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We introduce a method to perform imaginary time evolution in a controllable quantum system using
measurements and conditional unitary operations. By performing a sequence of weak measurements based
on the desired Hamiltonian constructed by a Suzuki-Trotter decomposition, an evolution approximating
imaginary time evolution can be realized. The randomness due to measurement is corrected using
conditional unitary operations, making the evolution deterministic. Both the measurements required for the
algorithm and the conditional unitary operations can be constructed efficiently. We show that the algorithm
converges only below a specified energy threshold and the complexity is estimated for some specific
problem instances.
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Introduction.—Imaginary time evolution is an important
and enduring concept in several areas of quantum physics,
despite not being directly a physical process [1]. In
imaginary time evolution (ITE) of a quantum system with
Hamiltonian H, time t is replaced by imaginary time
t → −iτ, such that the evolution operator is e−Hτ [2,3].
As such, for long evolution times, the state approaches the
ground state of the Hamiltonian [4,5]. ITE can be directly
applied as a numerical procedure on classical computers to
obtain low-energy states [6–9]. It is also central in making a
formal connection between a d-spatial dimensional quan-
tum field theory and a dþ 1-dimensional classical stat-
istical mechanics system, through the Wick rotation [10–
12]. A variety of classical simulation methods take advan-
tage of this connection, such as quantum Monte Carlo and
its variants [13–17].
As a numerical procedure on a classical computer, ITE

requires exponential resources that scale with the size of the
Hilbert space. If there was a way of implementing ITE on a
quantum computer efficiently, this could potentially be an
extremely powerful tool. A direct implementation of the
ITE operator e−Hτ, assuming elementary ITE gates, would
have a complexity that scales polynomially with the
number of subsystems, e.g., qubits. In comparison to the
same calculation performed on a classical computer, this

would give an exponential speedup. In ITE, convergence to a
high fidelity state takes a timescale of the inverse energy gap.
In a quantum simulation scenario, one is often interested in
obtaining low-energy eigenstates of various systems, appli-
cable to condensedmatter physics, high-energy physics, and
quantum chemistry [18–27]. More generally, it may also be
used as a general optimization tool, where a cost function is
minimized [28]. Applied to the context of solving the
generalized Ising model, a problem that can be mapped
to any optimization problem in the complexity class NP in
polynomial time, the approach could be used to optimize
problems in a variety of contexts such as logistics, financial
applications, artificial intelligence, pharmaceutical develop-
ment, and material development [28–32]. Another applica-
tion of ITE is as a state preparation protocol. For applications
such as quantum metrology [33–35] and alternative models
of quantum computation [36–38], resource states need to be
generated, which are sometimes difficult to produce. By
engineering a suitableHamiltonianwhere the desired state is
the ground state, ITE can be used to generate and stabilize
the state [39–42].
Several methods have been proposed to perform ITE in a

controllable quantum system. In variational imaginary time
evolution (VITE) [6], McArdle, Yuan, and co-workers
introduced a hybrid quantum-classical approach to achieve
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ITE. Here, the Schrödinger equation is first solved in
imaginary time on a classical computer to determine the
parameters of a trial state, then this is used as the
approximation of the quantum state for the quantum circuit.
This method has been used to simulate the spectra of a
Hamiltonian [43], perform generalized time evolution [44],
and to solve quantum many-body problems [45]. Motta,
Chan, and co-workers proposed the quantum imaginary
time evolution (QITE) method [46], where nonunitary time
evolution is approximated by a unitary operator which
contains the variation of the quantum systems [47–51].
This method has been applied to the study of quantum
simulation [52], nuclear energy level computation [47], and
quantum chemistry [48]. In another approach, Williams
proposed a probabilistic approach to nonunitary quantum
computing [53]. For example, in probabilistic imaginary
time evolution (PITE) [54], an L qubit nonunitary gate
simulation can be probabilistically obtained by designing
an Lþ 1 qubit system and measuring the ancilla qubit [55].
When measuring the ancilla qubit, the L-qubit state will
collapse into the desired statewith a certain probability. PITE
exploits Grover’s algorithm [56] to enhance the probability
of getting the desired state while maintaining a high fidelity.
PITE is suggested to be applicable to quantum chemistry
problems [57]. The above ITE methods can be applied
to various quantum algorithms. It has been shown that
VITE can be applied to variational quantum algorithms
for Boltzmann machine learning [58], while QITE can
be applied to the quantum Lanczos algorithm [46,59]
and variational quantum algorithms for Hamiltonian diago-
nalization [60].
In this Letter, we propose a general method of perform-

ing ITE in a controllable quantum system. Our method
relies upon performing measurements that mimic the ITE
operator for small times. By performing repeated measure-
ments on the system using these measurement operators,
combined with a unitary correction step that acts condi-
tionally on the measurement outcomes, this allows for a
way to drive the state towards the lowest energy state of the
given Hamiltonian. Much like quantum feed forward
approaches such as in quantum teleportation, this converts
the stochastic evolution into a deterministic one, such that
the desired state is obtained with unit probability for
sufficiently long evolution times [61–63]. The basic idea
of the approach is to perform a weak measurement in the
energy eigenbasis of a given Hamiltonian. During the slow
collapse of the state, if the energy estimate is higher than a
given threshold, then a conditional unitary is applied to
disturb the system. This is repeated until the energy is
sufficiently low, after which full collapse to the ground state
occurs. Similar approaches were used for quantum state
preparation [64] using weak measurements [65,66]. Our
approach differs from related works such as Refs. [54],
where the desired outcome is obtained by postselection. It
also differs from approaches such as in Refs. [6,46] since

the use of measurements involves an explicitly nonunitary
step. As such, no precomputation needs to be performed to
determine the evolution path.
Weak energy measurements.—We start by describing the

general approach to performing ITE, then illustrate our
approach with several examples. Our aim will be to perform
ITE of an arbitrary Hamiltonian H, such that we obtain the
ground state

e−Hτjψ0i⟶τ→∞jE0i; ð1Þ

where jψ0i is an arbitrary initial state and jE0i is the ground
state ofH. We start by constructing measurement operators
that take a similar form to the exponentiated Hamiltonian
(1). This can be achieved by performing a weak measure-
ment of the Hamiltonian, with measurement operators

M0 ¼ h0jae−iϵH⊗Y jþia ¼
1ffiffiffi
2

p ðcos ϵH − sin ϵHÞ

¼ 1ffiffiffi
2

p
X
n

ðcos ϵEn − sin ϵEnÞjEnihEnj ≈
e−ϵHffiffiffi

2
p ð2Þ

M1 ¼ h1jae−iϵH⊗Y jþia ¼
1ffiffiffi
2

p ðcos ϵH þ sin ϵHÞ

¼ 1ffiffiffi
2

p
X
n

ðcos ϵEn þ sin ϵEnÞjEnihEnj ≈
eϵHffiffiffi
2

p ; ð3Þ

where Pauli spin operators are denoted X, Y, Z, and the
approximation is valid for kϵHk ≪ 1. The Hamiltonian is
taken to have a suitable energy offset and ϵ is chosen such
that the energy spectrum fits in the region −π=4 ≤ ϵEn ≤
π=4. This measurement can be realized by preparing an
ancilla qubit in the state jþia ¼ ðj0ia þ j1iaÞ=

ffiffiffi
2

p
and

performing an interaction with Hamiltonian H ⊗ Y, and
measuring the ancilla in the Z basis. The measurement
operators satisfy M†

0M0 þM†
1M1 ¼ I, where I is the

identity matrix. In the case that the interaction H ⊗ Y is
not directly accessible due to the Hamiltonian being
composed of a sum of terms H ¼ P

N
j¼1 H

ðjÞ, a Suzuki-
Trotter decomposition [67,68] of e−iϵH⊗Y to suitable order
is instead performed (see Supplemental Material [73]). This
has the effect of changing the precise form of (3), but is still
an approximation to the imaginary time exponentiated
Hamiltonian.
We wish to perform the ITE to amplify the ground state

as in (1). If it were possible to apply M0 only, this would
achieve a similar evolution to (1) since cos ϵEn − sin ϵEn is
monotonically decreases in the domain −π=4 ≤ ϵEn ≤

π=4, such that Mk
0jψ0i⟶k→∞jE0i. However, since the two

outcomes fM0;M1g occur randomly according to quantum
measurement probabilities, such a sequence is typically a
rare occurrence. Let us analyze a particular measurement
sequence where there are k0 counts of M0 and k1 counts of
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M1. Since ½M0;M1� ¼ 0, the order of the outcomes does
not matter and this measurement sequence can be written

Mk0
0 M

k1
1 jψ0i ¼

X
n

Ak0k1ðϵEnÞhEnjψ0ijEni ð4Þ

where we defined the amplitude function

Ak0k1ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2k0þk1
p ðcos x − sin xÞk0ðcos xþ sin xÞk1

¼ cosk0ðxþ π=4Þsink1ðxþ π=4Þ: ð5Þ

In Fig. 1(a) we show a plot of the function A. We see that
for−π=4 ≤ x ≤ π=4 and a large number of measurements it
has a Gaussian form [69], where the peak value occurs at

xmax
k0k1

¼ ϵEmax
k0k1

¼ 1

2
arcsin

�
k1 − k0
k0 þ k1

�
ð6Þ

and the width is σ ≈ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk0 þ k1Þ

p
. Here, Emax

k0k1
is the

peak value in terms of energy. As the number of measure-
ments are increased, the Gaussians become increasingly
well defined [Fig. 1(b)]. In the limit of a large number of
measurements, a collapse on the energy basis occurs.
In order to increase the amplitude of the ground state in

(4), we require that the Gaussian is peaked with an outcome
with xmax

k0k1
< ϵðE0 þ E1Þ=2 [see Fig. 1(b)]. This will create

an amplitude gain of the ground state over all the remaining
states, since the peak of the Gaussian is closer to ϵE0 than
any other eigenvalue, and the tail of the Gaussian on the
higher energy side will suppress all higher energy states. So
our strategy will then be to control the position of the
Gaussian such that it lies in the desired energy range.
The algorithm.—To this end, we turn to an adaptive

strategy, where a unitary operation is applied conditioned
on the measurement outcomes. Our basic strategy will be to
continually monitor the location of the Gaussian using the
expression (6). If the location of the Gaussian corresponds
to a sufficiently low energy state, then no unitary is applied.

If the Gaussian is located at a value that is of a higher
energy than a chosen energy threshold Eth, then a corrective
unitary is applied. Concretely, we iteratively perform

jψ tþ1i ¼
U

kðtþ1Þ
0

kðtþ1Þ
1

Mnjψ tiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ tjM†

nMnjψ ti
q ð7Þ

where n∈ f0; 1g labels the (tþ 1)th measurement out-
come, with

Uk0k1 ¼
�
I if xmax

k0k1
< ϵEth

UC otherwise
; ð8Þ

and

kðtþ1Þ
m ¼

�
kðtÞm þ δmn if xmax

ðkðtÞ
0
þδ0nÞðkðtÞ1 þδ1nÞ

< ϵEth

0 otherwise
ð9Þ

are the cumulative measurement outcomes starting with

kð0Þm ¼ 0. In words, this counts the number of M0, M1

measurements, respectively, until it is found that the energy
estimate is above the threshold, at which point the counts
are reset to zero. To ensure convergence of the sequence to
the ground state, we demand a nonzero transition amplitude
between all energy eigenstates jhEnjUCjEmij > 0, ∀ n;m.
For E0 < Eth < E1, this ensures that only the ground state
is the unique fixed point of the evolution (see Supplemental
Material [73]). The requirement jhEnjUCjEmij > 0 is not
usually very difficult to satisfy since it merely requires off-
diagonal matrix elements in the energy basis, which occurs
for a large number of matrices. Practically, one may choose
a random unitary matrix based on readily available gates. In
this way, the wave function for the ground state does not
need to be known for the procedure. We note that if there is
some knowledge of the eigenstates jEni, then more
sophisticated strategies beyond the above requirement
and (8) can be used to construct UC. For instance, rotations
targeting the ground state based on the energy estimate
Emax
k0k1

could be implemented.
Example 1: One qubit.—We start with the simplest

example of a single qubit with Hamiltonian H ¼ Z. In
Figs. 2(a) and 2(b) we show the evolution of the states on
the Bloch sphere for the measurementsM0,M1. We see that
M0 has the effect of driving all states towards the south pole
of the Bloch sphere, while M1 drives all states to the north
pole, following longitudinal lines. This is consistent with
the imaginary time operator e�ϵZ, as given in (2) and (3). In
Fig. 2(c), we show the fidelity F ¼ jhψ tjE0ij2 for three
different measurement sequences. Because of the random-
ness of quantum measurements, each sequence gives a
different trajectory, but all cases converge to the ground
state jE0i ¼ j1i. Averaging over many random trajectories
yields a smooth exponential curve approaching the target
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FIG. 1. The amplitude modulation function Ak0k1ðxÞ as defined
in (5). The functions (solid lines) are normalized to their peak
values, defined by Amax

k0k1
¼ Ak0k1ðxmax

k0k1
Þ. The total number of

measurements is fixed to (a) k0 þ k1 ¼ 50 and (b) k0 þ k1 ¼ 500
and the value of k0 is as marked. Dashed vertical lines are values
of the energy eigenstates multiplied by ϵ.
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state. A semilog plot [Fig. 2(c) inset] verifies the exponential
evolution, consistent with ITE. In fact, for this case it can be
shown exactly that any trajectory is equivalent to applying a
power of M0 which approaches the ground state (see
Supplemental Material [73]). In Fig. 2(d) we plot the peak
position of theA function for the same three trajectories as in
Fig. 2(c). We see that there are broadly two regimes, where
there is a random movement of the peak position, followed
by a region of stability, where the Gaussian approaches the
ground state energy. In the initial random evolution, when
xmax
k0k1

> ϵEth, several spin flips induced by UC occur, until
the randommovement stabilizes to the correct energy range.
After the correct peak position is established, the fidelity
quickly evolves towards the ground state.
Example 2: Transverse-field Ising model.—We next

show an example of the transverse-field Ising model with
the Hamiltonian Hð1Þ ¼ λ

P
L
n¼1Xn;Hð2Þ ¼P

L−1
n¼1ZnZnþ1,

H¼Hð1Þ þHð2Þ. Here, L is the number of qubits in the
chain, and we take Eth ¼ ðE0 þ E1Þ=2. We assume
that each of the terms in the Hamiltonian must be
implemented separately to construct the measurement
operators. We perform a second order Suzuki-Trotter expan-
sion with Mn ¼hnjae−iϵHð1Þ⊗Y=2e−iϵH

ð2Þ⊗Ye−iϵH
ð1Þ⊗Y=2jþia

(see Supplemental Material [73]). The conditional
operator is chosen to be a random local unitary

UC¼⊗L
n¼1e

2πiðϕx
nXnþϕy

nYnþϕz
nZnÞ, where ϕα

n ∈ ½0; 1�. We show
the fidelity of the procedure with respect to the target state in
Fig. 3(a). Again we see two stages, where there is a random
evolution of the fidelity, followed by a smoother time
evolution once the peak of Gaussian amplitude function is
in the correct range. For longer chains we observe a longer
period of random evolution before the correct energy range is
established, after which the system quickly converges to the
ground state.
Complexity estimate.—We now briefly discuss the com-

plexity of the proposed algorithm. First, the measurements
Mn can be typically performed efficiently for a given
Hamiltonian using a Suzuki-Trotter decomposition (see
Supplemental Material [73]). Because of the flexibility of
the choice of the operator UC, this can also typically be
implemented efficiently. The complexity of the algorithm
then results from the number of measurements that need to
be made in total. Based on the behavior observed in Figs. 2
and 3, we model the initial part of the measurement
sequence as a stochastic process, where the algorithm
repeats until the criterion xmax

k0k1
< ϵEth is satisfied (see

Supplemental Material [73]). The number of required
measurements until this occurs can be estimated by
evaluating the probability of obtaining a sequence with k
consecutive M0 outcomes together with the average failed
sequence length. Although it is not easy to obtain a simple
expression for the general case complexity, for two par-
ticular cases, assuming an initial state with equal super-
position, it is possible to estimate the typical number of
measurements before convergence. These are Hamiltonians
with (i) a uniform density of states and (ii) a completely
degenerate spectrum of excited states (see Supplemental
Material [73]). For (i), we obtain a scaling as O½1=ðϵΔÞ2�,
where Δ ¼ E1 − E0 is the gap. We note that there is an
implicit dependence upon system dimension in this rela-
tion, due to the requirement that −π=4 ≤ ϵEn ≤ π=4. For
example, for an exponential number of states, ϵΔ is
exponentially vanishing and the final scaling increases
exponentially for unstructured problems. For (ii), we find
that the scaling is OðDÞ, where D is the system dimension.

F

t

(c)

(b)

(d)

(a)

t

F-1

t

xmax

00.0
0.2
0.4
0.6
0.8
1.0

0

0.5

0.0

0.5

0 20 40 60 80 100
10 5
10 4

0.1

10 3
10 2 Eth

20 40 60 80 100 20 40 60 80 100

FIG. 2. (a),(b) Vector map on the Bloch sphere for the change
induced by the operators M0 and M1, respectively, where
Mn ¼ ½I cos ϵ − ð−1ÞnZ sin ϵ�= ffiffiffi

2
p

. (c) Fidelity of the state with
respect to ground state jE0i ¼ j1i for the Hamiltonian H ¼ Z
after t rounds of measurement and correction under (7) for three
random initial states (solid lines) and ϵ ¼ 0.2. We take UC ¼ X
and Eth ¼ 0. Dashed line shows the averaged fidelity of 1000
evolutions starting from the initial state jþi. Inset shows a
semilog plot of 1 − F with t. (d) The peak position xmax

k0k1
as

defined in (6) of the function A (solid lines). Dashed lines show
the energy eigenstates ϵEn and the dashed dotted line Eth. For the
measurements in (c) and (d), the outcomes are chosen randomly
according to Born probabilities.
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FIG. 3. (a) The fidelity of the state with respect to the ground
state of the L ¼ 5 site transverse Ising model with λ ¼ 1 and
ϵ ¼ 0.12 after t rounds of measurement and correction under (7)
for three random initial states (solid lines). Dashed lines show the
averaged fidelity of 1000 evolutions. (b) The peak position xmax

k0k1
as defined in (6) of the function A (solid lines). Dashed lines show
the energy eigenstates ϵEn and the dashed dotted line Eth.
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Conclusions.—We have proposed a method of perform-
ing deterministic ITE, using measurements and conditional
unitary operations. Because of the use of quantum mea-
surements, the evolution is stochastic within Hilbert space
on a shot-to-shot basis. Averaging over trajectories reveals
an exponential evolution that is consistent with ITE. The
approach is generic, one does not need to know the ground
state before executing the algorithm, and the measurement
operators can be constructed with a Suzuki-Trotter decom-
position so that it is compatible with gate based quantum
computing. The measurement operators and unitary oper-
ators can be constructed efficiently, but the number of
measurements that need to be performed before conver-
gence depends upon the nature of the Hamiltonian and the
initial state. The algorithm is guaranteed to only converge if
the energy of the state is lower than Eth.
The algorithm that we present here can be considered a

generalization of several related works which use the same
basic framework. For example in Ref. [70] a similar method
was proposed to generate supersinglet states, and also
maximally entangled states of atomic ensembles in
Ref. [71]. A four-qubit linear graph state was also deter-
ministically generated using the method in Ref. [72]. We
have found that the algorithm converges to the ground state
for every problem Hamiltonian that we have given it. In our
algorithm, we chose a relatively simple strategy for the
adaptive unitary operator (8) where the state is rotated if the
measurement outcomes do not fall in the targeted range.
Since Emax

k0k1
is an energy estimate of the state, more complex

strategies to rotate the state to the ground state could be
made. Another potential improvement is to choose a
judicious initial state to improve the convergence of the
scheme.
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