermi gas, a real ωq <
ϵcðqÞ is found for all values of q, given that a two-body
bound state always exists for a 2D contact potential [66].
This physics arises from Mþþ ¼ Mθθ, which always
diverges when ℏω → ϵc making detMðq; ϵcÞ ¼ 0 impos-
sible, and thus there is no damping of the mode at the
Gaussian level. (See Supplemental Material [53] for an in-
depth discussion on damping.) For arbitrary q there is no
general analytical solution for ωq, but we obtain numerical
results shown as solid red lines in Fig. 2. We compare our
results to the measured spectrum from Ref. [30], and find
that ωq follows closely the maximum of the dynamical
structure factor, without any fitting parameters. Moreover, it
can be seen that ωq avoids the two-particle continuum ϵcðqÞ
and that a solution exists for all q.
Although numerical solutions are useful for comparison

to recent experiments [28,30], analytical insight is essen-
tial to understand the underlying physics. To reveal the
interplay between modulus and phase fluctuations, we
show next that their coupling increases dramatically as the
system evolves from the BCS to the Bose regime. We
invert MðqÞ and obtain the propagators in Fourier space,
which in the long wavelength limit become

� hθ−qθqi hθ−qλqi
hλ−qθqi hλ−qλqi

�

¼ jΔj2
ℏ2c2q2 − ℏ2ω2

�
χθθ iℏωχθλ

−iℏωχθλ q2χqλλ − ℏ2ω2χωλλ

�
: ð3Þ

The different χ coefficients defined in this equation are
shown in Fig. 3(a) as a function of interaction parametrized
by the ratio x ¼ μ=jΔj. They are explicitly given by χθθ¼4π,
χθλ ¼ 2πð−xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þ=jΔj, χqλλ ¼ ℏ2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
=2mjΔj,

and χωλλ¼π=jΔj2. Most notably, the solid red line in Fig. 3(a)
shows χθλ, which controls the coupling between phase and
modulus. Notice that χθλ is large in the Bose regime
ðμ=jΔj ≪ −1Þ, indicating that phase and modulus are
strongly mixed, while it is negligible in the BCS regime
ðμ=jΔj ≫ 1Þ, showing that phase and modulus are essen-
tially decoupled. Forω > 0, the pole of ½Mðjqj;ωÞ�−1 occurs
at ωq ¼ cjqj, with

2mc2 ¼ μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ jΔj2

q
; ð4Þ

where c is the sound velocity associated with the broken
U(1) symmetry. This expression includesmodulus and phase

(a) (b)

(c) (d)

FIG. 2. Frequency ωq vs jqj, using Fermi units ωF ¼ ϵF=ℏ and
kF, for different interactions. The solid red line represents the
numerical solution for ωq, while the analytical approximation is
shown up to linear (dashed yellow line) and cubic (dot-dashed
green line) order in jqj. The parameters for each panel are
(a) lnkFa¼−0.1;ðμ=jΔj≃−1.0Þ, (b) ln kFa ¼ 0.7; ðμ=jΔj ≃ 0.2Þ,
(c) lnkFa¼1.1;ðμ=jΔj≃0.7Þ, and (d) lnkFa¼1.4;ðμ=jΔj≃1.2Þ,
using the Gaussian value of μ. The dotted magenta lines represent
ωPO
q using the saddle point μ. The solid blue line indicates the

lower edge of the two-particle continuum ϵcðqÞ at the Gaussian
level. Our results are compared to dynamic structure factor
experiments (gray pixels) from Ref. [30], showing very good
agreement.

(a)

(b)

FIG. 3. (a) Different χ coefficients vs μ=jΔj or ln kFa as defined
in Eq. (3). (b) Sound velocity c=vF vs ln kFa: the dotted green
line includes phase-only fluctuations with saddle point μ,
diverging in the Bose limit; blue dashed line includes phase
and modulus fluctuations with saddle point μ, giving always a
constant value; solid red line combines phase and modulus
fluctuations with Gaussian μ self-consistently. The dot-dashed
magenta and black lines show the results in the BCS and Bose
limits, respectively. We compare our broken-U(1) sound velocity
cwith the experimental results of the isentropic sound velocity uS
from Ref. [28] (blue circles), and with c from Eq. (4) and the
Monte Carlo equation of state from Ref. [67] (dashed yellow
line). See an in-depth discussion of the conceptual difference
between c and uS in the Supplemental Material [53].
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fluctuations of the order parameter, and explicitly illustrates
the dependence of c on μ. In Fig. 3(b), we show the behavior
of c=vF at three levels of approximation: the dotted green
line includes only phase fluctuations, the dashed blue line
includes phase and modulus fluctuations with the saddle-
point value of μ, while the solid red line includes phase and
modulus fluctuations with a self-consistent Gaussian fluc-
tuation value of μ. It is clear that the first two levels of
approximation [39,40] give completely unphysical results,
in particular predicting the constant value c ¼ vF=

ffiffiffi
2

p
for

any coupling in the saddle-point approximation, as quoted
in the literature [39,40]. However, we show here that the
inclusion of phase and modulus fluctuations with the
correct μ leads to the appropriate behavior of c both in
the Bose and BCS limits, giving results that are surpri-
singly close to the experimentally measured isentropic
sound velocity [28], that is typically a good estimate for
Landau’s first sound.
The sound mode arising from the broken U(1) symmetry

should not be confused with Landau’s first or second sound
[68], as they are fundamentally different. Our T ¼ 0
microscopic collective mode can be directly observed in
measurements of the dynamic structure factor, and exists in
the collisionless regime. Conversely, first and second sound
result from a phenomenological decomposition of the
superfluid into two components, and exist only in the
hydrodynamic regime [69,70]. In clarifying the difference
between the broken-U(1) and Landau’s first sound, we
show that Landau’s first sound velocity is always larger
than c, see Supplemental Material [53]. We also note that
the isentropic sound velocity [28] is not the same as the
sound velocity that can be extracted from the dynamical
structure factor [30].
Further insight is gained by studying the long wave-

length limit of Seff in Eq. (2) by expanding the fluctuation
matrix Mðq;ωÞ for small q and ω. Performing an inverse
Fourier transform back to real space, the second term in
Eq. (2) reduces to

Sg¼
1

2

Z
d3r½ρsð∇θÞ2þAðℏ∂τθÞ2þ iDλℏ∂τθþCλ2�: ð5Þ

The first two coefficients are the T ¼ 0 superfluid density
2mρs=ℏ2 ¼ nsp=2 and the compressibility A ¼ ð1þ x=ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þm=8πℏ2, while D ¼ mjΔj=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
=2πℏ2 con-

trols the phase-modulus coupling, and C ¼ jΔj2ð1þ x=ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þm=2πℏ2 describes the mass term for the modulus

fluctuations. Neglecting modulus fluctuations (λ ¼ 0) leads
to a sound velocity c ¼ ffiffiffiffiffiffiffiffiffiffi

ρs=A
p

=ℏ ¼ ðμ2 þ jΔj2Þ1=4= ffiffiffiffi
m

p
,

shown as the dotted green line in Fig. 3(b), which diverges
in the Bose limit. However, when λ ≠ 0, the coupling
between modulus and phase renormalizes A. Integrating
out λ leads to a renormalized phase-only action with
unchanged superfluid density ρsR ¼ ρs, but renormalized

compressibility AR¼AþD2=4C¼m=4πℏ2. This renorma-
lization leads to the corrected speed c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρsR=AR

p
=ℏ given

by Eq. (4), as expected. This moreover leads to the
conclusion that the collective mode studied here is neither
a Goldstone (pure phase) nor Higgs (pure modulus) mode,
because the mixing of phase and modulus cannot be
neglected.
Change in concavity.—To investigate the low-energy

collective modes beyond linear dispersion, it is necessary to
expandM�� andMþ− up to sixth order in ω and jqj. In this
case, the condition detMðq;ωqÞ ¼ 0 leads to

ωq¼cjqj
�
1þγ

8

�
ℏjqj
mc

�
2

þ η

16

�
ℏjqj
mc

�
4

þO
�
ℏjqj
mc

�
6
�
; ð6Þ

where the coefficients of the cubic and quintic order
corrections have analytic expressions

γ ¼ 1

24

�
1 − 4x2 − x

7þ 4x2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
�
; ð7Þ

η ¼ −
365þ 2802x2 þ 2048x4 þ 160x6

23040ð1þ x2Þ

− x
685þ 1813x2 þ 1064x4 þ 80x6

11520ð1þ x2Þ3=2 : ð8Þ

In Fig. 2, we show ωq for various interaction regimes and
different levels of approximation. The solid red curves
represent the full numerical solutions, while the other curves
represent the linear (dashed yellow) and cubic (dot-dashed
green) approximations in jqj with the Gaussian corrected μ.
The dotted line represents the numerical phase-only (λ ¼ 0)
dispersionωPO

q using the saddle-point value of μ. Notice that
ωPO
q severely overestimates the correct ωq in the Bose

regime, that is, ωPO
q ≫ ωq, while in the BCS limit

ωPO
q ≈ ωq, because the modulus and phase fluctuations

are nearly decoupled. The panels in Fig. 2 show that there
is a change in curvature in the solid red lines, also found in
3D Fermi gases [37,45–47], where the dispersion ωq is
supersonic (γ > 0) in the Bose regime shown in panel (a),
and subsonic (γ < 0) in the BCS regime shown in panel (d),
where it bends downwards due to the pair-breaking con-
tinuum. The coefficients of the nonlinear terms play a
significant role at larger momenta. While the cubic correc-
tion gives a good approximation for the large momentum
behavior in the Bose limit, as one moves towards the BCS
regime, progressively higher-order terms are needed to
produce the appropriate behavior.
The coefficients γ and η are presented in Fig. 4 as a

function of ln kFa. In all panels, γ and η are evaluated
at different levels of approximation: the dotted green
lines describe phase-only fluctuations using the saddle
point μ, the dashed blue lines include modulus and phase
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fluctuations using the saddle point μ, and the solid red lines
include modulus and phase fluctuations using the Gaussian
μ. Panels (a)–(b) [(c)–(d)] show γ and η in units that
elucidate their limiting behavior in the Bose (BCS) regime
given by the dot-dashed black (magenta) lines.
The concavity of ωq is controlled by γ, which changes

from γ > 0 (convex) to γ < 0 (concave) in the Bose and
BCS regimes, respectively. The parameter γ changes sign at

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 ffiffiffiffiffi

13
p

− 7Þ=12
q

≈ 0.133, corresponding to ln kFa ≃
0.65 using the Gaussian μ. In this case (γ ¼ 0), the first
correction to the linear spectrum is a quintic ðjqj5Þ term
controlled by η. Although the behavior of γ and η is similar
to the 3D results in the Bose limit [46], in the rest of the
crossover the 2D case is qualitatively different, where η
always stays negative because of the strong level repulsion
with the two-particle continuum, due to the existence of
two-body bound states for all interactions.
In the Bose limit (x ≪ −1), expanding the matrix

elements of Mðq;ωÞ to order ðΔ=jμjÞ2 and to lowest order
in ℏjqj= ffiffiffiffiffiffiffiffiffiffiffiffi

2mjμjp
leads to

ℏ2ðωB
qÞ2 ¼

ℏ2q2

2mB

�
ℏ2q2

2mB
þ 2mBc2B

�
; ð9Þ

where cB ¼ jΔj= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mBjμj

p
is the Bogoliubov speed of

sound, and mB ¼ 2m is the boson mass. Using the saddle
pointμ leads to the incorrect value cB ¼ vF=

ffiffiffi
2

p
, while using

the Gaussian corrected μ leads to cB ¼ vF=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8j ln kFaj

p
in

the Bose limit. The Bogoliubov-Popov interaction energy
2nBVBð0Þ ¼ 2mBc2 ¼ EF=j ln kFaj, with boson density
nB ¼ n=2 leads to the boson-boson interaction parameter

VBð0Þ ¼ ðEF=nÞ=j ln kFaj. The values of γ and η from
Eq. (9) are equal to limiting results obtained from
Eqs. (7) and (8), that is, γ → 1=4, and η → −1=128, as
seen in Figs. 4(a) and 4(b).
In the BCS limit (x ≫ 1), the saddle point and Gaussian

correction tend to the same results, as fluctuations are less
important. Rescaling energies by jΔj, such that ℏωq=jΔj
tends to a universal function of ℏcjqj=jΔj, leads to
ðjΔj=mc2Þ2γ → −1=3 and ðjΔj=mc2Þ4η → −1=72, as re-
vealed in Figs. 4(c) and 4(d). This is a consequence of the
two-particle continuum pushing down the collective mode
branch [45,46]. In this case, the expansion in jqj is limited
to ℏcjqj ≤ 2jΔj and c → vF=

ffiffiffi
2

p
.

Conclusions.—We analyzed low-energy collective
modes of 2D s-wave Fermi superfluids from the BCS to
the Bose regime giving excellent results when compared to
Bragg spectroscopy experiments in 2D box potentials. We
showed that quantum fluctuations in the phase and modulus
of the pairing order parameter are absolutely necessary to
give physically acceptable chemical potential and sound
velocity. We presented analytical results for the change in
concavity of the collective mode dispersion from convex to
concave as contact interactions are changed from the BCS
to the Bose regime. The dispersion never hits the two-
particle continuum threshold, due to the existence of two-
body bound states for arbitrarily small attractive s-wave
interactions in two dimensions.
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