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We propose and analyze a sample-efficient protocol to estimate the fidelity between an experimentally
prepared state and an ideal target state, applicable to a wide class of analog quantum simulators without
advanced spatiotemporal control. Our protocol relies on universal fluctuations emerging from generic
Hamiltonian dynamics, which we discover in the present work. It does not require fine-tuned control over

state preparation, quantum evolution, or readout capability, while achieving near optimal sample

complexity: a percent-level precision is obtained with ~10> measurements, independent of system size.
Furthermore, the accuracy of our fidelity estimation improves exponentially with increasing system size.
We numerically demonstrate our protocol in a variety of quantum simulator platforms, including quantum
gas microscopes, trapped ions, and Rydberg atom arrays. We discuss applications of our method for tasks
such as multiparameter estimation of quantum states and processes.
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Introduction.—Recent advances in quantum technology
have opened new ways to probe quantum many-body
physics, leading to the first observations of novel phases
of matter [1-5], quantum thermalization [6-8], and non-
equilibrium phenomena [9-14]. However, in order to
advance to the stage where quantum devices produce highly
accurate data, it is important to quantify the performance of
said devices. One method to do so is quantum device
benchmarking [15]—verifying that a device accurately
produces a state p close to the desired state |¥), in the
presence of imperfections and noise, measured by the
fidelity F = (¥|p|¥). A high fidelity certifies that any
property of the prepared state is close to that of the target
state [16], hence is widely used in theory to quantify the
goodness of state preparation. Experimentally measuring
the fidelity is important for building, characterizing, and
improving increasingly complex and precise systems.

Several methods to benchmark quantum devices have
been proposed. A naive approach is to perform quantum
state tomography [16—19], in which an experimental state is
fully characterized by measurements in many different
bases. This approach, however, is impractical even for
relatively small systems as it requires prohibitively many
measurements. Alternatively, recent proposals pointed out
that one can directly estimate the fidelity with a small
number of measurements in randomly chosen bases [20-27].
These methods rely on implementing highly engineered
quantum gates that satisfy certain statistical properties and
are not readily applicable to quantum devices with limited
controllability. Other existing benchmarking protocols
require sophisticated controls and are challenging to imple-
ment [28-36]. In particular, we emphasize that analog
quantum simulators are typically designed to realize specific
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forms of many-body Hamiltonians and lack the ability to
implement arbitrary unitary operations. Thus, it remains an
outstanding challenge to develop a general benchmarking
method with minimal requirements on hardware capability.

In this Letter, we propose and analyze a benchmarking
protocol that requires minimal experimental control: one
prepares an initial state, time-evolves it under a natural
Hamiltonian of the system, and performs measurements
in a fixed basis (Fig. 1). We show that, with appropriate
data processing (enabled by classical computation),
this simple experiment gives an estimate for the fidelity
F—encapsulating the combined effects of errors in state
preparation, quench evolution, and readout [37]—with a
small number of measurements. Most importantly, our
method works for generic quench dynamics far from
fine-tuned cases, including at finite effective temperatures,
in the presence of symmetries, and in nonqubit based
systems such as itinerant particles on optical lattices,
making it suitable for a wide class of existing platforms.

The key behind our approach is our discovery of universal
statistical fluctuations in the measurement outcome distri-
butions p(z) that arise from generic quantum dynamics
(Fig. 2). Previously, such universal fluctuations in p(z) were
only known to occur in ideal, controlled dynamics such as
random unitary circuits (RUCs), where {p(z)} approxi-
mately follows the Porter-Thomas distribution [31,55].
Leveraging our discovery and classical computation, we
design a novel statistic: a real number f(z) associated to
every measurement outcome z such that its average over

experimentally obtained samples, F; = (f(z)).,,» converges

exp’

quickly to the many-body fidelity F. In other words, F, is a
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FIG. 1. (a) Schematic of our benchmarking protocol. The

fidelity estimator F; is evaluated from experimental snapshots
{z1,...»2} of a state p(r) obtained after quench dynamics,
compared against classical computation of the ideal state |¥(7))
in the absence of error (see Table I). (b)—(e) Numerical demon-
strations. F; closely tracks the fidelity decay over evolution time
normalized in units of Rabi frequency or tunneling strength
(black dashed) between noisy and ideal quench dynamics in a
wide class of analog simulators, including 1D Bose-Hubbard,
integrable 1D Fermi-Hubbard, 1D trapped-ion, and 2D Rydberg
array models at finite effective temperature; see Supplemental
Material (SM) [38] for details. Previously proposed benchmarks
Fxgg [30] [green dotted, out of scale in (b),(d)] or F.. [36] (purple
dot-dashed) fail to estimate F for these systems.

computationally assisted, efficiently measurable observ-
able [56,57] that estimates the fidelity.

The ability to estimate fidelity serves as a foundation for
two tasks: (i) target state benchmarking, where the overlap
between an experimentally prepared state and a pure target
state is measured via a high-fidelity quench time evolution,
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FIG. 2. Emergent universal statistics. (a) During many-body
Hamiltonian evolution of a pure state, the probability p(z, ) of
measuring an outcome z fluctuates around its average value
Pave(2) (dashed, three distinct zs highlighted). Here, we consider
a Bose-Hubbard model and present p(z, t) rescaled by the Hilbert
space dimension D. (b) The histogram of p(z, r) over all z at a
fixed ¢ [red dots in (a)], is nonuniversal (red dashed), far from the
Porter-Thomas (PT) distribution (black dashed). (c) Rescaling
each p(z,1) by pay(z) yields p(z,t), whose histogram follows
the PT distribution. (d)—(f) The histograms of p(z, t) (blue bars)
follow the universal PT distribution in all models considered in
this Letter, whereas those of the bare p(z, ) rescaled by D are
nonuniversal (red dashed).

TABLE I. Proposed benchmarking protocol.

Experiment:
1. Prepare an initial state p,, which approximates a pure state
W) (-
2. Evolve the system under its natural Hamiltonian H for a
time .
3. Measure the evolved state p(¢) in a natural basis, obtaining
configurations {z;}}.,
Computation: Classically compute
L p(z, 1) = |(z[¥(0))? = |<Z\exp( iH1)[ %)%,
2. Pave(2) =limg_ o (1/T) [T p(z.1)d1,
e = (e )/ puC)
Z(1) = 32 Pave(2)P(2. 1)

Data processing: Evaluate
Fylt) = /M) |22, plzin0)| /2(0) = 1~ Fy(1), which
(Y(@)lp(@)[¥(2)).

approximates the fidelity F =

and (ii)) quantum process benchmarking, in which the
fidelity decay of quench dynamics is monitored over the
course of evolution.

Protocol—We focus on describing and numerically
demonstrating our protocol, before returning to why it
works. Our benchmarking method consists of three steps:
experiment, computation, and data processing [Table I and
Fig. 1(a)]. The initial state of our protocol can either be an
easy-to-prepare state or a more complex state that one wishes
to benchmark. After quench evolution for a fixed time z, the
experimental state p(7) is measured in any fixed basis {|z)}.
Convenient choices of {|z)} include the set of bitstrings in
two-level (qubit) systems or real-space particle number
configurations in quantum gas microscopes. Repeating the
state preparation and measurement M times, one obtains
measured configurations {zy, ..., zy; }, with each z; sampled
from the distribution ¢(z, ) = (z|p(#)|z). Our protocol
estimates the fidelity by using a small number of samples
to compare the empirical distribution ¢(z,¢) against a
theoretical, target distribution p(z,t). By classical compu-
tation, we obtain p(z,?) and its infinite-time average
Pave(2) = limy_ o (1/T) [ p(z.1)dt. In practice, one may
average over a finite duration 7" as an approximation, at the
expense of slightly larger statistical errors. Then, we evaluate
the rescaled outcome probabilities p(z, ) = p(2,1)/ Paye(2)
and the normalization factor Z(t) = Y. pue(2)p(z. 1)

The classical computation determines our statistic f(z),
while the experimental samples determine which outcomes
zs to use when evaluating the statistic. More specifically,
we estimate the fidelity with the empirical average

Fd(t):< exp Zzp Z;t /Z ) (1)

This explicitly defines the statistic f(z), which also
depends on |¥,), H, and ¢. In the limit M — oo, this
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converges to our benchmark F,(r) =2[>"_ ¢(z. 1) p(z.1)]/
Z(t) — 1. This benchmark can be understood as a weighted
covariance between the empirical and ideal distributions.
We show that F;() approximates the fidelity F for a wide
class of quantum systems, both for uncorrelated, infrequent
incoherent errors, or local and weak global coherent
errors [38,58-60], and rigorously prove our statement
for isolated single errors and long evolution times.

Figures 1(b)-1(e) numerically demonstrate the use of our
estimator for process benchmarking: tracking the decay of
fidelity over time in four different quantum simulation
platforms. For each platform, we simulate an initial product
state undergoing natural Hamiltonian dynamics in the
presence of experimentally relevant errors [38]. We confirm
that F; successfully traces the fidelity decay in regimes
where previously proposed fidelity estimators Fxgg [30]
and F'. [36] do not. This is because F'. and Fxgg (reviewed
in the SM [38]) assume that p(z,t) satisfy statistical
properties (discussed below) that are in general not satisfied
by natural Hamiltonian dynamics, e.g., F. requires the
system to evolve at infinite effective temperature. We now
turn to the underlying principles of our protocol: emergent
universal statistics, speckle-based benchmarking, and
measurement-basis independence.

Emergent universal statistics.—The statistical properties
of p(z) have been extensively studied in deep RUCsS.
When the output state of a typical deep RUC is measured,
p(z) is not perfectly uniform, but exhibits a speckle
pattern: over different zs, p(z) fluctuates about 1/D
due to random interference in coherent quantum dynam-
ics, with D the Hilbert space dimension. While the details
of the fluctuations—which p(z)s are larger—sensitively
depends on the particular choice of RUC, the statistical
properties of p(z) are universal. Specifically, the fraction
of p(z)sin a given interval p(z) € [x, x + dx] is given by
the Porter-Thomas (PT) distribution: P[p(z) = x|dx =
utexp(—x/u)dx with mean u = 1/D. This enables the
existing benchmarks Fygg and F.. Specifically, they
utilize the fact that the PT distribution has a second
moment equal to two [30,31,36]. Previously, it was
unclear under what conditions the PT distribution can
arise, other than from RUCSs and fine-tuned Hamiltonian
dynamics.

In fact, for generic time-independent Hamiltonian dynam-
ics, the raw distribution p(z) does not follow the PT
distribution [Figs. 2(a) and 2(b)]. This is due to the presence
of energy conservation or symmetries, which causes sys-
tematic trends in p(z) and distorts its distribution away
from PT. For example, in any state with positive effective
temperature, low-energy configurations are measured more
frequently than high-energy ones [38]. While previous work
discovered PT distributions in certain local observables [36],
this work concerns global observables under general con-
ditions such as finite effective temperature.

Our key insight is that the systematic trends in p(z) can
be removed simply by rescaling p(z) with its time-
averaged value, leaving only random relative fluctuations
P(2) = p(2)/ Pave(2) that follow the PT distribution with
mean u = 1 [Figs. 2(c)-2(f)].

Theorem (informal).—Consider an initial state |¥),
evolved for time ¢ under a Hamiltonian H satisfying
the kth no-resonance condition for a large integer k,
and measured in a complete basis {|z)}. For sufficiently
late times ¢, the rescaled probabilities p(z,7) follow
the Porter-Thomas distribution, up to a correction
bounded by the inverse effective Hilbert space dimension
D5 = Y [IE) I (EI®o) | pag (2). where {|E)} are
the eigenstates of H.

Rigorous statements of our theorem and their proofs are
presented in the SM [38]. The only assumption of this
Theorem is the kth no-resonance condition, stating that
Sk E, =%, E if and only if the k indices (¢;) are a
permutation of (f;) [61-65]. That is, the eigenvalues {E;}
of H possess no resonant structures. This condition is
expected to hold for generic ergodic Hamiltonians [61,62],
and we find that it even holds in some integrable systems
such as the 1D Fermi-Hubbard model [Fig. 1(c)] [38,66].
The effective dimension Dy quantifies the size of the
Hilbert space explored during quench evolution (that can
be probed in the {|z) } basis). Dy is similar to a participation
ratio of |¥,) and |z), when they are decomposed in the
energy eigenbasis, which generically increases exponen-
tially with increasing system size, leading to a better
agreement with the PT distribution and enabling our
protocol to be increasingly accurate.

Our theorem states that the outcome distribution factor-
izes into two parts p(z,1) = paye(2) X p(z.1): systematic
values p,,(z) and random Porter-Thomas fluctuations
p(z,t). The systematic value is related to thermalization
and does not distinguish between pure and mixed states,
usually set by coarse-grained information such as the total
energy (Wy|H|¥,). Meanwhile, the fluctuations originate
from random interference and average away in a mixed
state [38]. These fluctuations are highly sensitive to details
of the initial state and evolution, serving as a “fingerprint”
that enables their benchmarking.

Speckle-based benchmarking.—We provide an intuitive
explanation of our benchmark F,, based on two properties:
(i) the second moment of the rescaled p(z) is Z =
> Pave(2)P(2)* # 2 for p(z) arising from ideal unitary
evolution, (ii) the experimental distribution ¢(z) in the
presence of errors can be expressed as a linear combination
q(z) = Fp(z) + (1 = F)p,(z), where p,(z) is uncorre-
lated with the ideal distribution p(z) in the following sense:
E.[p(2)PL(2)] # E[p(2)]E.[pL(z)] = 1, with E.[]=
> Pave(2)[] and P = p1/Ppaye. The second property
relies on an assumption that the speckle pattern in p
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FIG. 3. Performance analysis. (a) Numerical simulation of open
system dynamics of a 1D Bose-Hubbard model with N =9
particles on N sites (D = 24310). When a single error occurs
(black arrow), F,; (solid line, green) closely approximates the
fidelity F (dashed line, green) after a short delay time r,.
Averaging F,; and F over (potentially many) stochastic errors
at different times gives their values for the mixed state p (blue).
The inset shows uncertainties and errors in our method. In
particular, F'; slightly deviates from F, quantified by the differ-
ence Jgys between F and the time-averaged F, (red arrow) and by
the fluctuations Sy, Of F; Over time (green arrow). Furthermore,
a finite number of samples M results in a statistical uncertainty
Ot 1 the unbiased estimator F 4 (orange error bar). (b),(c) Both
Osys and Oy decrease exponentially with system size, quanti-
tatively agreeing with analytic predictions (dashed lines). (d) The
sample complexity M2, increases weakly with N at fixed, early
times (dotted line). At late times, it approaches the N-independent
value 1 + 2F — F? (dashed line). Error bars in (b)—(d) indicate
variations over an ensemble of disordered Hamiltonians. See SM
[38] for details.

significantly changes under any error, which has been
rigorously proven for RUCs [58,59].

Using these properties, our estimator F'; is designed to
isolate the desired “fingerprint,” taking value 1 when
g(z) = p(z) and 0 when ¢(z) = p,(z), which in turn
implies F;, ~ F [38]. We emphasize that it is essential to use
the rescaled p(z) to estimate the fidelity; otherwise p(z)
and p (z) exhibit large correlations due to their shared
systematic values p,y,(z).

In fact, the second condition can be relaxed. Under local
coherent or incoherent errors, the relation F; =~ F can be
shown at late times without any assumption on ¢(z), solely
based on the eigenstate thermalization hypothesis and no-
resonance conditions [38]. We also argue that this result
extends to multiple stochastic errors, and small coherent
errors in the quench Hamiltonian, as verified by various
numerical simulations [38]. Furthermore, we also verify
that F; =~ F holds even for relatively short quenches,
well before the PT distribution emerges in p(z), owing
to the time-dependent adjustment factor Z(¢) in F,. This
factor is inspired by F. [36] and its effect is illustrated in
Figs. 1(b)-1(e) and the SM [38].

Measurement-basis independence.—A surprising feature
of our approach is that the fidelity is estimated from

measurements in a fixed basis, despite the fact that the
fidelity also depends on phase information not accessed
from such measurements. Nevertheless, our protocol works
because quench evolution transforms the effects of physi-
cally relevant errors, including phase errors, into a form
detectable by generic local measurements, after a short
delay time [Fig. 3(a)].

In our examples above, the quench dynamics plays two
roles simultaneously: it enables our protocol, but also
generates imperfect quantum evolution (due to errors),
whose fidelity decay is measured. If the quench evolution
were perfect, the measured fidelity would only reflect the
state preparation error of the (potentially interesting) target
initial state. We present numerical demonstrations of such
target state benchmarking in the SM [38].

Performance analysis.—Our theorem enables us to
predict how well F; estimates the fidelity. First, we point
out that it suffices to study the effect of a single error when
the error rate is sufficiently small. This is because incoher-
ent noisy dynamics can be “unraveled” into an ensemble of
stochastic pure state trajectories [67] each corresponding to
a fixed occurrence of errors [Fig. 3(a)]. As long as they are
sufficiently infrequent, the effect of multiple errors can be
understood from that of a single error [58,59].

We showcase the performance of F; under realistic
conditions by numerically simulating the 1D Bose-
Hubbard model; see Fig. 3(a). We quantify the performance
of F,; along several axes [Fig. 3(a), inset]: the systematic
error gy, refers to the difference between the true fidelity F
and the time-averaged F,;, while the i, quantifies how
F; fluctuates over time. Finally, the statistical fluctuation
(or, sample complexity) d4, measures the uncertainty of the
estimated £ 4 associated with a finite number of samples M,
and hence the number of samples required to determine F,
up to a desired precision. See SM [38] for further details.

Our theorem allows analytical estimation of these
quantities in the limit of long evolution: Jy and Siepp
are, respectively, O(Dj') and O(D;l/ %) [38]. Hence, both
the accuracy and precision of our benchmark improve
exponentially with increasing system size, explicitly con-
firmed in our numerical simulations [Figs. 3(b) and 3(c)].
Meanwhile, the sample complexity has optimal scaling. It
is system size independent for long evolutions: M&2,, ~
1 +2F — F? [Fig. 3(d), dashed line]. For short quench
evolution, the sample complexity grows weakly with
system size [Fig. 3(d), dotted line]. Finally, in the presence
of incoherent errors, the finite response time z, leads to a
slight delay between F,; and the continuously decaying
fidelity [38,58,68].

Limitations.—While our protocol is applicable to generic
quantum many-body systems, it may fail in special cases in
which our theorem is not applicable. Examples include
systems with weakly or nonergodic dynamics, or the
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FIG. 4. State and process benchmarking with F;. We numeri-
cally simulate the estimation of (a) the phase ¢ of a GHZ-like
initial state in a 2D Rydberg system, (b) the ratio of the interaction
and tunneling strengths U/Q in a 1D Bose-Hubbard model, and
(c) ten disordered on-site potentials in a trapped ion model.
Parameters are estimated by maximizing £, over simulated
parameter values, using measurements after error-free (blue) or
noisy (red) quench evolution. The error bars and shaded regions

indicate the statistical uncertainties in ¥, and the parameter values
with 1000 samples. See SM [38] for details. (a), (b) Both F (black
lines) and F 4 (markers) are consistent and simultaneously
maximized at the true parameter value (dotted line). (c) Recon-
structed disorder potential values (markers) are consistent with
their true values (lines).

presence of correlated nonlocal errors. We provide detailed
analysis and potential resolutions of known failure cases in
the SM [38].

Applications.—The ability to measure the fidelity ena-
bles further applications. As examples, we show that one
can simultaneously estimate multiple parameters of quan-
tum states or Hamiltonians. The key observation is that,
given the ability to measure the fidelity between a theo-
retical model and experiment, one can vary classical
simulation model parameters to maximize the estimated
fidelity [31,36]. This optimization requires classical com-
putation but no further data acquisition. We numerically
demonstrate this idea in three different examples and verify
that the extracted parameter values are close to the actual
ones, even in the presence of noise; see Fig. 4.
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