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Protecting coherent quantum dynamics from chaotic environment is key to realizations of fragile many-
body phenomena and their applications in quantum technology. We present a general construction that
embeds a desired periodic orbit into a family of nonintegrable many-body Hamiltonians, whose dynamics
is otherwise chaotic. Our construction is based on time-dependent variational principle that projects
quantum dynamics onto a manifold of low-entangled states, and it complements earlier approaches for
embedding nonthermal eigenstates, known as quantum many-body scars, into thermalizing spectra. By
designing terms that suppress “leakage” of the dynamics outside the variational manifold, we engineer
families of Floquet models that host exact scarred dynamics, as we illustrate using a driven Affleck-
Kennedy-Lieb-Tasaki model and a recent experimental realization of scars in a dimerized superconducting
qubit chain.
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Introduction.—The dynamics of nonintegrable quantum
many-body systems typically gives rise to rapid thermal-
ization and scrambling of information. These hallmarks of
quantum ergodicity can be traced to the properties of the
system’s midspectrum eigenstates, which are generally
highly entangled and obey the eigenstate thermalization
hypothesis (ETH) [1,2]. In recent years, there has been a
flurry of activity aimed at understanding the conditions for
weak breaking of the ETH to emerge, in particular, by
devising ways of embedding nonthermalizing eigenstates
into otherwise chaotic many-body spectra [3–5]. These
eigenstates, referred to as quantum many-body scars
(QMBSs), have been identified in prominent models of
quantum magnets, such as the Affleck-Kennedy-Lieb-
Tasaki (AKLT) model [6–8], and in Rydberg atom quantum
simulators [9,10], where their signatures were first
observed in quench experiments [11]. Potential applica-
tions of QMBSs have been explored in the context of
controlling quantum-information dynamics in complex
systems [12] and for quantum metrology [13–15].
Despite much interest in weak ergodicity breaking phe-

nomena in different experimental platforms [16–18], the
origin of QMBSs remains the subject of ongoing inves-
tigation. Inmuch of theoretical work, QMBSs are studied by
algebraic constructions of ergodicity-breaking eigenstates.
In particular, the local projector approach by Shiraishi and
Mori [19] embeds a few nonthermal eigenstates into the

spectrum of a nonintegrable Hamiltonian. Other approaches
construct families of eigenstates, representing condensates
of quasiparticles evenly spaced in energy [8,20]. More
recent proposals aim to unify these different constructions
into a single framework [21–24]. All these approaches,
however, differ dramatically from the case of single-particle
scars in quantumbilliards, which are understood as quantum
remnants of classical unstable periodic orbits [25–28].
Nevertheless, for QMBSs observed inRydberg atom experi-
ments [11], the eigenstate constructions [10,20,29–31] were
shown to be in harmony with a semiclassical limit of the
dynamics, developed by Ho et al. [32], which identified a
periodic orbit in themany-bodyHilbert space that underpins
the coherent QMBSdynamics. The notion of a semiclassical
limit, introduced in Ref. [32] and adopted in this Letter, is
based on projecting quantum dynamics to a variational
manifold spanned by states with low entanglement.
In this Letter, we introduce a systematic method for

embedding a desired periodic trajectory into the dynamics
generated by a chaotic many-body Hamiltonian. The latter
is understood to obey the ETH, apart from a vanishing
fraction of states in the thermodynamic limit. Our method is
based on decomposing the Hamiltonian into a component
that generates an exact periodic orbit and a second
component that vanishes upon taking the semiclassical
limit. Thus, within a suitably defined semiclassical mani-
fold, the projected dynamics is a periodic oscillation.
However, the dynamics of the full model may deviate
from the projection to the manifold and this deviation is
quantified by the so-called quantum leakage [32,33]. Using
the quantum leakage, we introduce driving terms to the
model that cancel the distinction between the semiclassical
and quantum dynamics, schematically depicted in Fig. 1,
which results in exact Floquet QMBSs. We demonstrate the
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utility of our approach using the AKLT model [6,8] and a
recent superconducting circuit realization of QMBS [18]
based on the Su-Schrieffer-Heeger (SSH) model [34].
Time-dependent variational principle (TDVP).—To

avoid the exponential complexity of many-body quantum
systems, the TDVP method [35,36] approximately solves
the time-dependent Schrödinger equation (TDSE) by pro-
jecting it onto a manifold M spanned by ansatz wave
functions that capture the most important features of the
dynamics. In this Letter, we focus on one-dimensional
lattice systems with a d-dimensional Hilbert space on each
site, where M is spanned by wave functions jψðfzngÞi,
parametrized by a complex variable zn for each site n. For
example, in a simple manifold describing product states of
spins-1=2, one can think of zn parametrizing the orientation
of each spin on the Bloch sphere. However, as pointed
out by Haegeman et al. [37], a much larger class of
dynamical behaviors can be described if we allow M to
contain entangled states such as matrix product states
(MPSs) [38]. For MPSs, the variables zn on each site are
χ × χ-dimensional matrices As

n, labeled by a local basis
vector s ¼ 1; 2;…d and site index n. Increasing χ increases
the power of the ansatz, representing states with larger
amounts of entanglement between sites.
The time evolution within M is given by [36]

i
d
dt

jψðfzngÞi ¼ PT ĤjψðfzngÞi; ð1Þ

where PT ¼ P
n j∂znψðfzngÞig−1znz̄0nh∂z̄0nψðfz̄0ngÞj is a pro-

jector onto the tangent space of M at the point jψðfzngÞi.
g−1z̄nz0n is the inverse of the metric tensor of M,
gz̄nz0n ¼ h∂z̄nψðfz̄ngÞj∂z0nψðfz0ngÞi. Because of the tangent-
space projectors dependence on fzng, the TDVP dynamics
typically deviate from that generated by the TDSE,

becoming nonlinear. When M is a so-called Kähler
manifold, it is a classical dynamical phase space with
the TDVP equations being the corresponding Hamilton
equations [39,40]. Additionally, when the states inM form
an overcomplete basis, a Feynman path integral over M
can be constructed [41]. The TDVP equations then corre-
spond to the Euler-Lagrange equations of the path integral.
Semiclassical limit.—The deviation between TDVP

and TDSE can be characterized using “quantum leakage”
Γ [32]. The leakage is the norm of the difference between
the full and approximate time-evolved wave functions,
integrated around the orbit

Γ ¼ 1

T

I
kð1 − PT ÞĤjψ ½fznðtÞg�ikdt: ð2Þ

Typically, Γ2 is extensive, i.e., asymptotically proportional
to the system sizeN. By constraining the complexity ofM,
the TDVP approach allows one to effectively define a
semiclassical limit of the full quantum dynamics [32]:
provided the full quantum dynamics are well approximated
within the manifold, i.e., Γ ≪

ffiffiffiffi
N

p
, and M is spanned by

low bond dimension MPSs, we will refer to such dynamics
as “semiclassical.” Note that this definition admits a
semiclassical limit that includes (short-range) quantum
correlations, which is essential, e.g., for capturing the
behavior of constrained systems [32].
Orbit embedding conditions.—We now focus on

Hamiltonians Ĥ0 that possess a periodic orbit from a
certain initial state, jψðtÞi ¼ jψðtþ TÞi, for which it is
possible to find a low-dimensionalM that exactly captures
the dynamics. Suppose the Hamiltonian is then perturbed,
Ĥ0 → Ĥ0 þ Ĥ1, so that the TDSE is altered, but Eq. (1) is
not. A Hamiltonian that satisfies the following conditions
along the trajectory will retain a semiclassical periodic
orbit, despite its quantum dynamics being altered:

PT Ĥ0jψðfzngÞi ¼ Ĥ0jψðfzngÞi; ð3Þ

h
Ĥ1 − hψðfz̄ngÞjĤ1jψðfzngÞi

i
jψðfzngÞi ≠ 0; ð4Þ

PT Ĥ1jψðfzngÞi ¼ 0: ð5Þ

These conditions are illustrated in Fig. 1(a). Equations (4)
and (5) require that jψðfzngÞi is a fixed point of the TDVP
equations with respect to Ĥ1, while not being an eigenstate.
For Hamiltonians that satisfy the conditions (3)–(5), the
leakage can be simplified,

Γ ¼ 1

T

I
kĤ1jψ ½fznðtÞg�ikdt: ð6Þ

FIG. 1. (a) A periodic orbit can be embedded into a chaotic
many-body Hamiltonian by decomposing the latter into two
terms: Ĥ0, which generates a periodic orbit in a semiclassical
manifold M, and Ĥ1 that vanishes as the semiclassical limit is
taken. (b) For an MPS manifold, Ĥ1 takes a simplified form. The
generic conditions for a four-site local Ĥ1, valid for any system
size and choice of boundary conditions, are illustrated (top).
These conditions can be weakened for translation invariant MPSs
in the thermodynamic limit (bottom).
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Periodic orbit for MPSs.—Restricting our discussion to
MPSs as a variational ansatz, we can be more precise about
the form Ĥ1 must take in order to satisfy Eq. (5).
Suppose Ĥ1 can be written as a sum of 2K-local

operators, Ĥ1 ¼ P
n Ô

n
1 ⊗ Ônþ1

2 ⊗ � � � ⊗ Ônþ2K−1
2K ,

where Ôn
k is the kth type of local term in Ĥ1 acting on

site n. For evaluating correlation functions with MPSs, it is
useful to introduce the MPS transfer matrix, EnðÔkÞ ¼P

s;s̄0 Ā
s0
n Ô

n
k;s;s̄0A

s
n [42]. In the Supplemental Material [43],

we prove that Eq. (5) is satisfied for any system size and
choice of boundary conditions if we impose

YK
k¼1

Enþk−1ðÔkÞ ¼ 0;
Y2K

k¼Kþ1

Enþk−1ðÔkÞ ¼ 0: ð7Þ

In the thermodynamic limit, these conditions can be
significantly weakened. Let us assume that As

n is site-
independent and Enð1Þ possesses a unique dominant left
and right eigenvector ðLj and jRÞ, respectively. In this case,
Eq. (1) will always begin with ðLj and end with jRÞ, so
Eq. (5) is satisfied, provided

ðLj
YK
k¼1

Enþk−1ðÔkÞ¼0;
Y2K

k¼Kþ1

Enþk−1ðÔkÞjRÞ¼0: ð8Þ

These conditions are illustrated in Fig. 1(b) and below we
demonstrate how they can be used to construct families of
models that share the same periodic orbit, using SSH
and AKLT chains as examples. We note that the above
assumption about the form of Ĥ1 can be straightforwardly
lifted for Hamiltonians that are sums of local operators or
feature long-range interactions.
SSH chain.—We now apply our approach to the dimer-

ized SSH model of polyacetylene [34,48],

ĤSSH ¼
XN=2−1

n¼0

Joσ
þ
2nþ1σ

−
2nþ2 þ

XN=2−2

n¼0

Jeσ
þ
2nþ2σ

−
2nþ3 þ H:c:;

ð9Þ

where σ� denote the Pauli raising and lowering spin
operators, Jo and Je are the hopping amplitudes on the
odd and even sublattice, respectively, and we have assumed
open boundary conditions. In Ref. [18], the SSH chain was
used as a starting point to realize QMBS dynamics on a
superconducting quantum processor when additional cou-
plings between sites are added to break the integrability. In the
absence of interdimer couplings, Je ¼ 0, the state jψð0Þi ¼
j10011001 � � �i, i.e., with dimers alternating between 10 and
01 local states, undergoes free precession, with frequency
2Jo. The oscillations are no longer perfect at Je ≈ 2Jo=3 and
instead exhibit a decaying envelope [18]. It was found
that a translation invariant next-next-nearest-neighbor

hopping enhances the QMBS oscillations. Indeed, such a
term reduces leakage from the scarred subspace, but it does
not lead to its total suppression [43]. However, using the
above approach, we can identify a driving protocol that
embeds an exact periodic trajectory into the model.
In order to embed the periodic trajectory into the SSH

chain, we block together sites f2n; 2nþ 1g and use a
d ¼ 4, χ ¼ 1MPS ansatz. The SSH Hamiltonian in Eq. (9)
then neatly fits into the form introduced above, with Ĥ0

being the Jo term and Ĥ1 the Je term. It is straightforward
to see that Eq. (4) is satisfied. To see that Eq. (5) is satisfied,
we note that, because the variational parameters are
localized to a single site, each term in the sum defining
PT differs from jψðtÞi on just one site. Ĥ1 acting on jψðtÞi
makes it orthogonal to jψðtÞi on two sites, therefore
Ĥ1jψðtÞi is annihilated by PT . In this sense, the SSH
Hamiltonian for any Je has the same semiclassical limit,
corresponding to the quantum dynamics of the Je ¼ 0
model.
Suppose we modify the SSH chain by adding longer-

range hopping terms of the form

Ĥ ¼
X
n

Joσ
þ
2nþ1σ

−
2nþ2 þ Jeσ

þ
2nþ2σ

−
2nþ3 þ Δσþ2nþ1σ

−
2nþ4

þ iαð−1Þnðσþ2nþ1σ
−
2nþ3 − σþ2nþ2σ

−
2nþ4Þ þ H:c: ð10Þ

The additional hopping terms introduced here all satisfy
Eqs. (4) and (5). and therefore Eq. (10) defines a class of
models that share the same semiclassical limit as the SSH
chain. This form was chosen so the Ĥ1 contributions all
take jψðtÞi to the same state. For this reason, the quantum
leakage takes a simple form,

Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 2

p

T

Z
T¼ π

Jo

t¼0

���� Je þ Δ
2

sinð2JotÞ þ α

����dt: ð11Þ

When Γ ¼ 0, the periodic TDVP trajectory becomes an
exact trajectory in the full quantum dynamics. By fixing
α ¼ 0 and Je ¼ −Δ, we obtain a family of static
Hamiltonians, Eq. (10), that admit exact periodic orbits.
However, we can also make Γ vanish if we allow the
coupling to vary with time, αðtÞ ¼ − 1

2
ðJe þ ΔÞ sinð2JotÞ,

as confirmed in Fig. 2(a). The latter Floquet model hosts the
same periodic orbit as the static SSH model. However,
unlike the static case, the tower of QMBS eigenstates are
not preserved by the Floquet operator, see Fig. 2(c). This is
reminiscent of Rydberg atoms with a modulated chemical
potential [12], where the scarred initial state also has high
overlap with only a few Floquet modes [49].
AKLT model.—Our construction can also embed

trajectories that involve entangled states with nontrivial
correlations. As a second example, we consider the AKLT
model [50]—a paradigmatic model of symmetry protected
topological (SPT) order,
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ĤAKLT ¼
X
n

Sn · Snþ1 þ
1

3
ðSn · Snþ1Þ2; ð12Þ

where Sn is a spin-1 operator on lattice site n. Recently,
there has been much interest in quantum simulations of this
model [51–55]. For present purposes, it will be important
that ĤAKLT contains a tower of QMBS eigenstates, gen-
erated by repeatedly applying the π-momentum spin-
raising operator, Qþ ¼ P

nð−1ÞnðSþn Þ2, to the ground
state [8,56]. The QMBS towers were shown to allow
signatures of SPT order, such as the fractionalized boun-
dary excitations, to persist at high energies above the
ground state [57].
To construct the AKLT periodic orbit, we use the

following χ ¼ 2 initial state:

jψð0Þi ¼ ⊗
n
½1þ ð−1ÞnðSþn Þ2=2�jψAKLT

GS i: ð13Þ

This state oscillates periodically at a constant entanglement
entropy SEðtÞ ¼ logð2Þ, with the period set by the level
spacing in the scarred subspace, ϵ ¼ 4. Note that this

choice of the initial state is not unique, e.g., a similar χ ¼ 4

state was considered in Ref. [21]. We construct Ĥ1

that satisfies Eqs. (4) and (5) by noting that, for the
AKLT ground state, no two neighboring sites can be in
the state j−i, a property inherited by jψðtÞi. As PT differs
from the MPSs jψðtÞi on a single site, Ĥ1 will satisfy
Eq. (5) provided it maps at least four neighboring sites
to j−i. Therefore, introducing the state jχ−i≡ j−;−;−;−i,
a suitable Hamiltonian will be of the form Ĥ1 ¼
γ
P jΦihχ−j þ H:c:, where jΦi is an arbitrary state on

four sites, which needs to have a finite overlap with jψðtÞi
in order to satisfy Eq. (4). These perturbations to the AKLT
model differ fundamentally from those that preserve the
entire tower of QMBS eigenstates in Ref. [21]. Indeed, the
QMBS eigenstates of the AKLT model are not contained
within the manifold; therefore, even perturbations with a
perfectly coherent scarred orbit are not required to preserve
the eigenstates.
Using quantum leakage, we can construct a driven

perturbation of the AKLT model with an exact Floquet
scarred state. First, we introduce the local basis vectors
jα�i ¼ ðjþi � j−iÞ= ffiffiffi

2
p

. Using this basis, we examine the
following two-parameter perturbation:

Ĥ1 ¼
X
n

γjαþ; α−; αþ;α−ihχ−j þ γjα−; αþ; α−; αþihχ−j

þ ð−1ÞnΔj0;þ; 0;þihχ−j þ H:c: ð14Þ

All of the terms in this Ĥ1 map jψðtÞi to the same state;
therefore, the leakage takes the form

Γ ∝
ffiffiffiffi
N

p Z
T¼π

2

t¼0

jγ cosðϵtÞ − Δ=2jdt: ð15Þ

The leakage can be exactly canceled by setting
Δ ¼ 2γ cos ðϵtÞ, as confirmed in Fig. 2(b). The Floquet
model once again destroys the underlying tower of QMBS
states, as shown in Fig. 2(d).
While to the best of our knowledge, there is no general

relation between QMBS states and SPT order, it is
interesting to note that our periodic scarred trajectory
exhibits a constant-in-time AKLT string order para-
meter [58]. This is surprising given that the Floquet model
breaks the dihedral Z2 × Z2 symmetry that normally
protects the SPT order in the AKLT model [59]. Thus,
our construction can embed a trajectory with quantized SPT
order parameter into a non-SPT model. In the Supplemental
Material [43], we show that similar conclusions hold for the
cluster model [60], which exhibits Majorana boundary
modes [61,62].
Conclusions and discussion.—We have presented a

method for constructing classes of quantum Hamiltonians
with equivalent semiclassical dynamics. This construction
results in models that possess approximate QMBSs

FIG. 2. (a) Maximum fidelity revival (between times t0 ¼ 1 and
t1 ¼ 2π) for the driven SSH model in Eq. (10) with
αðtÞ ¼ −α0 sinð2JotÞ. The system size N ¼ 80 and coupling
Je ¼ 2=3 are fixed, while α0 and Δ are varied. (b) Maximum
fidelity revival (between t0 ¼ 0.5 and t1 ¼ π) for the driven
AKLT model (14), with ΔðtÞ ¼ Δ0 sinðϵtÞ. Data are for the
system size N ¼ 50, varying Δ0 and γ. In both (a) and (b), data
are obtained using numerical implementation of the TDVP with
bond dimension χ ¼ 64. (c) The scarred eigenstates jEji of the
static model are destroyed by the Floquet operator; only the
periodic orbit jψð0Þi is preserved. Also shown is the periodic
orbit shifted by T=2. Data for both models in (c) are obtained via
exact diagonalization.
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associated with a semiclassical trajectory, reminiscent
of scars in quantum billiards [25]. For the choice
of Hamiltonians above, the calculation of the quantum
leakage is tractable, allowing one to write down new
Floquet models with exact QMBSs (see the Supplemental
Material [43] for further examples). The choice of MPSs for
defining the manifold M was due to many QMBS models
previously studied in the literature using MPS methods.
However, our approach can be extended to other classes of
variational wave functions such as bosonic or fermionic
Gaussian states [63] or projected entangled pair states [42].
The approach here complements recent works that

construct exact QMBSs using cellular automata [64–66].
In particular, it furnishes a constructive realization of orbit
“steering” by Ljubotina et al. [67]. In contrast to the latter,
our approach yields exact Floquet QMBSs without the need
for variational optimization. Furthermore, our method
does not require that the periodic orbit be generated by
QMBSs, e.g., it could result from other ergodicity-breaking
mechanisms, such as integrability or Hilbert space frag-
mentation [68–70].
If the states in M form an overcomplete basis, then a

Feynman path integral over the manifold can be con-
structed [41]. The saddle point equations of the path
integral will correspond to the TDVP equations of motion,
while additional perturbative corrections eventually repro-
duce the exact quantum dynamics. In particular, the
quadratic corrections to TDVP equations of motion can
be related to Lyapunov exponents that characterize the
chaotic nature of mixed semiclassical phase space [33,71].
For Hamiltonians that can be decomposed in the manner
introduced in this Letter, it may be possible to write analytic
expressions for the Lyapunov exponents.
In some physical applications, one would wish to

“invert” the above procedure, i.e., given a manifold M
and a Hamiltonian Ĥ, describing some physical system
which supports QMBSs, one would like to identify a
decomposition into Ĥ0 and Ĥ1, such that Eqs. (3)–(5)
approximately hold. A notable example is the PXP
model [72,73], which provides an effective description
of QMBS in Rydberg atom arrays. In the PXP model, it is
not obvious how to perform the decomposition into Ĥ0 and
Ĥ1, although it has been conjectured that a suitable
deformation of the model could result in exact
QMBSs [30,74,75]. In this context, we note that, while
Eqs. (7) or (8) are sufficient conditions to satisfy Eq. (5),
they are not necessary. Hence, it would be interesting to
understand if there exist more general yet analytically
tractable mechanisms for embedding periodic orbits into
larger families of nonintegrable quantum Hamiltonians.
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