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Quantum simulation is a powerful tool to study the properties of quantum systems. The dynamics of
open quantum systems are often described by completely positive (CP) maps, for which several quantum
simulation schemes exist. Such maps, however, represent only a subset of a larger class of maps: the general
dynamical maps which are linear, Hermitian preserving, and trace preserving but not necessarily positivity
preserving. Here we present a simulation scheme for these general dynamical maps, which occur when the
underlying system-reservoir model undergoes entangling (and thus non-Markovian) dynamics. Such maps
also arise as the inverse of CP maps, which are commonly used in error mitigation. We illustrate our
simulation scheme on an IBM quantum processor, demonstrating its ability to recover the initial state of a
Lindblad evolution. This paves the way for a novel form of quantum error mitigation. Our scheme only
requires one ancilla qubit as an overhead and a small number of one and two qubit gates. Consequently, we
expect it to be of practical use in near-term quantum devices.

DOI: 10.1103/PhysRevLett.131.110603

Introduction.—Quantum computing has created a com-
putational paradigm that may lead to the development of
new and powerful solutions to computational tasks. A
prominent application of digital quantum computers is their
ability to simulate other quantum systems, particularly
at the level of noisy intermediate scale (NISQ) quantum
platforms [1].
Although there exists a range of quantum simulation

methods for closed quantum systems, see, e.g., [2–5], the
simulation of an open quantum system is more arduous.
Since it is often not possible to simulate the complete
system-environment joint dynamics, simulation methods
instead focus on realizing the effective reduced dynamics of
the open quantum system alone.
In the case that one assumes that system and environment

are initially in a product state, the evolution is guaranteed to
be described by a completely positive (CP) map [6] acting
on the initial system state, which can be obtained via
numerical methods ([7–11]) and perturbative schemes
[12]. A CP map is said to be CP divisible if it can be
subdivided into maps that are themselves CP. In such a
scenario, the evolution of the system may be described by
the Lindblad-Gorini-Kossakowski-Sudarshan equation
[13,14]. If, however, the system-environment amalgam
accumulates significant correlations, the evolution is non-
Markovian and CP maps no longer provide an appropriate
description [15].
Quantum simulation methods for Lindblad-like dynam-

ics have been extensively studied [16–23] and experimen-
tally implemented [24]. An efficient simulation scheme for
any qubit CP map was developed by [25], based on results
of [26,27]. Other methods are [28,29] and collision models

[30,31], which are able to simulate non-Markovian dy-
namics [32–35].
In the current NISQ era, quantum error mitigation forms

an important set of strategies to deal with noise [36]. One
such strategy relies on the assumption that the dominant
effect of noise on a quantum system can be modeled via a
CP map. The goal is then to apply the inverse of this noise
map to that system in order to arrive at its “undisturbed”
state from which expectation values are computed. This
way, the impact of noise is mitigated while residual system-
reservoir correlations may still be present. In general, the
inverse of a CP map cannot be directly implemented on a
quantum processor, but it can be represented by a quasi-
probability distribution (a probability distribution that can
take negative values) of CP maps. Realizing this quasi-
probability distribution is the essence of the error miti-
gation method proposed in [37–41] such that on average
expectation values of the undisturbed state are obtained.
One of the challenges is to find an efficient way to realize
the CP maps that represent the inverse.
In this Letter we propose a novel simulation scheme for

general qubit dynamical maps which extends beyond CP
divisible maps [25–27]. General dynamical maps are trace
preserving and Hermiticity preserving, but not necessarily
positivity preserving. They naturally arise as the inverse of
CP maps, and thus allow for error mitigation. In Fig. 1 we
recover several initial states of a qubit disturbed by a
thermal Lindblad equation on an IBM quantum processor.
General dynamical maps also arise as the solutions of
general time-local master equations, i.e., master equations
beyond the Lindblad form. Their derivation is based on
tracing the environment in Gaussian [42–46] or other
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exactly solvable models [47], or via time convolutionless
perturbation theory [12,48].
We exploit the fact that general dynamical maps acting

on finite dimensional systems can always be decomposed
as the difference of two CP maps [49,50]. We demonstrate
that this decomposition can be brought into a suitable form
for quantum simulations, namely, as a weighted difference
of two completely positive trace-preserving (CPTP) maps.
Combining this result with the work of [25–27], our
simulation scheme provides an efficient manner to imple-
ment the error mitigation described in [37–39].
The main advantage of the algorithm we present here is

its problem-agnostic applicability. No specific design is
required for the dynamics one aims to simulate. In fact, we
are able to simulate the dynamics of a given system from
any point in time to any later time. As an additional benefit,
our proposed scheme is resource efficient as the depth of
the quantum circuit proposed by [25] does not grow with
the simulated time. We illustrate these features by imple-
menting two examples on IBM quantum processors, which
demonstrate the ability to simulate the time evolution from
any intermediate point in time, regardless of whether the
evolution map is CP and the ability to recover the initial
state of a Lindbladian evolution [51], see Fig. 1.
Theoretical framework.—A finite dimensional linear

map Λ is CP if and only if its action on a state ρ can
be written in terms of a set of matrices fKjgj, often referred

to as Kraus operators: ΛðρÞ ¼ P
j KjρK

†
j . The map is trace

preserving if and only if
P

j K
†
jKj ¼ I, where I is the

identity on the appropriate Hilbert space, see, e.g., [6,12].
The results of [26,27] prove that any CPTP map Λ for
qubits is equal to the convex sum of two extremal CPmaps
Λ1 and Λ2, which may in turn be realized by a pair of Kraus
operators. Concretely, they showed that for every CPTP
qubit map Λ, there exist two pairs of unitaries Uj, Vj and
two pairs of Kraus operators Fi;j (with i; j∈ f1; 2g) de-
fining the extremal maps

ΛjðρÞ ¼ Vj

�X2
i¼1

Fi;jðUjρU
†
jÞF†

i;j

�
V†
j ; ð1Þ

such that

ΛðρÞ ¼ 1

2
Λ1ðρÞ þ

1

2
Λ2ðρÞ: ð2Þ

The authors of [25] devised a simple circuit shown in
Fig. 2(b) to realize the action of the Λj using just one
ancillary qubit and CNOT gates.
General dynamical maps are linear, trace, and

Hermiticity preserving but not necessarily positivity pre-
serving. For finite-dimensional systems such maps can
always be written as the difference of two CP maps [50]

ΣðρÞ ¼ ΛþðρÞ − Λ−ðρÞ ¼
X
j

KjρK
†
j −

X
j

MjρM
†
j ; ð3Þ

FIG. 1. (Top) Reversing the direction of time in a dissipative
system brings it back to its initial state. (Bottom) We recover the
initial state of a Lindblad evolution (6) by simulating its time-
reversed evolution ðd=dtÞρt ¼ −LtðρtÞ. For t ≤ t� the points
show the forward evolution simulated on an IBM quantum
computer, while for t > t� they denote the reverse evolution.
The lines represent the numerical to both Eq. (6) and its time-
reversed equivalent. F gives the fidelity between the final
recovered state and the initial state. The parameters of these
master equations are β ¼ ω ¼ γ ¼ 1.

FIG. 2. (a) Representation of the algorithm simulating general
dynamical maps decomposed as the weighted difference of two
CPTP maps 4. At each branching point a choice is made with a
classical random number generator (weighted with the indicated
probabilities). At the dashed line, the measurement of some
observable is performed. Finally, the outcomes are rescaled and
subtracted from one another. (b) The circuit employed in [25] to
realize the extremal maps (2).
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see Supplemental Material [50] for more details on how to
derive this decomposition, which includes Refs. [52,53].
The map Σ is trace preserving if and only if

P
j K

†
jKj−P

j M
†
jMj ¼ I. Since Λ� are bounded, there exists a

positive number p such that
P

j M
†
jMj ≤ pI. We define

the semi-positive definite operator D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pI −

P
j M

†
jMj

q

and write

ΣðρÞ ¼ ð1þ pÞΛ�þ − pΛ�
−; ð4Þ

where Λ�þ ¼ ½ðPj KjρK
†
j þDρD†Þ=ð1þ pÞ� and Λ�

− ¼
½ðPj MjρM

†
j þDρD†Þ=ðpÞ�. It is straightforward to check

that both maps Λ�
� are trace preserving and CP. The above

equation is our first main result. It shows that any general
dynamical map Σ can be decomposed as the weighted
difference of two CPTP maps. The above decomposition is
an alternative to the decomposition in terms of CPTP maps
by [54] which involves applying positive, nonunitary
transformations to the quantum state. The latter makes
our decomposition more attuned for simulating the action
of Σ on an experimental platform.
Algorithm and circuit schemes.—Our simulation scheme

for general dynamical maps is illustrated in Fig. 2(a). First,
a classical random number generator is used to choose the
branch Λ�þ or Λ�

− corresponding to Eq. (4), with proba-
bilities ð1þ pÞ=ð1þ 2pÞ and ½p=ð1þ 2pÞ�, respectively.
Then one of the two extremal maps (2) is selected with
probability 1=2 and realized by the circuit representation of
[25], as shown in Fig. 2(b). Next, an observable is measured
and the outcomes within the plus and minus branch are
summed. Finally, the measurement result is rescaled by
1þ 2p to restore normalization, and the results of both
branches are subtracted.
The scheme depicted in Fig. 2 can be straightforwardly

implemented on a quantum computational platform [55].
Generating the dynamics of a system using the algorithm
described above requires eight different quantum circuits of
the type shown in Fig. 2(b). Each circuit requires single-
qubit unitary gates Uj, Vj, R1;j, and R2;j, which we
construct explicitly in [50], and are realized via a universal
set of single-qubit gates. Beyond single-qubit unitary gates,
CNOT gates and a measurement operation on the ancilla
are implemented. With this circuit representation any single
qubit map Σ can be simulated with an error ≤ ε using a
quantum computer time of O½polylogð1=εÞ� [25].
We will first demonstrate that our scheme allows us to

simulate general dynamical maps and then use it for error
mitigation on an actual quantum computing device [53].
For optimal performance, qubits and connections with the
least error rate are selected for each circuit implementation
and specific gate protocols are optimized to minimize the
number of CX gates. An initial exploratory run on the
device uncovers its systematic readout error, later used to

correct measurement results [50]. Each data point in Figs. 1
and 4 is averaged over ten runs of 10 000 shots each, i.e.,
10 000 circuits are implemented according to the proba-
bility distribution in Fig. 2(a). Error bars are within the size
of the data points. The final infidelity is mostly due to
systematic errors in the quantum gates and measurement
scheme within a specific circuit calibration [56].
Simulating general time local master equations.—

General trace-preserving time-local master equations are
of the form

d
dt

ρt ¼ LtðρtÞ

¼ −i½HðtÞ; ρt� þ
X
k

ΓkðtÞ
�
LkρtL

†
k −

1

2
fL†

kLk; ρtg
�
;

ð5Þ

where the Lk are operators and the ΓkðtÞ scalar weight
functions.
The above equation has the appearance of a Lindblad

equation with the exception that its weight functions ΓkðtÞ
are not assumed to be positive definite. General time-local
master equations describe the evolution of a wide class of
open quantum systems, as they can be derived from the
Nakajima-Zwanzig equation [57] when its solution has an
inverse that exists over a finite time interval [58–62]. For
an initial condition ρ0 the formal solution of Eq. (5) is
ρt ¼ Λt;0ðρ0Þ ¼ T exp ðR t

0 dsLsÞρ0, where T is the time
ordering operator and the map Λt;0 is guaranteed to be CP
if the underlying system-environment model is in a
product state.
The master Eq. (5) generates maps that satisfy the semi-

group property: Λt;s being the map that evolves a state from
time s to time t, then Λt;s ¼ Λt;uΛu;s for t ≥ u ≥ s. This
means that the evolution can be split up into arbitrarily
many segments that evolve the density matrix from one
time to the next. However, complete positivity of Λt;0 does
not necessarily guarantee that all intermediate maps Λs;u

are CP. When this is the case, all weights ΓkðtÞ are positive
definite and (5) is of the Lindblad form.
If intermediate Λu;s are not positivity preserving, not all

quantum states map into quantum states, i.e., some quan-
tum states map into operators with negative eigenvalues.
ΓkðtÞ taking negative values captures an underlying system-
environment model with meaningful entanglement.
The reduced system state at an instant of time is no longer
sufficient to describe the subsequent time evolution:
one requires knowledge of the history of the system-
environment interaction.
To illustrate this, we consider a qubit master equation

employing four operators with their respective weight
functions, i.e., L1 ¼ σ−, L2 ¼ σþ, L3 ¼ τ− and L4 ¼ τþ
with σ� being the raising and lowering operators of σz and
τ� of σx, respectively. As weight factors we choose a
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typical non-Markovian model, which mimics resonance
with an environmental mode [63]. Figure 3 displays these
weight functions. The grey zone indicates the time region in
which these weights are all negative. If the evolution of the
density according to Eq. (5) starts in this time interval, for
short times it will not be positivity preserving. Therefore,
the solution of the master equation beginning from these
times must be described within the above framework of
general dynamical maps.
The excited state population according to Eq. (5) is

shown in Fig. 4. The results obtained from the CP map
Λt;0½ρ0� using ρ0 ¼ ð1þ σzÞ=2 are displayed as a green full
line obtained from a direct integration of (5), while those
data points resulting from simulations on the IBM device
(following the recipe outlined above) are squares. Starting
at the intermediate time t0 ¼ 0.2 in the gray area of Fig. 3,
diamonds display IBM simulations with the general
dynamical map Σ≡ Λt;t0 ½ρt0 �. Since at t0 all weight func-
tions are negative definite, the solution (for short times, at
least) is not CP. Consequently, when not accounting for the
past interaction with the environment using Λt−t0;0½ρt0 �
(dashed yellow), the correct dynamics of Eq. (5) are not
recovered.
Having access to the intermediate evolution maps start-

ing from t0 > 0 has a number of advantages. For example,
we are able to evolve a state from 0 to t0, perform a quantum
operation on it, and then evolve it further with a completely
bounded evolution. The (pink) full line in Fig. 4 displays
this situation after applying the unitary transformation σx to
the state at t0 ¼ 0.2, while the (yellow) triangles show the
corresponding IBM simulations of the general dynamical
map according to the new scheme.
Quantum state recovery.—An intriguing consequence of

the new simulation method is that one can recover the
initial state of an assumed Lindblad evolution obtained
on a quantum device by implementing its time reversed

master equation [64,65]. We consider a qubit weakly
coupled to a thermal reservoir with forward time evolution
ðd=dtÞρt ¼ LtðρtÞ, where

LtðρtÞ ¼ −iω½σz=2; ρt� þ γeβω
�
σ−ρσþ

1

2
fσþσ−; ρtg

�

þ γ

�
σþρσ−

1

2
fσ−σþ; ρtg

�
; ð6Þ

and its reversed evolution ðd=dtÞρt ¼ −LtðρtÞ. Thus,
evolving a state for a time t with Eq. (6) and then for a
time s ≤ t with its time reversed version results in the state
obtained by evolving with Eq. (6) for a time t − s. This is
implemented on the IBM device according to Eq. (4).
In Fig. 1 data points for t ≤ t� and various initial states

reflect the thermalization dynamics of Eq. (6). At t ¼ t�, we
recover earlier states in the dissipative time evolution. Note
that the recovery is performed by mapping the state
ρðt ¼ t�Þ directly to each recovered state with only one
algorithm run per state.
Outlook.—We have shown that the class of general qubit

dynamical maps can be straightforwardly simulated on
quantum computing devices using just four extremal CP
maps. For a given noise CP map of a single qubit, e.g.,
obtained according to [66], this allows us to revert it as
demonstrated in Fig. 1, thus, performing genuine quantum
error mitigation.
The decomposition of general dynamical maps in Eq. (4)

holds for arbitrary (finite) dimensions. Taking it as a

FIG. 3. Weight functions of the time local master equation (5).
The rates are of the form ΓjðtÞ¼aj expð−tÞ½bj− sin2ðcjπtÞ�−dj,
with a2 ¼ a3 ¼ 1, a1 ¼ 3, and a4 ¼ 1.5; b1 ¼ 4.5, b2 ¼ 3.5,
b3 ¼ 1, and b4 ¼ 1.5; c1 ¼ 2, c2 ¼ 2, c3 ¼ 2.3, and c4 ¼ 2.2,
d1 ¼ d2 ¼ 2.6, and d3 ¼ d4 ¼ 0.4.

FIG. 4. Excited state population according to solutions of
Eq. (5) (lines) and IBM simulations (symbols), for an initial
state ρ0 ¼ ð1þ σzÞ=2. In the shaded region all weights are
negative, so the evolution starting from there is nonpositivity
preserving. The dynamical map Λtð0Þ is CP, while starting at a
later time t0 ¼ 0.2, means the map Σ≡ Λt;t0 is a general
dynamical map. The (yellow) line shows the evolution of the
state from time t0 ¼ 0.2 when the past interaction with the
environment is not accounted for. The pink line (yellow triangles)
displays the evolution from t0 ¼ 0.20 after applying a unitary
transformation σx to the state.
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starting point, the resulting multiqubit CP maps could be
decomposed into single qubit maps. This could be
achieved, for example, by using the circuit cutting scheme
introduced in [67], and experimentally implemented in
[68]. This scheme allows us to cut circuits up into smaller
subcircuits at the price of having to realize these subcircuits
for multiple input states.
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