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We make the case that there can be no low-redshift solution to the H0 tension. To robustly answer this
question, we use a very flexible parametrization for the dark energy equation of state such that every
cosmological distance still allowed by data exists within this prior volume. To then answer whether there
exists a satisfactory solution to the H0 tension within this comprehensive parametrization, we constrained
the parametric form using different partitions of the Planck cosmic microwave background, SDSS-IV/
eBOSS DR16 baryon acoustic oscillation, and Pantheon supernova datasets. When constrained by just the
cosmic microwave background dataset, there exists a set of equations of state which yields high H0 values,
but these equations of state are ruled out by the combination of the supernova and baryon acoustic
oscillation datasets. In other words, the constraint from the cosmic microwave background, baryon acoustic
oscillation, and supernova datasets together does not allow for high H0 values and converges around an
equation of state consistent with a cosmological constant. Thus, since this very flexible parametrization
does not offer a solution to the H0 tension, there can be no solution to the H0 tension that adds physics at
only low redshifts. This is directly related to the expansion history of the Universe and its geometrical
properties and would include models beyond those parametrized by wðzÞ.
DOI: 10.1103/PhysRevLett.131.111002

Introduction.—Finally with the precision era of cosmol-
ogy we can test the theoretical underpinnings of cold dark
matter (ΛCDM), the concordance model of cosmology.
That multiple different probes and datasets yield percent
level constraints on various cosmological parameters have
prompted the community to check the most basic astro-
physical and theoretical underpinnings of these cosmologi-
cal measurements. Indeed, the emergence of the often
discussed “H0 tension” has reached a level of precision that
demands some change in our understanding of the
Universe.
The H0 tension is a mismatch in the value of the present

Hubble rate (H0) as directly measured by the Cepheid
calibration of supernova (SN) distances [1–3], and the
value as inferred from a ΛCDM-based inference of the
cosmic microwave background (CMB) [4]. This mismatch
has reached a statistical significance of over 5σ [5].
As other methods of calibrating SN distances yield a

much reduced tension with the CMB, [6] a systematic error
in the Cepheid calibration has not been ruled out. The
question of systematics will have to wait until additional
probes reach comparable precision [7–9]. However, a new
physics explanation is the more exciting possibility, as
evidenced by the shear number of papers written that
propose solutions. Though the number of proposed sol-
utions is large, they can often be sorted into two (not

mutually exclusive) categories, based on whether the new
physics plays a role at high redshift or at low redshift
[10,11]. By high and low redshift, we specifically mean
prerecombination and postrecombination, respectively.
Examples of physics at low redshift include curvature

[12–14], evolving dark energy [15–22], dark matter-dark
energy interactions [23] among others [24]. Examples of
physics at high redshift include extra radiation [25], early
dark energy [26–28], interacting neutrinos [29,30], and
features in the primordial power spectrum [31–34], among
others. Two of many (see Refs. [11,35] and references
therein) such models that have been proposed to solve the
H0 tension are the transitional dark energy (TDE) model
[19] and the phenomenologically emergent dark energy
(PEDE) model [20]. These models are illustrative examples
for what kind of features a model (with new low-redshift
physics) needs to have to compose a satisfactory solution to
the H0 tension and why they ultimately fail.
There are a few a priori compelling reasons to look to

physics at low redshift for a solution to the “H0 tension.”
Indeed, since the ΛCDM-based inference of H0 from the
CMB is a projection in over 3 orders of magnitude in the
scale factor, and since the Λ part of ΛCDM is theoretically
a mystery, one might even expect some sort of tension to
arise. There is also a practical utility to first looking at low-
redshift physics for a solution. For example, the predictions
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of ΛCDM are remarkably consistent with the observed
angular power spectrum. So if new physics were to only
enter at low redshift then, such low-redshift new physics
would only have to contend with purely geometric degen-
eracies in the CMB likelihoods, e.g., making sure θs re-
mains invariant, and thus the acoustic peaks of the CMB are
not shifted [15,36].
The guard rails of the tension, the SN, and baryon

acoustic oscillation (BAO) datasets do not constrain H0 on
their own but map out the shape of the expansion history
between z ¼ 0 and z ∼ 2.5 and so are crucial for testing any
low-redshift solution [37].
Previous works, such as Camarena and Marra [38] and

Efstathiou [39], have shown that a confusion about what
physics is inferred if one uses the SH0ES information as a
prior onH0 or a prior onMB can disfavor specific classes of
very low-redshift solutions to the H0 tension. In contrast
and complimentary to these works, we seek to be more
general and rule out all potential low-redshift solutions to
the H0 tension by whether or not they fit the entirety of
cosmological datasets.
Despite these a priori motivations for low-redshift

explanations for the H0 tension, in this Letter we will
demonstrate that low-redshift solutions as a class are
insufficient to provide a satisfactory solution to the H0

tension. To do this we will employ a broad, flexible para-
metrization of the dark energy equation of state [wðzÞ] that
would bracket every potential low-redshift solution. That is
every set of cosmological distances that are still allowed by
the data would correspond to a wðzÞ within this para-
metrization. Thus, if there is no satisfactory solution to the
H0 tension within this parametrization, then there is no
satisfactory low-redshift solution. We will additionally
discuss intuitively why these results should be expected
based on low-redshift solutions’ inability to satisfy a
number of “tension triangles.”
Datasets.—There are four key datasets that we use in this

analysis, the Planck CMB datset [4],the SDSS-IV/eBOSS
BAO dataset [40], the Pantheon SN dataset [41], and we
compare results from these datasets with the SH0ESH0 [5]
constraint.
The SH0ES dataset [5] includes observations of

42 Cepheids in host galaxies of SN at z < 0.01. The
Cepheids, whose distances are inferred from a period-
luminosity relationship, are in turn calibrated using geo-
metric parallaxes from Gaia EDR3, masers in NGC 4258,
and detached eclipsing binaries in the Large Magellanic
Cloud. Using calibrated Cepheids to measure the distance to
local SN amounts to a calibration of the SN luminosity, often
parametrized by the B-band absolute magnitudeMB, which
in turn amounts to a constraint on H0 ¼ 73.04� 1.04.
Type Ia SN are useful for measuring cosmological

distances since they are empirically assumed to be stand-
ardizable candles. That is, SN are thought to have the same
intrinsic luminosity once various properties of the SNs’

light-curves (e.g., the stretch and color) are properly
calibrated as well as properties of the host galaxy. Since
this intrinsic luminosity, parametrized by MB, is unknown,
and since it is degeneratewithH0, one needs an independent
anchor like Cepheids to complete the calibration. Thus, on
their own,measuring the relative brightness of a compilation
of SN can yield information about only their relative
distances and cannot measure H0. The publicly released
Pantheon SN dataset is composed of 1048 Type Ia SN
between z ¼ 0.01 and z ¼ 2.3 [41], and the calibration of
the SN light-curve parameters (namely notMB) has already
been performed, and the corresponding uncertainties are
included as a systematic component to the total covariance
matrix. MB is varied in our analysis whenever we include
this dataset.
The SDSS-IV/eBOSS DR16 BAO dataset measures the

positions and redshifts of galaxies and uses such catalogs to
reconstruct the correlation function of galaxies [40]. This
correlation function contains a “BAO feature” which is an
overdensity of power at the drag scale rs. Since the true
distances to these galaxies are unknown, the reconstruction
of the position of the BAO feature has to be done in a
dimensionless, unanchored space, where the peak is found
at a position of ∼100h−1 Mpc. Thus, using these recon-
structed correlation functions to measure cosmological dis-
tances returns constraints on the Hubble distance,DHðzÞ ¼
c=HðzÞ, and the angular diameter distance DMðzÞ, both
relative to rs.
The Planck satellite [4] measures the anisotropies in the

temperature and polarization of the CMB.We use the “TT,“
“TE,” and “EE” parts of the Planck 2018 dataset. In the
context of analyzing solutions to the H0 tension that only
include new physics at low redshift and correspondingly
have identical physics to ΛCDM at high redshift, the CMB
primarily constrains any new low-redshift physics via
geometric degeneracies [19]. For instance, changing H0

induces a phase shift in the CMB’s acoustic peaks [32]. In
such a case, the information contained in the CMB can be
summarized as constraints in the Hubble parameter at an
angular diameter distance to the surface of last scattering
Hðz�Þ and DAðz�Þ.
Results.—In the Appendix, we have demonstrated that

the Chebyshev parametrization (Crossing function) should
include any potential low-redshift solution to the H0

tension should one exist; we now test whether one does
actually exist. To do this, we constrain the Chebyshev
parametrization using the CMBþ BAOþ SN datasets and
compute the posterior of H0. If the posterior from the joint
constraint from the CMBþ BAOþ SN datasets spans the
H0 constraint from SH0ES, then, with this model, the joint
CMBþ BAOþ SN datasets would not be in tension with
the SH0ES dataset. Then we would properly calculate a
joint CMB+BAO+SN+H0 constraint and conclude that the
Chebyshev parametrization offers a satisfactory solution to
theH0 tension. Conversely, if the constraint onH0 from the
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joint CMBþ BAOþ SN datasets is still in tension, then
we do not calculate a joint constraint with the SH0ES H0

constraint as the results would be meaningless. The results
of this test are shown in green in Fig. 7. Unfortunately, we
can see in that figure that the SH0ES constraint lies entirely
outside posterior predictive distributions for the Chebyshev
model using the CMBþ BAOþ SN dataset. Indeed, we
find that H0 ¼ 68.08� 0.97 km sec−1Mpc−1 (see Fig. 1),
which relaxes the tension but does not offer a satisfying
solution. Thus the Chebyshev parametrization does not
solve the H0 tension, and by extension, no instance of new
physics that only plays a role at low redshift would solve
the H0 tension.
In Fig. 2 we see another way to show both the flexibility

of the Chebyshev parametrization and the fact that the
CMBþ BAOþ SN datasets constrain it well enough to
disfavor any new physics beyond wðzÞ ¼ −1 as a solution

to the H0 tension. The blue curves in Fig. 2 are wðzÞ
functions drawn from the posterior of the Chebyshev
parametrization constrained by the CMB+H0 dataset.
The takeaway from this distribution is the variety of
wðzÞ functions that can achieve a H0 value consistent with
the SH0ES constraint. The green curves are functions from
the posterior of the Chebyshev parametrization constrained
by the CMBþ BAOþ SN dataset. That these curves
converge around wðzÞ ¼ −1 shows that the CMBþ
BAOþ SN dataset shows no preference for any deviation
fro ΛCDM. There is a lot of flexibility still allowed in the
phantom regime especially above z > 1. This is, after some
thought a rather obvious point. There are two effects: above
z > 1 the data become less constraining for both datasets so
one can observe an increased scatter in DHðzÞ and DMðzÞ,
but also, above z > 1 the dark energy is becoming less of
the dominant component of the expansion rate, and so the
dynamics of its equation of state is less relevant for the fit.
Indeed, for the same dynamics of wðz ¼ 0Þ, wðz ¼ 2Þ can
vary from wðz ¼ 2Þ ¼ −1 to wðz ¼ 2Þ ¼ −2 with only a
change in the log likelihood of ∼0.1.
Discussion.—In this section we discuss why low-redshift

solutions to the H0 solution are insufficient and seek to
develop intuition about what features a successful solution
to the H0 tension would satisfy.
Any proposed solution to the H0 tension is a prediction

that the proposed extended parameters are correlated with a
high H0 value. In Fig. 3, we see how the extended
parameters of the Chebyshev model are correlated with
the standard ΛCDMmodel. This figure shows the posterior
for the Chebyshev model using the joint CMBþ BAOþ
SN dataset. The Chebyshev parametrization is complicated

FIG. 1. 1D posterior of H0 from the joint CMBþ BAOþ SN
constraint on the Chebyshev parametrization, along with the
SH0ES result for comparison.

FIG. 2. PPD for wðzÞ from the CMBþ H0 constraint in blue
and from the CMBþ BAO þ SN constraint in green. The black
line indicates wðzÞ ¼ −1, the ΛCDM equation of state.

FIG. 3. Constraints on [wðz ¼ 0Þ] and Ωm from the Chebyshev
model using the CMBþ SNþ BAO datasets. The red contours
correspond to the 1 and 2-σ confidence levels. The individual
points are samples from the MCMC chain and the color of each
point corresponds to the H0 value. The color gradient demon-
strates the correlation between the parameters of the shape of the
Hubble function and that the SH0ES-preferred H0 values are
beyond the region allowed by the other datasets.
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but the important part of it when fitting the CMBþ BAOþ
SN dataset is wðz ¼ 0Þ, the value of the equation of state
that is most stringently constrained by the data (the SN data
are very dense around z ∼ 0.1). So for this parametrization,
a high H0 value requires wðz ¼ 0Þ < −1, and at the same
time a high H0 value requires a low Ωm value to satisfy the
constraint on Ωmh2 from the CMB. Especially taken
together, a low wðz ¼ 0Þ value and a low Ωm value
make a poor fit to the SN data which drive the fit toward
wðz ¼ 0Þ ¼ −1 and Ωm ∼ 0.3. So it is ultimately the SN
constraint that rules out much of the Chebyshev para-
metrization’s extended parameter space.
Shown in Fig. 4 are constraints for the Chebyshev model

using the CMB (gray), the BAOþ SN (olive), and CMBþ
BAOþ SN (blue) and for the ΛCDM model using the
CMB (red) and BAOþ SN (navy). One might look at this
triangle plot and think there exists a point in parameter
space where the gray overlaps the olive which overlaps the
green, and thus there would exist a solution to the H0

tension. However, these plots are a projection of a large
dimensional posterior onto two dimensions, and in this
higher dimensional posterior, there is no overlap. The
beyond-ΛCDM arameters that expand the Planck posterior
toward the SH0ES constraint are different from the ones
that expand the BAOþ SN posterior. For the ΛCDM
constraints, the CMB, BAOþ SN, and SH0ES constraints
create a “tension triangle” [25], which results from the three
constraints never overlapping at any one point. This tension
triangle evidences the need to modify rs as part of solving
theH0 tension. Considering that the Chebyshev constraints
on the CMB and BAOþ SN datasets expand toward the
SH0ES constraint, one might conclude the modifying rs is,
in fact, not needed. Indeed, the Chebyshev parametrization
breaks the degeneracy between rs and H0. However, the
full CMBþ BAOþ SN constraint for the Chebyshev

model shrinks away from the SH0ES constraint, indicating
the expanded parameter space does not alleviate the need
for modifying rs.
As with Figs. 4 and 5 shows that the CMB, BAOþ SN,

and SH0ES constraints create a tension triangle also in the
parameters H0 and Ωm. Such a tension triangle has been
advanced as a reason why simply modifying rs cannot fully
resolve the H0 tension [42]. From the CMB, the parameter
Ωmh2 can be measured independently of low-redshift
physics. This fact is why the Chebyshev constraint from
the CMB lies along the line of degeneracy Ωmh2 being a
constant. The flexible Chebyshev parametrization breaks
any degeneracy between Ωmh2 and H0 that exists in the
ΛCDMmodel. A similar story unfolds betweenH0 andΩm
as with H0 and rs. Between the ΛCDM fits there is no
parameter where the CMB, BAOþ SN, and SH0ES con-
straints overlap. Even relaxing the CMB constraint via the
Chebyshev model only creates a narrow overlapping region
at the edge of the 2σ region of each of the constraints. When
the BAOþ SN constraint is relaxed via the Chebyshev
model, there is a large region where the three constraints
overlap; however, when we look at the Chebyshev CMBþ
BAOþ SN constraint, it does not overlap with the SH0ES
constraint, because the region of the extended parameter
space that allowed the CMB constraint to expand toward
larger H0 values is different from the region that allowed
the BAOþ SN constraint to expand toward lower Ωm
values.

To fit both the H0 and CMB constraints, a successful
model that adds physics at low redshift must have a faster-
than-ΛCDM expansion history at low redshift and a slower-
than-ΛCDM expansion history at high redshift. The sim-
plest instance of this feature is a purely phantom wðzÞ. To
further fit the SN well, the model would then need to
account for the fact the CMB+H0 constraint is pulling Ωm
to lower values. To counteract this effect, the wðzÞ can
transition to a quintessence regime where the transition is

FIG. 5. As Fig. 4 but for H0 − Ωm.FIG. 4. 1 and 2σ constraints on H0 − rs for the ΛCDM and
Chebyshev models using the CMB (red and gray, respectively),
BAOþ SN (navy and olive), and CMBþ BAO þ SN (blue)
datasets. For reference, we include the SH0ES constraint in green.
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constrained to be located at z > 1, which is where the SN
were less constraining and the BAO constraint did not
extend to at the time. Such a transition from a phantom to a
quintessent regime is what gave the TDE model its name.
However, for models like TDE, it is ultimately the BAO
constraints that the model fails to explain. Particularly the
high-redshift (z > 1) BAO measurements constrainHðzÞ to
be around ΛCDM values where the transition was pre-
viously happening. Those BAO measurements rule out the
final slice of parameter space that allowed the TDE model
to work as a satisfactory solution to the H0 tension.
Conclusions.—Even with a very flexible model, such as

the Chebyshev parametrization including curvature, that
brackets the entirety of the relevant space of model uncer-
tainties and can fit every relevant cosmological distance,
there exists no point in the extended parameter space that
adequately explains the H0 tension. Thus, since this model
brackets the entirety of the low-redshift space of model
uncertainties, its inability to find a solution to theH0 tension
indicates that there is no satisfactory solution to the H0

tension that adds physics at only low redshift. This argument
holds even for models of low-redshift physics that are not
explicitly parametrized by wðzÞ such as dark matter (DM)
dark energy (DE) interactions or modified gravity (MG).
Thus, the community should look for high-redshift mod-
ifications to the standard ΛCDMmodel, with its power-law
form of the primordial power spectrum, to provide a
satisfying new physics solution to the H0 tension.
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Appendix: Chebyshev model and crossing statistics.—
Since the datasets in question are primarily geometrical,
we only need to parametrize the Friedmann equation in
order to explain them,

h2ðzÞ ¼ Ωmð1þ zÞ3 þ Ωkð1þ zÞ2 þΩDEðzÞ þ ΩrðzÞ;
ðA1Þ

where hðzÞ ¼ HðzÞ=H0, Ωm is the matter density, Ωk is
the curvature, ΩrðzÞ is the radiation density which is
fixed to be the fiducial Planck ΛCDM values, and
ΩDEðzÞ is the dark energy density. An evolving dark
energy density is related to the dark energy equation of
state wðzÞ, thusly,

ΩDEðzÞ ¼ ½1 −Ωm − Ωk −Ωrð0Þ� exp
�
3

Z
dz

1þ wðzÞ
1þ z

�
:

ðA2Þ

We are implicitly assuming that even though the dark
energy density evolves, the dark energy does not
contribute to clustering, and the sound speed of dark
energy can be set such that is a valid approximation.
Thus the new physics that we are testing at low redshift
amounts to a wðzÞ different from −1, specifically

wðzÞ ¼ −
X3
0

ciTiðxÞ; x ¼ logð1þ zÞ= logð1þ z�Þ;

ðA3Þ

where TiðxÞ are the Chebyshev polynomials and ci are
coefficients that are varied in our analysis. We model
wðzÞ up to z�, the redshift of the surface of last
scattering, in order to model any potential new physics
that plays a role after recombination. We could use higher
order Chebyshev polynomials but we find four are
sufficiently flexible. Previously, Chebyshev polynomials
have been used in the context of the Crossing statistic,
a technique used to check the internal consistency of a
dataset as well as searching for deviation from a
theoretical model or a parametric form [46–48]. In this
Letter, Chebyshev polynomials act as Crossing functions
to go beyond the flexibility of the standard ΛCDM model
fitting combinations of cosmological observations. In
total, we vary the standard six parameters of the ΛCDM
model (θs, Ωbh2, Ωch2, τ, As, ns), curvature Ωk, as well
as each of c1;2;3;4. Further, we also vary the nuisance
parameter MB when we include the SN likelihood. We
adopt flat priors on each of these parameters.
There are two crucial properties that we need to consider

to have a parametric form that can be inclusive enough to
cover various forms of the evolving dark energy models.
These two are orthogonality and convergence within the
limited range. Orthogonality allows us to cover a wide
range of behaviors with minimum number of coefficients
(degrees of freedom), and the convergence within a limited
range is crucial for us so we can use the functional form to
fit cosmology data that has a clear redshift range. It is true
that other orthogonal polynomials can be used here, but
they should also satisfy the property of convergence in a
limited range. While one can use the Gram-Schmidt
process to generate a set of orthogonal bases tailored
appropriately for the case being studied, Chebyshev poly-
nomials naturally have these crucial characteristics that
allow us to use them trivially. Further supporting the reason
we used Chebyshev polynomials in this Letter is that we
have found them to be an efficient and precise basis for
reconstruction of the Universe’s expansion history in past
works [46–48].
In general, introducing a large number of extra model

parameters is not recommended in the context of model
selection and parameter estimation, since interpreting the
2D joint posteriors of the extra model parameters can be
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complicated. Indeed, testing whether these extra parameters
are statistically significant by visually inspecting if param-
eters corresponding to the base model are beyond the joint
2D posteriors of the extended parameters (e.g., for the
Chebyshev parametrization, c1, c2, c3, c4 ¼ 1,0,0,0 corre-
sponds to ΛCDM) can be misleading due to projection
effects. For instance, c1, c2, c3, c4 ¼ 1,0,0,0 can be outside
the full N-dimensional posterior but not in any of the joint
2D posteriors, and vice versa. This has been the case for the
majority of the solutions proposed to resolve the Hubble
tension. Since, in this analysis, we only care about whether
this parametrization can model the high SH0ES H0 value,
we can avoid this sort of complication. Similarly, we plot
the posterior distribution of the cosmological functions
DHðzÞ and DMðzÞ for this reason. Finally, since having a
large number of model degrees of freedom tends to greatly
inflate confidence regions, that our parametrization still
does not overlap the SH0ES constraint supports our argu-
ment that no low-redshift only solution can exist, despite
the extra model degrees of freedom.
In Fig. 6, we show that our Chebyshev parametrization is

flexible enough to approximate a variety of evolving dark
energy models. Two such models that we explicitly check
are the TDE model [19] and the PEDE model [20]. These
two models are useful for making this point since they
represent two opposite regimes of a slowly varying, purely
phantom (w < −1) equation of state with the PEDE model
and a quickly evolving equation of state that transitions
between a phantom equation of state and a quintessent

(w > −1) equation of state with the TDE model. Further,
we use two examples from the Chevalier-Polarski-Linder
(CPL) parameter space [49,50] that are within the 2σ
confidence region of the Pantheonþ and Planck joint
constraint [51]. We can see in Fig. 6 that the PEDE model
equation of state can be matched, basically exactly, but the
TDE equation of state is a less exact match. However, the
corresponding HðzÞ and DMðzÞ values are all within
< 0.4%. There are other models that are not parametrized
by wðzÞ that can be well-approximated by our Chebyshev
parametrization, where the data are constraining. For
instance, hðzÞ from the interacting dark matter and dark
energy model (DMDE) [44,45] is shown in Fig. 6.
Specifically, the parameters of the DMDE model (wx
and ξ) were constrained by the datasets considered as well
as the Cheybshev parametrization. In the regimes where
cosmological data are constraining, the Chebyshev para-
metrization can approximate the DMDE model to within
< 0.4%. Further, MG models can be parametrized with the
Chebyshev parametrization. For instance, there have been
proposed beyond-Horndeski theories of gravity where the
dark energy is a k-essence Lagrangian [43]. These attractor
solutions can be matched exactly by our Chebyshev
parametrization.
In addition to comparing with specific models, another

useful test to demonstrate the flexibility of the Chebyshev
parametrization is whether it can bracket the data. That is,
whatever cosmological functions [HðzÞ, DMðzÞ] that may

FIG. 7. Posterior predictive distribution (PPD) for DHðzÞ
(dashed, varies from upper left to lower right) and DMðzÞ (solid,
varies from lower left to upper right) for the Chebyshev model
using the CMB dataset alone (blue) and the CMBþ BAO þ SN.
The black data points are from the SH0ES (“X”), Pantheon (dots),
and SDSS/eBOSS datasets (triangles). The blue PPD demon-
strates the model is flexible enough to include every cosmological
distance that is still allowed by the data, while the green PPD
demonstrates that, when constrained by the BAO and SN data-
sets, there is no longer enough flexibility to match the SH0ES
constraint.

FIG. 6. Top: example equation of states that have previously
been proposed to solve the H0 tension (solid lines), the TDE
model [19], the PEDE model [20], and an example MG model
[43], along with CPL parameters within the 2σ region of joint
Pantheonþ and Planck constraint, as well as the Chebyshev
polynomial that best matches (dashed lines) those models.
Bottom: fractional difference in hðzÞ between the example
equation of states and the Chebyshev parametrization that most
closely matches them. The bottom panel also includes an example
DMDE model [44,45].
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still be allowed by the data would find a sufficiently close
match in some location in the Chebyshev parametrization.
To this end, we calculate a posterior predictive distribution
[the distribution of the cosmological functions DHðzÞ ¼
c=HðzÞ and DMðzÞ that correspond to the posterior prob-
ability of the models’ parameters] for the Chebyshev model
constrained on just the Planck CMB data. The results of this
calculation are shown in blue in Fig. 7. That the distribution
spans the data indicates that this model is flexible enough to
contain a low-redshift solution to the H0 tension should
one exist.
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