
Energy Extraction from Q-balls and Other Fundamental Solitons

Vitor Cardoso ,1,2 Rodrigo Vicente ,3 and Zhen Zhong 2

1Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark
2CENTRA, Departamento de Física, Instituto Superior Técnico—IST, Universidade de Lisboa—UL,

Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
3Institut de Fisica d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology,

Campus UAB, 08193 Bellaterra (Barcelona), Spain

(Received 7 March 2023; revised 28 May 2023; accepted 25 July 2023; published 11 September 2023)

Energy exchange mechanisms have important applications in particle physics, gravity, fluid mechanics,
and practically every field in physics. In this Letter we show, both in the frequency and time domain, that
energy enhancement is possible for waves scattering off fundamental solitons (time-periodic localized
structures of bosonic fields), without the need for rotation nor translational motion. We use two-
dimensional Q-balls as a test bed, providing the correct criteria for energy amplification, as well as the
respective amplification factors, and we discuss possible instability mechanisms. Our results lend support
to the qualitative picture drawn in Saffin et al. [preceding Letter,Q-ball superradiance, Phys. Rev. Lett. 131,
111601 (2023).]; however, we show that this enhancement mechanism is not of superradiant type, but
instead is a “blueshiftlike” energy exchange between scattering states induced by the background Q-ball,
which should occur generically for any time-periodic fundamental soliton. This mechanism does not seem
to lead to instabilities.
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Introduction.—Energy exchange phenomena play a piv-
otal role in the small and large scale dynamics of all
observed phenomena. A class of these are termed “super-
radiant” and take place when an object with many internal
degrees of freedom—which can internally dissipate energy
—is able to amplify certain impinging radiation modes,
while increasing its internal energy [1]. In this mechanism
the necessary energy to enhance the radiation (and increase
the object’s internal energy) is usually provided by kinetic
energy. For objects in uniform linear motion superradiance
requires a velocity larger than the characteristic phase
velocity in the medium (e.g., Vavilov-Cherenkov effect),
while rotational superradiance requires angular velocities
larger than the characteristic (angular) phase velocity in the
medium [1–4]. A different energy exchange mechanism is
realized by the interaction of radiation with a time-
dependent background. Time-periodic backgrounds tend
to induce a coupling between a discrete set of modes,
leading to an effective energy exchange with radiation. In
particular, the energy of radiation may be enhanced through
a blueshift of incoming modes to higher frequencies (as it

happens with oscillating cavity walls and objects [5–8] or
moving objects [9]).
Superradiance has attracted a considerable amount of

attention in black hole physics, since it may be a viable way
to power violent phenomena in the cosmos, or even to
transfer energy between black holes and new fundamental
degrees of freedom [4]. Spinning black holes have two
properties which are ideal for superradiance: an ergoregion
that effectively couples radiation to spacetime, and a
horizon that quenches negative-energy modes, allowing
for energy exchange in a stable manner [10]. It was recently
claimed that Q-balls—a type of nontopological scalar field
soliton [11,12]—are also prone to superradiance, not
requiring rotation nor any type of motion in real space [13].
Here, we argue that even though the original proof was

flawed, energy extraction from Q-balls is indeed possible.
It is not of superradiant nature, but it involves rather a
blueshift mechanism powered by the time-periodic back-
ground, akin to Doppler shift of radiation in oscillating
cavities. Because of Derrick’s theorem [14]—showing that
there is no stable time-independent solution of finite energy
for a wide class of nonlinear wave equations—most
fundamental solitons are expected to be time periodic.
This energy extraction mechanism most likely extends to
all these objects, since nonlinearities will induce the
necessary mode mixing in impinging radiation. We have
explicitly proved that this is the case for (Newtonian) boson
stars, which have attracted attention in connection with
dark matter physics and black hole mimickers [15–17].
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Q-balls as a test bed.—Consider a simple U(1)-
symmetric theory of a complex scalar field Φ̄ in a three-
dimensional flat spacetime ðR3; ηαβÞ described by the
action

S ¼ −
1

2

Z
d3x̄

ffiffiffiffiffiffi
−η

p ½∂ᾱΦ̄�
∂ᾱΦ̄þ VðjΦ̄jÞ�; ð1Þ

where η ≔ detðηαβÞ, with the potential V ¼ μ2jΦ̄j2−
λjΦ̄j4 þ ḡjΦ̄j6. We work with the rescaled dimensionless
quantities x ≔ μx̄, Φ ≔

ffiffiffi
λ

p
Φ̄=μ and g ≔ μ2ḡ=λ2, in

terms of which the potential reads V ¼ jΦj2−
jΦj4 þ gjΦj6. We restrict to g ≥ 1=4 (so that Φ ¼ 0 is
the true vacuum). The field satisfies the equation of motion

□ηΦ −
∂V
∂Φ� ¼ 0; ð2Þ

and possesses the divergenceless Noether current

JαQ ¼ ℑðΦ�
∂
αΦÞ; ð3Þ

and energy current (as measured by a family of parallel
inertial observers with four-velocity δαt )

JαE ¼ −ηαβTβγδ
γ
t ; ð4Þ

with the (also divergenceless) energy-momentum tensor

Tαβ ¼ ∂ðαΦ�
∂βÞΦ −

1

2
ηαβ½∂γΦ�

∂γΦþ VðjΦjÞ�: ð5Þ

Using polar coordinates ðr;φÞ on the hypersurfaces Σt
orthogonal to δαt , Q-balls are solutions of the form

ΦQðt; r;φÞ ¼
1ffiffiffi
2

p fðrÞe−iðωQt−mQφÞ; ð6Þ

that are regular at r ¼ 0 and r ¼ þ∞ (without loss of
generality, we consider ωQ > 0 and mQ ∈ Zþ

0 ). Some
radial profiles with different ωQ are shown in Fig. 1. To
exist, the Q-ball frequency must be ωthin

Q < ωQ < 1, with
the lower bound ωthin

Q ≔ min½2V=jΦj2� corresponding to
the so-called thin-wall limit [11].
Linear perturbations.—A sufficiently small perturbation

Φ1 to a Q-ball background solution, Φ ≈ΦQ þΦ1 with
jΦ1j ≪ jΦQj, satisfies the linearized equation of motion

□ηΦ1 − UðrÞΦ1 − e−2iðωQt−mQφÞWðrÞΦ�
1 ¼ 0; ð7Þ

where U ≔ 1 − 2f2 þ 9
4
gf4 and W ≔ −f2 þ 3

2
gf4. The

last term gives rise to mode mixing and, thus, this equation
does not admit monochromatic solutions.
Frequency-domain analysis.—The solutions with

minimal frequency content are of the form

Φ1 ¼ ϕþðrÞe−iðωþt−mþφÞ þ ϕ−ðrÞe−iðω−t−m−φÞ; ð8Þ

where ω� ¼ ωQ � ω and m� ¼ mQ �m. The mode
functions ðϕþ;ϕ−Þ satisfy the coupled system

1

r
∂rðr∂rϕ�Þ þ

�
ω2
� −U −

m2
�

r2

�
ϕ� −Wϕ�∓ ¼ 0; ð9Þ

which clearly shows the mode mixing between ϕþ and ϕ−
introduced by the background Q-ball. At infinity the mode
functions are

lim
r→∞

ϕ� ≈
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πjk�jr
p ðAout

� eik�r þ Ain
�e

−ik�rÞ; ð10Þ

and at the origin

lim
r→0

ϕ� ≈ C�ðjk�jrÞjm�j; ð11Þ

where k� ≔ �sωðω2
� − 1Þ1=2 with sω ≔ signðωÞ. From the

scale invariance of the linear perturbations, we can choose
Cþ ¼ 1 without loss of generality.
In this work we focus on perturbations satisfying the

double condition jω�j > 1, in which case both modes
describe propagating waves (i.e., scattering states); the
waves with amplitude Aout

� (resp., Ain
�) have radial group

velocity ðdω�=dk�Þ (resp., −ðdω�=dk�Þ). This means that
Aout
� describe outgoing states propagating in the δμr direc-

tion, the opposite to the direction of propagation of
incoming Ain

� states.
The time-averaged flux of Q charge through a one-

sphere of radius r (with r → ∞) is

FIG. 1. Radial profile fðrÞ of the Q-balls studied in this work,
with ωQ ¼ ð0.58; 0.70; 0.76Þ, mQ ¼ 0, and g ¼ 1=3. The values
at the origin are, respectively, fð0Þ ¼ ð1.78; 1.70; 1.54Þ, their
charge is Q ¼ R

Σ J
t
Q ¼ ð70.77; 13.70; 9.76Þ and energy is

E ¼ R
Σ J

t
E ¼ ð47.02; 12.00; 9.14Þ. We consider only ground-

state (nodeless) Q-ball solutions.
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FQ ¼ lim
r→∞

r
Z

2π

0

dφhJrQi

≈ sω
X
s¼þ;−

sðjAout
s j2 − jAin

s j2Þ; ð12Þ

that of energy is

FE ¼ lim
r→∞

r
Z

2π

0

dφhJrEi

≈ sω
X
s¼þ;−

sωsðjAout
s j2 − jAin

s j2Þ; ð13Þ

and of angular momentum is

FL ¼ lim
r→∞

r
Z

2π

0

dφhTrφi

≈ sω
X
s¼þ;−

smsðjAout
s j2 − jAin

s j2Þ: ð14Þ

where h·i≡ limT→∞ð1=TÞ
R
T
0 dtð·Þ.

It is easy to see from Eq. (9) that the quantity

Jϕ ≔ rℑðϕ�þ∂rϕþ þ ϕ−∂rϕ
�
−Þ; ð15Þ

is independent of r on shell, i.e., ∂rJϕ ¼ 0 for a solution of
Eq. (9). Regularity of the linear perturbations at the origin
[cf. Eq. (11)] implies then that Jϕ ¼ 0. But, since
Jϕðr → ∞Þ ∝ P

s¼�ðjAout
s j2 − jAin

s j2Þ, one finds

jAout
− j2 þ jAoutþ j2 ¼ jAin

− j2 þ jAinþj2: ð16Þ

The time-averaged fluxes can then be written as

FQ ≈ 2sωðjAoutþ j2 − jAinþj2Þ; ð17Þ

FE ≈ 2sωωQðjAoutþ j2 − jAinþj2Þ; ð18Þ

FL ≈ 2sωmQðjAoutþ j2 − jAinþj2Þ: ð19Þ

Thus, Q-charge, energy, and angular momentum can be
exchanged with the background (exchange of angular
momentum is only possible with a spinning Q-ball).
Energy extraction from a spinning Q-ball is necessarily
accompanied by angular momentum extraction.
The amplification factors of Q-charge, energy, and

angular momentum in the scattering process, defined as
(the absolute value of) the ratio of the time-averaged
outgoing flux to the incoming flux are, respectively,

1þ ZQ ¼
���� jA

outþ j2 − jAout
− j2

jAinþj2 − jAin
− j2

����; ð20Þ

1þ ZE ¼
����ωþjAoutþ j2 − ω−jAout

− j2
ωþjAinþj2 − ω−jAin

− j2
����; ð21Þ

1þ ZL ¼
����mþjAoutþ j2 −m−jAout

− j2
mþjAinþj2 −m−jAin

− j2
����: ð22Þ

The Z factors measure the relative amplification (or
attenuation) in the scattering process: Z > 0 for amplifi-
cation, whereas Z < 0 for attenuation.
Note that asymptotic fluxes are the appropriate quantities

that allow one to discriminate between amplification and
attenuation in a scattering process. In Ref. [13] an alter-
native criterion for energy amplification was used, based
instead on (the absolute value of) the ratio of energy
contained in outgoing states to incoming ones in some
asymptotic annular region r1 < r < r2. Given the different
propagation speeds of the ϕ� modes, this is not an
appropriate measure. In fact, in the limit where one mode
has arbitrarily small group velocity, its energy density
becomes arbitrarily large (cf. Fig. 2 of [13]), but its energy
flux—which determines the rate of energy exchanged with
the exterior—may still be small.
From Eq. (21) it is clear that energy amplification will

occur for any incoming state with Ainþ ¼ 0 and ω > 0, or
Ain
− ¼ 0 and ω < 0. On the other hand, there will be energy

attenuation (ZE < 0) for any incoming state with Ain
− ¼ 0

and ω > 0, or Ainþ ¼ 0 and ω < 0. These sufficient con-
ditions for energy amplification do not agree with the ones
found in Ref. [13], due to the different criteria for
amplification given there. The outcome of a more general
scattering process in which the incoming state contains a
mixture of ϕþ and ϕ− modes depends on the details of the
process, i.e., on the scattering parameters ω, m, and
Ain
−=Ainþ. Similarly, one can immediately see from

Eq. (22) that for a spinning Q-ball (mQ > 0) there is
angular momentum amplification for an incoming state
with Ainþ ¼ 0 and m ≥ mQ, or Ain

− ¼ 0 and m ≤ −mQ, and
attenuation for an incoming state with Ain

− ¼ 0 and
m ≥ mQ, or Ainþ ¼ 0 and m ≤ −mQ.
The energy extraction mechanism discussed here is

not of superradiant type. In fact, enhancement of energy
(or Q-charge, or angular momentum) of a single incoming
state is never observed, as can be seen by noting that
jAout

s j=jAin
s j ≤ 1, either directly from Eq. (16), or from the

lower panel of Fig. 2. Instead, the energy extraction is
accomplished through a “blueshiftlike” exchange, where
the time-dependent background effectively pumps energy
from the lowest energy (i.e., frequency) state to the highest.
As we discuss in the next section, the Q-ball will then
evolve to a new Q-ball with different parameters as to
conserve the total Q-charge, energy, and angular momen-
tum in the process.
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The ZE factor is shown in the upper panel of Fig. 2 for an
incoming ϕþ mode (i.e., Ain

− ¼ 0) from solving numerically
Eq. (9); these results show a remarkable agreement with
those from evolving a wave packet in the time-domain
(discussed in the next section). As expected, we find energy
amplification of ω < 0 modes for all Q-balls, and attenu-
ation of ω > 0 modes. Note also how energy extraction is
more effective for Q-balls closer to the thin-wall limit, for
which the field profile is nearly constant in the interior
(cf. Fig. 1).
Time-domain analysis.—To verify the consistency of our

results, we performed a time-domain evolution of a m ¼ 0
wave packet scattering off a Q-ball, solving Eq. (7) with
initial conditions appropriate for a Gaussian wave packet
with (average) frequency ω0 and radial width σr,

Φ1ð0; rÞ ¼ e
−ðr−r0Þ2

2σ2r e−isω0
ffiffiffiffiffiffiffiffi
ω2
0
−1

p
r; ð23Þ

∂tΦ1ð0; rÞ ¼ −iω0Φ1ð0; rÞ: ð24Þ

Additionally, we have also evolved the full nonlinear
Eq. (2) around nonspinning Q-ball solutions, using the
initial conditions

Φð0; rÞ ¼ ΦQð0; rÞ þ δe
−ðr−r0Þ2

2σ2r e−isω0
ffiffiffiffiffiffiffiffi
ω2
0
−1

p
r; ð25Þ

∂tΦð0; rÞ ¼ −i½ωQΦQ þ ω0ðΦ −ΦQÞ�ð0; rÞ: ð26Þ

For small enough δ ≪ ΦQð0; 0Þ the nonlinear scattering
results are consistent with the linearized calculations. We
employ a fourth-order finite difference scheme in space and
a standard Runge-Kutta 4 algorithm in time. The results

are summarized in Figs. 2 and 3. Figure 3 shows how a
smooth nearly monochromatic wave packet scatters off and
acquires extra energy. For an incoming wave packet with
ω0 ¼ 3.76, a Fourier transform shows that the scattered
wave packet contains the modes ω− ≈ −2.24 and
ωþ ≈ 3.76, in agreement with the analysis around
Eq. (9) for ω ¼ 3. The calculation of the amplification
factor ZE from time-domain data is straightforward, and the
results are shown in Fig. 2 together with the frequency-
domain prediction. The agreement is remarkable.
The fact that the currents JαQ and JαE are divergenceless,

implies the conservation of both Q charge and energy; so,
any change in Q and E of the scattering states, must be
accompanied by a symmetric change in the Q-ball. Indeed,
our results from full nonlinear evolutions show that, after
the scattering takes place, the remnant relaxes to a
configuration compatible with a new Q-ball with param-
eters such that charge and energy conservation are verified.
This allows us to predict the maximum extractable energy
from these Q-balls. We verified numerically that the entire
family of Q-balls in our test bed model (with g ¼ 1=3) is
absolutely stable (i.e., have E=Q < 1), and their energy
decreases monotonically to E ≈ 5.85 in the limit ω → 1;
this is a qualitative agreement with the analytic approxi-
mation of Ref. [18]. Thus, the maximum extractable energy
for the Q-balls with ωQ ¼ ð0.58; 0.70; 0.76Þ is, respec-
tively, ð88%; 51%; 36%Þ of their initial energy. One can
then—in principle—extract more energy from these objects
than from spinning BHs [19].

FIG. 3. Wave packet scattering off a nonspinning Q-ball with
ωQ ¼ 0.76; the coupling is g ¼ 1=3 and we use initial conditions
with σr ¼ 5, r0 ¼ 100, and ω0 ¼ f−2.24; 3.76g. Upper panel:
energy flux JrEðr ¼ 60Þ as a function of time, with the outgoing
flux enlarged. Lower panel: integrated energy flux Eflux¼R
t
0dtJ

r
Eðr¼60Þ, with an inset showing attenuation (ZE¼−0.022)

for ω ¼ 3 and amplification (ZE ¼ 0.037) for ω ¼ −3. These
results are in excellent agreement with the frequency-domain
analysis (cf. Fig. 2).

FIG. 2. Upper panel: relative energy amplification factor, ZE, of
an incoming mode ϕþ with m ¼ 0 scattering off a nonspinning
Q-ball; the coupling is g ¼ 1=3. The dashed lines are the results
from time-domain simulations. Lower panel: ratio jAoutþ j2=jAinþj2,
which is seen to be ≤ 1 for all ω.
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Other fundamental objects.—The simplicity of the
energy extraction mechanism discussed in this work
indicates that other fundamental objects (like boson
stars [15], Proca stars [20], etc.) might be prone to the
same mechanism. For instance, the extension of the proof
to spherically symmetric Newtonian boson stars is particu-
larly simple. It goes as follows. Consider a four-dimen-
sional complex scalar field Φ of mass μ minimally coupled
to gravity. In the nonrelativistic limit the scalar field Φ ≔
e−iμtΨ= ffiffiffi

μ
p

satisfies the Schrödinger-Poisson system [21]

i∂tΨ ¼ −
1

2μ
∇i∇iΨþ μUΨ; ð27Þ

∇i∇iU ¼ 4πμjΨj2: ð28Þ

Newtonian boson stars are solutions of the form Ψ0 ¼
ψ0ðrÞe−iω0t with 0 < ω0 < μ, and a static gravitational
potential u0ðrÞ, both satisfying regularity at r ¼ 0 and
r ¼ þ∞. Inspired by the Q-ball treatment, it is not hard to
see the following: (1) The linearized system contains time-
periodic coefficients, and all of these are of the form
∝ e−2iω0tΨ�

1 and ∝ e−iω0tU1. (2) This leads to mode mixing
between the states ω− ¼ ω0 − ω1 and ωþ ¼ ω0 þ ω1; so,
the minimal frequency-content solutions Ψ1 must contain
these two modes [cf. Eq. (8)], while U1 is real valued and
has frequencies �ω1. This was also seen, e.g., in
Refs. [21,22]. (3) The current

Jψ ;u ≔ r2ℑ
�
ψ�þ∂rψþ þ ψ−∂rψ

�
−

−
μ

2π
uþ∂ruþ −

μ

2π
u−∂ru−

�
ð29Þ

satisfies ∂rJψ ;u ¼ 0. Regularity at the origin implies
Jψ ;u¼0, and the asymptotic behavior gives
Jψ ;uðr → ∞Þ ∝ P

s¼�ðjAout
s j2 − jAin

s j2Þ. (4) As for the
Q-ball, an incoming state with Ainþ ¼ 0 and ω1 > 0, or
Ain
− ¼ 0 andω1 < 0will necessarily extract energy from the

boson star.
Discussion.—Our results establish that energy extraction

from Q-balls is allowed by a process that does not require
rotation nor any motion in real space, but merely an
interaction with a time-periodic background. As we
showed, there is no superradiance in this process, since
an incoming single state is never enhanced. Instead, this
mechanism bears strong similarities to the blueshift mecha-
nism reported when a wave is trapped within a cavity
whose boundaries oscillate periodically [5–8]. In general,
an interaction of radiation with a time-periodic background
tends to lead to mode mixing, effectively coupling a
discrete set of modes. If initially the radiation has only
support in the lowest frequency (i.e., energy) mode, the
interaction with the background will then redistribute

radiation over the several coupled modes, leading to an
overall energy amplification of radiation powered by
the internal energy of the background. The simplicity of
this argument indicates that other types of fundamental
solitons—expected to be time dependent due to Derrick’s
theorem—might be prone to the same mechanism. We have
showed it explicitly for Newtonian boson stars.
If a continuous family of (stable) soliton solutions exists

(as for Q-balls, boson, and Proca stars) the backreaction of
the scattering process on the soliton is straightforward. For
instance, if we continuously “illuminate” a Q-ball with a
single state ϕþ of frequency ωþ > 1, the deposition of
energy in the object will drive a secular change in the
soliton through a continuous sequence of Q-balls with
increasingly larger energy and charge (i.e., along the thin-
wall limit). The process will eventually saturate if ω− ¼ −1
is attained. Similarly, illuminating a Q-ball with a single
state ϕþ of frequency ωþ < −1 will continuously extract
energy and charge from the object driving the soliton
through a continuous sequence ofQ-balls with increasingly
smaller energy and charge, which saturates if ωþ ¼ −1 is
attained. The evolution picture drawn here is compatible
with our full nonlinear time evolutions of wave packet
scattering. Note, however, that this evolution may be
hindered by the soliton reaching some unstable
configuration.
In the case of superradiance, energy extraction can also be

associated with instabilities when the radiation is confined
and forced to repeatedly interact with the amplifying body
(the cavity can be artificial, arise naturally as part of the
geometry) [4–8,23,24]. However, for the energy extraction
mechanism discussed in this work, it is not as obvious (as it
is for superradiance) that confining the radiation should lead

FIG. 4. Integrated energy flux Eflux ¼ R
t
0 dtJ

r
E at r ¼ 20 for a

wave packet scattering off a nonspinning Q-ball with ωQ ¼ 0.76
inside a cavity; the coupling is g ¼ 1=3 and we use initial
conditions with σr ¼ 5, r0 ¼ 80, and ω0 ¼ f−2.24; 3.76g. We
impose Dirichlet conditions Φ1 ¼ 0 at r ¼ 100 to model the
cavity.
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to an instability. This is because, even if the initial (incom-
ing) state is chosen so that its energy must be necessarily
amplified, the scattered state will be in a mixture of modes
whose energy does not need to be enhanced. Although we
are unable at this point to provide statements of sufficient
generality, we can trap radiation in a cavity with a Q-ball
inside and study numerically its evolution. Our results are
summarized in Fig. 4 for a moderately large cavity.
Interestingly, they indicate that the system relaxes to a state
with a Q-ball that overall has absorbed energy, even when
starting with a state that initially extracts energy from the
soliton (cf. lower panel of Fig. 4). We have not investigated
trapped radiation around fundamental solitons in full gen-
erality, neither have we studied them when orbited by a
pointlike charge, a good proxy for some astrophysical
systems. Is it possible for a soliton to lose energy to an
orbiting pointlike charge, making it out-spiral (something
known as floating orbit)? This and other aspects
remain open.
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