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Here we present world-leading sensitivity to light (< 170 MeV) dark matter (DM) using beam-dump
experiments. Dark sector particles produced during pion decay at accelerator beam dumps can be detected
via scattering in neutrino detectors. The decay of nuclei excited by the inelastic scattering of DM is an
unexploited channel which has significantly better sensitivity than similar searches using the elastic
scattering channel. We show that this channel is a powerful probe of DM by demonstrating sensitivity to the
thermal relic abundance benchmark in a scalar DM dark-photon portal model. This is achieved through the
use of existing data, obtained by the KARMEN experiment over two decades ago, which allow us to set
world-leading constraints on this model over a wide mass range. With experimental improvements planned
for the future, this technique will be able to probe the thermal relic benchmark for fermionic DM across a
wide mass range.
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Probes of dark-sector particles takemany forms, including
both direct and indirect DM searches. These searches were
primarily targeted at constrainingweakly interactingmassive
particles [1–5]. However, WIMP-like DM has not yet been
detected [6–8] which has led to new DM models which
expand the available solutions to the DM problem. Such
models, built to circumvent past and present DM constraints,
therefore require new methods for detection.
Light DM with a vector mediator, for example a dark

photon, has been proposed in numerous studies as a viable
DM candidate [9–13]. Previous searches have looked for
the elastic scattering signature of DM in the detectors of
pion decay-at-rest (πDAR) neutrino experiments, such as
COHERENT [14,15] at the Spallation Neutron Source
(SNS) and Coherent CAPTAIN-Mills (CCM) at Los
Alamos National Laboratory (LANL) [16]. The relatively
small size of the detectors and their higher background
rates limit their sensitivity to DM. In this Letter, we perform
a DM search via the inelastic channel, which has as a signal
the narrow photon spectrum produced by the decay of
excited nuclear states. Crucially, the larger energies depos-
ited during inelastic scattering ensure that the sensitivity is
not limited by detector thresholds, allowing the use of much
larger higher-threshold detectors. Additionally, while the
inelastic channel has a smaller cross section than the elastic

channel, the narrow signal width permits a line search,
significantly reducing the background. However, neutral
current (NC) inelastic scattering of neutrinos remains an
irreducible component of the background. This process was
previously observed by KARMEN, a πDAR experiment
at the ISIS neutron source [17–19], which used the
12Cðν; ν0Þ12C�ð1þ; 1; 15.1 MeVÞ reaction. This existing
measurement is in agreement with the standard model
prediction, therefore we can use it to place a constraint on
DM causing additional carbon excitations. In the future this
strategy can be used to search for DM in large beam-dump
experiments such as the proposed PIP2-BD [20] with better
sensitivities than the searches via elastic scattering.
Predicting the DM signal requires the same nuclear

matrix elements used for neutrino NC inelastic reactions.
Calculations of neutrino nucleus scattering cross sections
have a long history [21] (see Ref. [22] for a review).
While some reactions, like the carbon one measured
by KARMEN, are well studied, most have not been.
Predicting the total observable signal remains computa-
tionally challenging since it includes many final states.
Inclusive methods have been applied to argon [23], how-
ever, they do not provide information about the relative
populations of the final states, making it difficult to predict
the signal spectrum. Recent calculations [24] and exper-
imental data [25] confirm that Gamow-Teller (GT) tran-
sitions dominate the cross section in this regime.
Considering only GT transitions simplifies the calculation
of the DM and neutrino spectra, allowing us to perform this
search for DM through the inelastic channel with world-
leading sensitivity to light DM.
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Beam-dump experiments.—High-energy proton beams
impinging on dense targets (e.g., mercury or tungsten)
produce large numbers of pions. The π− are captured by
nuclei before they decay and the π− are stopped by the target.
The stopped pions efficiently decay to muons, producing a
well understood spectrum of neutrinos. These neutrinos
have been used to study their low-energy interactions with
nuclei. For example, coherent elastic neutrino-nucleus
scattering (CEνNS) and NC inelastic scattering were first
observed in this way by the COHERENT [26] and
KARMEN [18] experiments, respectively. The proton
collisions could also produce a large flux of DM, primarily
through the decay of pions, which could then scatter in the
neutrino detectors. The DM flux is relativistic, overcoming
the kinematic suppression which severely limits the sensi-
tivity of DM direct detection experiments to sub-GeV DM.
The KArlsruhe Rutherford Medium Energy Neutrino

(KARMEN) experiment was located at the ISIS neutron
source, which has an 800 MeV proton beam, pulsed at
50 Hz, directed into a tantalum beam stop. We make use of
the 12Cðνμ; ν0μÞ12C� reaction analysis which included 4.65 ×
1022 protons on target (POT) [17]. The detector was a liquid
scintillator calorimeter with total mass 56 tonne (∼1030 12C
nuclei). In this analysis 86� 15 12Cðνμ; ν0μÞ12C� events
were observed.
COHERENT, based at the SNS, uses a 1 GeV proton

beam (width 0.6 μs), pulsed at 60 Hz, which impinges on a
mercury target at a rate of 8.8 × 1015 POT=s. The
COHERENT program runs (or have plans for) six detectors
with different nuclear targets in the so-called “Neutrino
Alley,” of which we are interested in NaI.
The current NaI[Th] detector has a mass of 185 kg, a

threshold of roughly 900 keV, and is located 22 m away
from the target. It was recently decommissioned to be
replaced by NaIvETe, which has a mass of 3.5 tonne [27].
The threshold is expected to be a few keVee. The back-
ground is approximately flat and O(100) in the total
exposure.
CCM at LANL makes use of a 0.8 GeV proton beam

(0.29 μs wide, 20 Hz frequency) impinging on a tungsten
target, which gives 5.6 × 1014 POT=s. Currently they are
operating a liquid argon (LAr) detector with a 7 tonne
fiducial volume, located 20 m away from the target with a
25 keV threshold.

PIP2-BD at Fermilab [20] will use a 2 GeV proton beam
(2 μs wide), 120 Hz, impinging a light target such as
carbon. A 100 tonne LAr detector with 20 keV threshold
will be located at different distances (15 m or 30 m) from
the target and at different angles.
The ratio of π− production to POT is 0.0457 for

COHERENT, 0.0259 for CCM, and 0.233 for PIP2-
BD, while the ratio for π0 production is 0.1048 for
COHERENT, 0.0633 for CCM [28], 0.322 for PIP2-BD,
and 0.0448 for KARMEN [29]. In Table I, the key
specifications of these experiments are summarized. For
our inelastic search channels, we will utilize the sensitivity
of these experiments to ≳MeV energy γ rays.
Light DM scattering.—A theoretically appealing thermal

DM model can be realized via a minimal extension to the
standard model (SM) where a light DM particle is coupled
to quarks via a dark photon (A0). A small coupling to quarks
is achieved through the A0 kinetically mixing with the SM
photon [33–35]. The interaction Lagrangian for fermionic,
χ, and scalar, ϕ, DM coupled to the SM via the dark photon
is expressed as

Lf ⊃ gDA0
μχ̄γ

μχ þ eϵQqA0
μq̄γμq

Ls ⊃ jDμϕj2 þ eϵQqA0
μq̄γμq ð1Þ

where gD is the dark coupling constant, ϵ is the mixing
parameter, and Qq is the quark’s electric charge. The dark
photon is produced in any process with SM photon
production. For example, they can be produced through
pion capture, pion decay, and photons emerging from
cascades (bremsstrahlung):

π− þ p → nþ A0

π0 → γ þ A0

η0 → γ þ A0

e�� → e� þ A0: ð2Þ

In a light DM scenario where mχ < mA0 , the dark photons
then decay to DM: A0 → χχ̄. We assume A0 decays in
flight to a pair of DM particles immediately after it is
produced (≲10−10 ns). Previously, GEANT4 ([36]) has been
employed to simulate the DM spectra from mesons and

TABLE I. Specifications of the experiments and detectors ( † indicates proposed).

Detector:

Experiment Ebeam [GeV] POT [yr−1] Target Material Mass Distance Angle Runtime Eth
r

KARMEN [30] 0.8 1.16 × 1022 Ta CH2 56 t 17.7 m 100° 4 yr 10 MeV
COHERENT† [14,26,31] 1 6.0 × 1023 Hg NaI[Tl] 3.5 t 22 m 120° 3 yr ∼few keV
CCM† [16,32] 0.8 7.5 × 1021 W Ar 7 t 20 m 90° 3 yr 25 keV
PIP2-BD† [20] 2 9.9 × 1022 C Ar 100 t 15 m N=A 5 yr 20 keV
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bremsstrahlung [28]. Figure 1 shows a sample simulated
DM flux at CCM’s LAr detector, where mA0 ¼ 3mχ ¼
30 MeV and ϵ ¼ 10−4. Because of its higher production
ratio at ∼GeV energies, π0 decay dominates all other
production channels. Similar fluxes can be obtained at
COHERENT, KARMEN, and PIP2-BD.
The produced DM then propagates to the detectors

where it may scatter from the detector nuclei, producing
nuclear recoils and excitations. At low momentum transfer
the inelastic scattering cross section is dominated by GT
transitions (described by the operator 1

2
bσi bτ0) [24]. Thus to a

good approximation the inelastic cross section to a given
final state Jf is

dσDMinel
d cos θ

¼ 2e2ϵ2g2DE
0
χp0

χ

ð2mNEr þm2
A0 − ΔE2Þ2

1

2π

4π

2J þ 1

×
X
si;sf

⃗l ·⃗l�
g2A
12π

jhJfjj
XA
i¼1

1

2
bσi bτ0 jjJiij2 ð3Þ

where ΔE, mN , and J are the excitation energy, nuclear
mass, and spin, respectively, and the axial coupling con-
stant is gA ¼ 1.27 [37]. The DM currents, ⃗l, depend on
the DM spin under consideration. Here we treat both
fermionic and scalar DM. After spin sums, the current
term is given by

X
si;sf

�
l⃗ · l⃗�

�
f
¼ 3−

1

4EχE0
χ

�
2

�
p2
χ þp02

χ − 2mNEr

�
þ 3m2

χ

�

X
si;sf

�
l⃗ · l⃗�

�
s
¼ 1

2EϕE0
ϕ

�
p2
ϕþp02

ϕ − 2mNEr

�
:

This induces a factor of ∼2 difference in the cross section
between the fermionic and scalar DM, i.e., σDMf ∼ 2σDMs .
Because of the effect of coherency, CEνNS cross

sections are much larger. However, the only observable
signal is the nuclear recoil which can be challenging to
detect at keV energies and is subject to large backgrounds.
Relativistic light DM and neutrinos with E ¼ 10–100 MeV
can excite nuclear states up to 15–30 MeV, depending on
the target [24]. Some of these states will have enough
energy to decay via particle emission. For argon, the
neutron emission threshold of ∼10 MeV [38] and angu-
lar-momentum barrier should result in a photon emission
branching ratio close to 1 for all decays from J ¼ 1þ states
below ∼11 MeV. For sodium, the proton emission thresh-
old is around 8.8 MeVand so the high end of the region of
interest may be affected. For iodine, the threshold is also
around 9 MeV but since the GT strength is negligible, it
will not affect our results.
GT transtition strengths.—To calculate the DM-nucleus

cross section in Eq. (3) we must evaluate the strengths of
the relevant GT transition. For 12C we make use of existing
theory predictions which are in good agreement with the
data [17]. We use the mean theory prediction for the flux-
averaged cross section of the 12Cðν; νÞ12C� reaction to
compute the GT strength [giving BðGTÞ ¼ 0.255� 0.021]
and use this in subsequent calculations.
For the remaining nuclear targets, 23Na, 40Ar, and 127I, we

use the nuclear shell model code BIGSTICK to compute the
strengths [39,40]. The 23Na calculation is relatively simple
because of its small number of valence nucleons and the
small model space. There are 3 valence protons and 4
valence neutrons in sd orbits (0d5=2, 1s1=2, 0d3=2). We use
the USDB interaction for 23Na [41,42]. The calculation for
40Ar is more challenging as the protons and neutrons are in
different model spaces. The valence protons are in sd orbits
(0d5=2, 1s1=2, 0d3=2), while the valence neutrons are in pf
orbits (0f7=2, 1p3=2, 0f5=2, 1p1=2). We truncate the sdpf
space to reduce the computational workload, restricting the
maximum number of protons excited to 4. Neutrons are
constrained to the pf orbits. We use the SDPF-NR
interaction [43–45] for 40Ar. For 127I, the model space is
0g7=2, 1d5=2, 0h11=2, 1d3=2 and 2s1=2 and we adopt the
jj55pna interaction [46].
Figure 2 shows the computed strength functions for the

GT operator for our three nuclear targets, convolved with a
150 keV width Gaussian (giving energy resolution ∼15%).
Following [25], we scale the total GT strengths for argon in
the 4–11 MeV range to match the experimental data of
BðM1Þ ¼ 0.651 μ2N . While we don’t perform the full
multipole calculation, the resulting cross section is well
approximated by the GT transition for low energy, where
our flux is concentrated [24,25]. The same procedure could
be carried out for sodium and iodine if the data were
available, though it is unlikely to make a large difference

FIG. 1. The contributions to the DM flux at CCM LAr
detector, where we have assumed mA0 ¼ 3mχ ¼ 30 MeV
and ϵ ¼ 10−4.
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for this analysis. This is because prior comparisons with
data for the charged-current reactions show agreement for
sodium using the USDB model [47] and iodine does not
contribute much to the total GT strength in the region of
interest.
Sensitivity.—Inelastic DM-nucleus scattering produces a

small nuclear recoil and a subsequent cascade of deexci-
tation γ rays. The cascade energy ∼MeV will dwarf the
nuclear recoil energy ∼keV and therefore we ignore the
contribution of the latter. Since the half-life of the decay
cascade is extremely short (picosecond or even femto-
second level), we will treat the deexcitation process as a
single energy deposition completely contained within the
detector. This is a reasonable approximation for large argon
detectors and KARMEN, but is less applicable to smaller
detectors. A detailed analysis including detector geometry
could account for partial detection of decay products but is
beyond the scope of the present work.
The expected number of events can be computed from

N ¼ exposure
md

×
Z

σðEχÞ
dΦ
dEχ

dEχ

where the exposure ¼ running time × detector mass, md is
the mass of a single molecule of the detector material, and
ðdΦ=dEχÞ is the DM energy flux. We assume that the
detectors have 100% detection efficiency (except for
KARMEN which had a 20% efficiency) and that all energy
depositions are above threshold.
Backgrounds for the full exposures of COHERENT NaI

(3.5 t) and CCM LAr are expected to be Oð100Þ events in
the region of interest E ¼ 1–100 MeV. For CCM we take
the background distribution from the engineering run in
and assume the science run will achieve the expected
improvement of 100 times lower background rate [48]. For
COHERENT NaI there is no available data and so we

assume a flat background with ∼Oð100Þ events across the
region of interest. For KARMEN we take the background-
subtracted 12Cðνμ; ν0μÞ12C� events (86� 15) as background
to a DM signal (since any DM events would have mimicked
these). To show the most optimistic projection, for PIP2-
BD the background is assumed to be due to neutrinos only.
Figure 3 shows the assumed background spectra for the

two detectors. Lower energy cuts of 4 MeVand 9 MeVare
applied to the NaI and LAr detectors, respectively, since we
are using the lines located above 4 MeV for NaI and 9 MeV
for LAr. The detector background decreases for higher
energy lines. Beyond these detector backgrounds, we also
include deexcitation photons produced from inelastic ν-
nucleus scattering. The sensitivity of this line-based search
can be improved by using a single line and a detector with
high energy resolution.
The inelastic νe and νμ background can be reduced by

applying a prompt window timing cut, here taken to be
within 150 ns of the beam arrival. This was demonstrated in
KARMEN [17] and CCM [48], and we assume this cut
applies to COHERENT as well. With such a cut, the ν
background will only be due to prompt νμ from pion decay
giving rise to neutral current events. The DM produced
from pion and eta decay propagates relativistically to the
detector and is unaffected by the cut. To compute the
inelastic ν-nucleus cross sections and background rates we
make use of the results from [24].
We investigate the DM parameter space fixing the mass

ratio mA0=mχ ¼ 3 and gD ¼ ffiffiffiffiffiffi
2π

p
. The derived exclusion

bounds for KARMEN and projected sensitivity of the
future COHERENT, CCM, and PIP2-BD experiments are
shown in Fig. 4 where we have used a χ2 test at 90% CL.
The magenta shaded region shows the existing limits from
various elastic scattering searches [9,32,49–53], the green

FIG. 2. The GT strength convolved with a 150 keV width
Gaussian for 40Ar, 23Na, and 127I.

FIG. 3. Background spectrum expected for the full exposures
of the COHERENT NaI (3.5t) and CCM LAr detectors (solid)
and the inelastic neutrino scattering contributions (curves). The
timing cut and strength scaling are applied.
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shaded region shows the new limit based on our inelastic
nuclear scattering calculation using the existing KARMEN
data and the dashed curves show the projected sensitivity
that can be obtained with inelastic scattering searches. The
gray solid curve shows the combination of parameter
values which achieve the correct thermal relic abundance
of DM.
Our result provides the strongest current bound on this

DM model across a wide range of DM masses,
mχ ∼ 1–100 MeV. For the case of scalar DM this result
probes the thermal relic benchmark over a wide range of
masses, mχ ∼ 5–40 MeV. Future experiments greatly
extend this range and even provide sensitivity to the
thermal relic benchmark for the fermionic DM scenario,
which has thus far been out of reach.
The lines have a kink at aroundmχ ¼ 45 MeV due to the

dominant source of DM production (π0 decay) becoming
closed when mA0 ¼ 3mχ ¼ 135 MeV ≈mπ0 . The η

0 decay
flux then becomes the dominant source of DM for

mχ ≥ 45 MeV. This affects both elastic and inelastic
channels and so the inelastic channel remains the most
sensitive across the whole mass range.
The sensitivity of the searches using the elastic channels

flattens for mχ ≤ 30 MeV due to detector thresholds. The
inelastic channel reach, however, continues to become
stronger as the mass of DM decreases since the deexcitation
lines are in the MeV region. The sensitivity shown for a
100 tonne LAr detector can be improved further with
increased POT, which is the plan for PIP2-BD at
Fermilab [20].
Conclusions.—We have performed the first investigation

of inelastic nucleus scattering as a probe of dark sector
physics. The NC inelastic channel has lower experimental
background and much higher energy compared to the
elastic channel. These characteristics make the inelastic
channel the most sensitive probe of the light DM models
considered here using existing and ongoing experiments. In
this initial investigation, we made use of GT transitions in
carbon, argon, sodium, and iodine nuclei relevant to past,
present, and future πDAR experiments: KARMEN,
COHERENT, CCM, and PIP2-BD. Using the inelastic
channel, we find that the KARMEN experiment has world-
leading sensitivity to DM produced from the decay of dark
photons, reaching the thermal relic benchmark for a wide
range of masses.
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