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The large scale limit of the galaxy power spectrum provides a unique window into the early Universe
through a possible detection of scale dependent bias produced by primordial non Gaussianities. On such
large scales, relativistic effects could become important and be confused for a primordial signal. In this
Letter we provide the first consistent estimate of such effects in the observed galaxy power spectrum, and
discuss their possible degeneracy with local primordial non Gaussianities. We also clarify the physical
differences between the two signatures, as revealed by their different sensitivity to the large scale
gravitational potential. Our results indicate that, while relativistic effects could easily account for 10% of
the observed power spectrum, the subset of those with a similar scale dependence to a primordial signal can
be safely ignored for current galaxy surveys, but it will become relevant for future observational programs.
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The distribution of the large scale structure (LSS) of the
Universe encodes a wealth of information about the
statistical properties of the primordial density fluctuations.
In particular, the search for primordial non Gaussianities
(PNG) in LSS data has become a central goal of current
and future observational programs [1], such as DESI [2],
EUCLID [3], SPHEREX [4], and Rubin Observatory [5]. PNG
could be generated by an inflationary phase in the early
Universe, and any detection of PNG would have a
significant impact on our understanding of cosmology.
The LSS is primarily sensitive to the so-called local

PNG, for which the non-Gaussian signature is localized in
the squeezed limit of the primordial curvature bispectrum.
In single field, slow-roll, models of inflation, local PNG
are, for all practical purposes, negligible [6–8], therefore
this entire class of models can be ruled out by a detection.
Conversely, multifield models of inflation generically
predict large local PNG [1,7], and are thus increasingly
constrained by a stronger upper bound.
Local PNG are typically parametrized by a single

number, fNL, defined via ΦpðxÞ ¼ ϕgðxÞ þ fNL½ϕgðxÞ2−
hϕgðxÞ2i�, where Φp is the primordial gravitational poten-
tial, and ϕg is a mean zero Gaussian random field.
Measurements of the anisotropies of the cosmic microwave
background (CMB) have put constraints on local PNG,
fNL ¼ −0.8� 5 [9], and this uncertainty is expected

to shrink by another 50% with upcoming CMB experi-
ments [10]. LSS data are still far from the theoretical
benchmark of fNL ∼Oð1Þ, the most recent analyses reach
σfNL ∼ 20–30 [11–14], but future surveys are expected
to improve these bounds by more than an order of
magnitude [1,4,15–17]. The advantage of LSS surveys
over the CMB is that PNG leave a signature in the two-
point correlation function of biased tracers like galaxies.
Specifically, in the presence of local PNG, the bias relation
between a discrete set of objects and the underlying density
field δm is modified with respect to the one in a Gaussian
universe, becoming δg ∼ b1δm þ fNLbϕΦp [18–21], where
bϕ is an Oð1Þ number for typical luminosity selected
samples, although with large theoretical uncertainties
[22,23]. Through Einstein’s equations, the presence of
the gravitational potential in the above expression implies
that, on large scales, the power spectrum of galaxies
acquires a distinct k−2 signature. A detection of such scale
dependence is then interpreted as a smoking gun of the
presence of local PNG. Given the importance, a measure-
ment of nonzero PNG would have in shaping our under-
standing of the early Universe, it is of utmost importance to
investigate whether these observational fingerprints are
unique or can be mistaken for other physical processes.
Concerning CMB observations, it was long ago realized

that secondary effects, both at last scattering [24,25] and
along the line of sight [26–32], produce a nonvanishing
squeezed limit CMB bispectra, with an amplitude equiv-
alent to fNL ∼ few. This bias had to be removed in the
analysis of Planck data [9]. On the other hand, the LSS
community has been heavily debating for more than a
decade whether the scale dependent bias induced by local
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PNG can be mimicked by other effects (see, e.g., [8,33–37]
for recent results). In particular, most of the attention is
directed towards the so-called projection, or general rela-
tivistic (GR), effects introduced by the mapping between
the observed coordinates of an object on the sky and its true
position on our past light cone. Examples are the integrated
Sachs-Wolfe (ISW) effect, weak lensing, or projections on
the curved sky.
The goal of this Letter is to resolve this debate about the

large scale limit of the observed power spectrum for any
tracer of the LSS of the Universe. We think most of the
confusion arises because computations are often not
performed at the level of observables, but rather in terms
of quantities and scales which are not the ones measured
by the detectors and telescopes. Working at the level of
the observed power spectrum of galaxies will resolve any
possible ambiguities.
Our main result is that projection effects generate, on

large scales, an observed power spectrum with a similar
scale dependence to the one a local PNG signal with
bϕfNL ∼ 1 would produce. This, however, does not imply,
as often conflated in the literature, that projection effects
generate a coupling between the large scale gravitational
potential and small scales physics. In [37] we have indeed
shown that the observed power spectrum and correlation
functions do not depend on the large scale value of the
gravitational potential and its gradient: if we artificially
move the observed patch of the sky into a constant
gravitational field nothing will change, nor it will in a
constant gradient. The assumptions that go into the above
result are the same ones behind Maldacena’s consistency
relation [6], its extensions [38], and the existence of
Weinberg’s adiabatic modes [39], namely, general relativ-
ity, the Gaussianity and adiabaticity of the initial condi-
tions, and the absence of anisotropic stresses on large
scales. Notice that the same conditions have been employed
by the authors of [34] to show the absence of scale
dependent bias in a Gaussian Universe. If local PNG are
nonzero, then local physics responds to the presence of a
long wavelength gravitational potential, through scale
dependent bias and through super sample effects, which
are nonzero even for dark matter [37,40].
Local PNG and projection effects thus leave a similar

imprint on large enough scales, but they remain physically
distinct. Given a set of observations at a physical scale s,
the latter are not sensitive to the gravitational potential with
wavelength k−1 < s, we say in the infrared (IR), while the
former are, with an amplitude proportional to fNL. A
consequence of the aforementioned result is that, in the
absence of local PNG, no new additional parameter is
required to model any k−2-like terms, which are just a
function of all the other cosmological and nuisance
parameters of the model. One of the goals of this Letter
is to investigate how the amplitude of these terms depends
on the model parameters.

The observed power spectrum.—In order to determine if
projection effects could mimic the signature of local PNG
in LSS observables, we need to connect the observed power
spectrum to the theoretical model that includes such terms.
This has been done in Ref. [37], of which we now
summarize the main results. The starting point is the
well-known expression for the observed number counts
[see Eq. (A1)] [41–44]. Crucially, this expression contains
fields evaluated at the observer’s position, which are
required by gauge invariance, and are instrumental for
the cancellation of the IR divergences [37,45,46]. We then
need an estimator for the three-dimensional power spec-
trum. In this Letter we take it to be the FKP estimator [47]

P̂0ðkÞ ¼ A−1
Z

dΩk̂

4π

Z
d3s1d3s2Δðs1ÞΔðs2Þ

×Wðs1ÞWðs2Þeik·ðs1−s2Þ; ð1Þ

where A is a normalization constant, Δðs1;2Þ denotes the
observed galaxy density contrast at position s1;2 and WðsÞ
is the survey window function. Other multipoles can be
similarly measured, but in this Letter we focus only on the
monopole, since it contains almost all the PNG signal if the
other cosmological parameters are fixed [11]. The expect-
ation value of the FKP estimator then reads

hP̂0ðkÞi ¼
X
l

1

2lþ 1

Z
dss2ξlðs; zeffÞj0ðksÞQlðsÞ; ð2Þ

where ξlðs; zeffÞ is the multipole expansion of the full-sky
two-point correlation function, ξðs ¼ js2 − s1j; s1; ŝ · ŝ1Þ≡
hΔðs1ÞΔðs2Þi, and the Ql’s are the multipoles of the two-
point function of the survey mask [48]. In the above
equation we made the further assumption that, despite
the possible large extent in redshift of the survey, the
redshift dependence of the clustering can be captured by
evaluating the model at an effective redshift, zeff , defined by
the radial selection function [37,49].
From Eq. (2) we stress that the full-sky correlation

function (see Appendix for more details) is the only
physical ingredient needed to compute the observed power
spectrum. The correlation function, and thus the observed
power spectrum, is dominated, on all scales, by the terms
proportional to the matter density field and the velocity
gradients [redshift space distortions (RSD)]. In the remain-
der of this Letter we will refer to the latter as the
Newtonian term.
By dimensional analysis of Eq. (A1), contributions to the

observed galaxy number counts proportional to the gravi-
tational potential and to its time derivatives scale at least as
ðH=kÞ2 compared to the leading terms, where H is the
conformal Hubble parameter, and could therefore contami-
nate a search for local PNG. However, as anticipated in
the introduction, the latter physically correspond to a
correlation between small scale physics and the large scale
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gravitational potential, while the former are insensitive to
the potentials in the IR of a given scale. This result, first
proven in [37] (but see Ref. [52] for earlier results for the
correlation function), relies on the existence of the con-
sistency relations and of the Weinberg’s adiabatic mode,
and it holds only for the observed correlation function or
power spectrum, not for the individual terms that contribute
to the predictions. For instance, the part of the observed
correlation function proportional to two powers of the
gravitational potential, hΦðs1ÞΦðs2Þi, diverges when more
and more modes with wavelength k ≪ 1=s are included
in the calculation, but this divergence is canceled exactly
by other contributions, independently of the value of the
cosmological and nuisance parameters. We stress that the
cancellation happens even in the absence of divergences, as
this is purely a consequence of the decoupling between the
small scale dynamics and the large scale potentials.
Results and discussion.—The last missing ingredients in

Eq. (2) are the survey specifications, namely, the angular
footprint and radial selection function. For simplicity,
we assume our galaxy sample covers half of the sky from
zmin ¼ 1.0 to zmax ¼ 1.5 [53]. This corresponds to a
volume of V ¼ 34ðGpc=hÞ3 [54]. We also need to specify
the values of the galaxy bias b1, the evolution bias fevo, and
the magnification bias sb. Our fiducial model has b1 ¼ 1.5
and fevo ¼ sb ¼ 0, but we will also show results when the
model parameters are allowed to vary.
All numerical results are obtained with the public code

GaPSE, which is released together with this Letter [55,59].
Unless otherwise noted, all numerical calculations assume
a best-fit Planck 2018 cosmology [60].
The upper panel of Fig. 1 shows the various terms

contributing to the observed power spectrum. The blue line
shows the full result, which is dominated by the Newtonian
terms, while the orange dashed line shows the sum of all
GR corrections, the latter dominated by lensing and wide-
angle effects. The two vertical lines indicate the largest
scale probed by our hypothetical survey and the matter-
radiation equality scale [61], respectively, with continuous
and dashed gray lines. We find that, for typical values of
the bias parameters, the projection effects are below 10% of
the total signal in the monopole, much smaller than the
expected cosmic variance for the volume considered.
To isolate the terms that could mimic a true local PNG

signal we then remove from the total expression of the
galaxy power spectrum the contributions proportional to the
dark matter density field and its inverse gradients. These are
all the auto- and cross-correlations between the Newtonian
term and the lensing term, plus their cross-correlation with
the Doppler term. We show the remaining contributions
as the green dotted line in the upper panel of Fig. 1. For
comparison, we added, in dot-dashed red, the expected local
PNG signal with bϕfNL ¼ 1. Note that when subtracting the
Newtonian terms, we include wide-angle effects, which
can be easily calculated following [11,48,62,63]. This choice

is motivated by the leakage, introduced by the survey
mask [48], of the dipole of the correlation function into
the observed power spectrum monopole. This term scales as
k−1 and should be removed to isolate the contamination to a
local PNG estimate.
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FIG. 1. Linear theory prediction for the observed galaxy power
spectrum. We fixed b1 ¼ 1.5 and fevo ¼ sb ¼ 0, and consider a
survey between zmin ¼ 1 and zmax ¼ 1.5 covering half of the sky.
The two vertical lines correspond to the survey boundary and the
equality scale, shown with continuous and dashed lines, respec-
tively. Upper panel: The monopole of the power spectrum P0ðkÞ
as a function of scale k. The continuous blue line shows the full
result, the dashed orange one shows the sum of all the GR
corrections, the dotted green shows the subset of those with an
approximate k−2 scaling, and the dot-dashed red line corresponds
to a bϕfNL ¼ 1 local PNG signal. Middle panel: the ratio between
the sum of all the projection effects and the full signal. Lower
panel: The ratio between the sum of all the GR terms with a k−2

scaling and the local PNG signal.
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For our reference model with sb ¼ fevo ¼ 0 we see that,
on large scales, projection effects have a similar shape to a
bϕfNL ∼ 1 signal. The degeneracy between the two is not
perfect, due to the presence of the cross-correlation
between the ISW effect and the Newtonian term, and the
one between lensing and gravitational potentials. Both
effects do not scale exactly as k−2 as a consequence of
the integral along the line of sight.
It is worth stressing that our findings do not imply that

projection effects should be ignored until a sensitivity to
fNL ∼ 1 is reached. In an analysis of real data the
importance of projection effects is estimated simultane-
ously with local PNG and other cosmological parameters,
not by simply removing the contamination as discussed
above. The final constraint will be the result of the
complicated interplay between the signal one is trying to
measure and the uncertainty, i.e., the cosmic variance, in
the measurements themselves. If projection effects, like
lensing or wide-angle corrections, can be measured with
enough signal to noise, not including them in the modeling
could actually result in a biased estimate of the amplitude of
local PNG. A large positive value of fNL could partially
compensate, given the statistical uncertainties, for the
missing terms in the theoretical model. A quantitative
study of this problem would require the computation of
the power spectrum covariance in the presence of GR
effects. This could have a non-negligible effect on the final
constraint on fNL, since the latter improves very quickly as
larger and larger scales are included in the analysis, due to
its supposedly unique dependence on wave numbers, which
is now shared with projection effects. An exact implemen-
tation of the analytical power spectrum covariance is
still missing in the literature, with approximations of the
full result only available in the flat sky limit and on
scales where the window function is subdominant [64].
Computing the exact analytical covariance in the presence
of GR effects thus goes beyond the scope of this Letter, but
we intend to return to it in forthcoming work. Tightly
related to the estimate of the power spectrum covariance is
the effect of observational systematic effects, like galactic
foregrounds, which could severely limit, or even bias, the
constraint on fNL, see, e.g., Ref. [65] for a recent inves-
tigation. A discussion of similar issues in projected galaxy
clustering can be found in [66,67].
It is also important to keep in mind that the equivalent

value of local PNG induced by projection effects is
sensitive to the volume probed by the survey, and to its
angular and radial selection functions. While in this Letter
we focused on a simple toy model for the window function,
our public code GaPSE can handle arbitrary survey
geometries. We conclude this section by investigating,
for different values of sb, fevo, and b1, the amplitude of
the GR contribution to the power spectrum monopole and
the amplitude of the equivalent local PNG signal produced
by projection effects. The former is defined as the average,

on scales between k ¼ 0.004 h=Mpc and the survey
boundary, of the GR corrections to the plane parallel
expression, while the latter is the average, over the same
scales, of the ratio between the approximate k−2 GR
contributions and the local PNG signal with bϕfNL ¼ 1.
The result is presented in Fig. 2. The blue line corresponds
to varying fevo while keeping sb and b1 at their fiducial
value, varying sb is shown in orange, and varying b1
in green. We see that the size of the projection effects is
very insensitive to the value of fevo, and it decreases
when the linear bias increases. This was expected since
the Newtonian term scales like b21. Projection effects are
instead more sensitive to the value of sb. For redshifts
z > 1, the autocorrelation of the lensing contribution
quickly dominates over the other terms, and it scales
approximately like 4s2b. However, a large value of magni-
fication bias, sb > 1, is currently disfavored by the
models of the luminosity function for DESI and Euclid
galaxies [51,68,69].
Similar conclusions apply to the equivalent PNG ampli-

tude, which is only mildly dependent on fevo and b1, and it
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FIG. 2. Upper panel: The average size of the contribution of
projection effects to the observed monopole of the power
spectrum, as a function of the model parameters. We vary one
parameter at the time and keep the others fixed to the fiducial
value in Fig. 1. The blue line corresponds to changing only fevo,
while the orange dashed and green dot-dashed ones to varying sb
and b1, respectively. Lower panel: The equivalent amplitude of
the local PNG signal, defined as the ratio of a bϕfNL ¼ 1 term to
the GR contributions scaling as k−2. For both plots the average is
computed by taking the mean of the corresponding quantity
between k ¼ 0.004 h=Mpc and the survey boundary.
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roughly corresponds to a bϕfNL ¼ 1 signal. Also in this
case we see a stronger dependence on the value of sb,
although it is still restricted to jbϕfNLj ≲ 1. For large value
of sb, the cross-correlation between the ISWand the lensing
term dominates the equivalent local PNG signal, implying
the scaling is very much different than k−2. Our findings are
qualitatively in agreement with [70,71], however a proper
comparison is not possible since the estimates of the GR
corrections in these works do not include a window
function, the effect of the terms evaluated at the observer’s
position, and of several other possibly divergent terms. It
cannot be emphasized enough that only by including all
the contributions can we guarantee the robustness of the
effective value of local PNG generated by projection
effects.
Conclusions and future directions.—In this Letter we

studied the large scale limit of the observed galaxy power
spectrum. We provided the first consistent comparison
between a local PNG signal and projection effects for
three-dimensional observables in Fourier space, and we
robustly conclude that GR effects could produce an
equivalent local PNG signal with bϕfNL ¼ 1. We stress
that our findings apply for any tracer of the LSS of the
Universe, as long as it admits a perturbative bias expansion
on large enough scales. Our results have implications for

future observational programs aiming at σðfNLÞ≲ 1. For
these surveys, the accuracy at which we will be able to
measure the amplitude of local PNG will depend on the
uncertainty on sb and fevo, whose effect has to be included
in order to not bias the constraints. In addition, projection
effects will now contribute to the covariance, reducing the
improvement in the determination of fNL as the volume of
the survey increases.
While the analysis in this Letter focused on the power

spectrum, we expect our results to carry over to higher point
statistics, e.g. the bispectrum, for which the study of
projection effects is still ongoing [72–85]. We plan to
explore these directions in future work.

We thank Oliver Philcox for comments on an earlier
version of the draft. E. C. would like to thank Marko
Simonovic for discussion on the squeezed limit of the CMB
bispectrum.

Appendix: The relativistic galaxy number counts.—
The correlation function can be easily computed from
the expression for the fully relativistic number counts, as
first studied to linear order in perturbation theory in
Refs. [41–44]. Including also the observer terms, the
galaxy number counts read as [35,37,52]

Δðn; zÞ ¼ fb1Dm þH−1
∂rvkg þ

�
5sb − 2

2

Z
r

0

dr0
r − r0

rr0
ΔΩðΨþΦÞ

�
þ fRðvk − vkoÞ − ð2 − 5sbÞvkog

þ
��

R −
2 − 5sb
H0r

�
H0Vo þ ðRþ 1ÞΨ −RΨo þ ð5sb − 2ÞΦþ Φ̇H−1 þ ðfevo − 3ÞHV

�

þ
�
2 − 5sb

r

Z
r

0

ðΨþΦÞdr0 þR
Z

r

0

ðΨ̇þ Φ̇Þdr0
�
; ðA1Þ

where we have introduced the coefficient

R ¼ 5sb þ
2 − 5sb
Hr

þ Ḣ
H2

− fevo; ðA2Þ

and three bias factors: the linear galaxy bias b1, the
magnification bias sb, and the evolution bias fevo. We
have grouped the different effects with curly brackets in the
following order: standard density plus RSD, lensing con-
vergence, Doppler, local gravitational potentials and inte-
grated gravitational potentials. In the above expression,Dm
is the matter density fluctuation in the comoving gauge, Ψ
and Φ are the Bardeen’s potentials, and V is the velocity
potential. Quantities evaluated at the observer’s position
carry the subscript ðÞo.
In full generality, the full-sky 2-point correlation func-

tion can be expressed as

ξOO0 ðs1; s2; ŝ1 · ŝ2Þ ¼
Z

dq
2π2

q2PðqÞ
Z

s1

0

dχ1

×
Z

s2

0

dχ2DOðq; s1; χ1ÞDO0 ðq; s2; χ2Þ

× j0

�
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ21 þ χ22 − 2χ1χ2ŝ1 · ŝ2

q �
;

ðA3Þ

where DO is the differential operator associated to the
perturbationO in eq. (A1), through the dictionary provided
in Ref. [37].
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