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This work explores the asymmetry of quantum steering in a setup using high-dimensional entanglement.
We construct entangled states with the following properties: (i) one party (Bob) can never steer the state of
the other party (Alice), considering the most general measurements, and (ii) Alice can strongly steer the
state of Bob, in the sense of demonstrating genuine high-dimensional steering. In other words, Alice can
convince Bob that they share an entangled state of arbitrarily high Schmidt number, while Bob can never
convince Alice that the state is even simply entangled. In this sense, one-way steering can become
unlimited. A key result for our construction is a condition for the joint measurability of all high-
dimensional measurements subjected to the combined effect of noise and loss, which is of independent
interest.
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Introduction.—Nonlocality is among the central features
of quantum theory. This effect manifests at different levels:
on the one hand, in the mathematical structure of the theory
(i.e., the Hilbert space) via the notion of entanglement [1,2]
and on the other hand, the measurement statistics of local
measurements performed on entangled states can feature
strong nonlocal correlations, which are incompatible with
any local model [3]. Initially, believed to be two facets of
the same phenomenon, it is now clear that entanglement
and quantum Bell nonlocality are in fact inherently differ-
ent; see, e.g., Refs. [4,5].
Another perspective on quantum nonlocality is provided

by the notion of quantum steering; see Refs. [6,7] for
reviews. This effect, formalized by Wiseman, Jones, and
Doherty [8], takes its roots in the early works of Einstein-
Podolsky-Rosen [9] and Schrödinger [10,11]. Here, an
untrusted party (Bob) wants to convince another party
(Alice) that they share an entangled state. By demonstrating
his ability to remotely steer Alice’s local state in a different
measurement basis, Bob can convince Alice. Steering is
thus an inherently asymmetrical task, contrary to entangle-
ment and Bell nonlocality.
Interestingly, the asymmetry of steering is also observed

at the level of quantum states. Specifically, there exist
entangled states that lead to steering from Bob to Alice, but
not the other way around [12]; Bob can convince Alice that
the shared state is entangled, while Alice can never
convince Bob, even if she would use all possible local
measurements. This effect, coined “one-way steering” has
attracted considerable attention in recent years, with many
examples in low-dimensional (mostly 2-qubit) [12–17] and
continuous variable Gaussian systems [18,19] as well as
experimental demonstrations; see, e.g., Refs. [20–23].
A relevant question is whether there exist different forms

of one-way steering, and whether some are stronger than

others. So far, this question has not been discussed, due to
the lack of an appropriate measure for steering in this
context. Here, we tackle this problem, taking advantage of
the recently introduced notion of genuine high-dimensional
steering [24]; see also Refs. [25,26]. This allows for a
dimensional quantification of steering, specifically to lower
bound the Schmidt number of an entangled state in a
steering scenario. We then ask whether there exist an
entangled state with the following properties: (i) Bob
cannot steer the state of Alice (even when allowing for
all possible local measurements), and (ii) Alice can steer
Bob’s state strongly, i.e., ensuring the presence of high-
dimensional entanglement (Schmidt number at least d). As
sketched in Fig. 1, we answer this question in the
affirmative by constructing a family of entangled states
[of dimension d × ðdþ 1Þ] with the above two properties
for any finite dimension d. To do so, we exploit the
connection between steering and measurement incompat-
ibility [27–30], and also its recent generalization [31] to
high-dimensional steering and the concept of n simulability

FIG. 1. We present high-dimensional entangled states ϱAB such
that (i) Bob cannot steer Alice and (ii) Alice can strongly steer
Bob and demonstrate genuine high-dimensional steering. This
shows that the effect of one-way steering can become unlimited.
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of measurements [32]. Notably, we give a sufficient
condition for the joint measurability of the set of all
positive-operator-valued measures (POVMs) subjected to
the combined effect of noise and loss.
Question and main result.—We consider a scenario

where two distant parties, Alice and Bob, share an
entangled state ϱAB. Each party performs local measure-
ments, represented by sets of POVMs. Specifically, Alice’s
measurements are described by a set of POVMs fAajxg,
where x denotes the measurement choice and a the out-
come, with the properties that Aajx ≥ 0 and

P
a Aajx ¼ 1

for all a and x. Similarly, for Bob we define the set of
POVMs fBbjyg.
As the shared state is entangled, the effect of each party’s

local measurements is to remotely prepare (steer) the other
party’s state. This is described via two so-called state
assemblages: fσAbjyg describe the states of Alice’s system
conditioned on Bob’s measurement while fσBajxg are Bob’s
states given Alice’s measurement. These are given by

σAbjy ¼ trB½ð1 ⊗ BbjyÞϱAB�; ð1Þ

σBajx ¼ trA½ðAajx ⊗ 1ÞϱAB�: ð2Þ

The main question we address here is how different these
two state assemblages can become, in other words how
asymmetric the effect of steering can be. Loosely speaking
we are looking for an entangled state ϱAB such that one of
the state assemblages, say fσAbjyg, is classical (in the sense
that it can never lead to steering), while the other assem-
blage fσBajxg is highly nonclassical (in the sense that it
exhibits strong steering, witnessing high entanglement
dimensionality).
Before defining the problem more precisely, let us first

observe that we are looking for some entangled states that
are high dimensional and asymmetrical. Obviously, if the
state ϱAB would be symmetrical under the exchange of
Alice and Bob, any assemblage obtainable in one direction
can also be obtained the other way around. Moreover, the
state ϱAB should feature a high entanglement dimension-
ality, as quantified here via the Schmidt number [33,34]: the
Schmidt number of ϱAB is the minimum n such that there
exists a decomposition ϱAB ¼ P

j pjjψ jihψ jj where all
jψ ji are pure entangled states of Schmidt rank at most n.
More formally, we are looking for entangled states with

the following two properties. (1) The assemblage fσAbjyg
admits a local hidden state (LHS) model [8]:

σAbjy ¼
X
λ

pðλÞpðbjλ; yÞσλ ∀ b; y: ð3Þ

Importantly, this should hold for any set of measurements
for Bob fBbjyg. Thus, no steering from Bob to Alice is
possible, implying that Bob can never convince Alice that

the shared state ϱAB is entangled. (2) The assemblage fσBajxg
is not (d − 1) preparable [24], i.e.,

σBajx ≠
X
λ

pðλÞtrA½ðMλ
ajx ⊗ 1ÞρλAB� ð4Þ

with pðλÞ an arbitrary probability distribution, Mλ
ajx arbi-

trary measurements (in Cd), and all ρλAB being arbitrary
states of Schmidt number (at most) d − 1. Thus, genuine
d-dimensional steering is demonstrated, so that Alice can
convince Bob that the shared state ϱAB has a large Schmidt
number d. For short, we say that ϱAB is d steerable.
In the following, we construct a family of entangled

states in dimension d × ðdþ 1Þ with the above two proper-
ties, for any d. This shows that one-way steering can
become unlimited, in the sense of being maximally
asymmetrical. Specifically, we start from a maximally
entangled 2-qudit state jϕþ

d i ¼ ð1= ffiffiffi
d

p ÞPd−1
k¼0 jk; ki and

apply successively a white noise (depolarizing) channel
followed by a loss channel, defined by

Wp∶ ρ ↦ pρþ ð1 − pÞtr½ρ� 1d
d
; ð5Þ

Lη∶ ρ ↦ ηρþ ð1 − ηÞtr½ρ�jøihøj: ð6Þ

The depolarizing (loss) channel replaces the original state
with a maximally mixed state (vacuum state jøihøj) with
probability 1 − p (1 − η). Note that the vacuum state
represents an additional “level,” orthogonal to the input
Hilbert space, so that the output state has dimension dþ 1.
After the two channels, we obtain the final state

ϱðη;pÞAB ¼ id ⊗ ðLη∘WpÞ½Φþ�

¼ ηpΦþ
d þ ηð1 − pÞ 1d ⊗ 1d

d2
þ ð1 − ηÞ 1d

d
⊗ jøihøj;

ð7Þ

where we use the notation Φþ
d ¼ jϕþ

d ihϕþ
d j. Note that ϱðη;pÞAB

is of dimension d × ðdþ 1Þ.
Result 1.—The states ϱðη;pÞAB defined in Eq. (7) satisfy the

following properties: (i) ϱðη;pÞAB is unsteerable from Bob to
Alice if

η ≤ ð1 − pÞd−1; ð8Þ

and (ii) ϱðη;pÞAB is d steerable from Alice to Bob if

p >
d

ffiffiffiffiffiffiffi
d

dþ1

q
− 1

d − 1
: ð9Þ

Therefore, for any d there are parameter values ðη; pÞ such
that conditions (i) and (ii) are both satisfied, thus
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demonstrating unlimited one-way steering. This regime
corresponds to low noise and high loss.
Proof outline.—Statement (i): The first step is to show

that the loss channel can be removed, because when acting
on the trusted party it does not affect the steering properties
of the underlying assemblage. This statement is formalized
by the following lemma.
Lemma 1.—Consider an assemblage fσajxga;x and a loss

channel Lη for η > 0. The assemblage fσ0ajx ¼ Lη½σajx�ga;x
is n steerable if and only if fσajxga;x is.
The full proof is in Supplemental Material (SM) [35].

The idea is to show that if the assemblage fσ0ajxga;x is n
preparable, one can construct an n-preparable model for
fσajxga;x. The converse holds trivially (via application of
the loss channel).
Hence, to prove that ρðη;pÞAB is d steerable from Bob to

Alice it is sufficient to show that the isotropic state ρð1;pÞAB ¼
pΦþ

d þ ð1 − pÞ½ð1d ⊗ 1dÞ=d2� is, which is to be expected
for weak enough noise. Indeed, it was shown in Ref. [31]
that this is the case for p satisfying Eq. (9), concluding the
proof of statement (i). Note that, in the above, d steerability
is demonstrated when using the set of all measurements.
Instead, one could use a simpler (and practical) witness
based on a pair of mutually unbiased bases, certifying d

steerability of ρð1;pÞAB [24] for

p ≥
ðdþ ffiffiffi

d
p

− 1Þ ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
− 1

ðd − 1Þð ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p þ 1Þ : ð10Þ

In turn, one shows d steerability of ρðη;pÞAB for any η > 0, via
the filtering procedure discussed in the proof of lemma 2,
which removes the vacuum component jøi.
Statement (i): Here we exploit the connection [29]

between the notions of steering and measurement compat-
ibility, formally introduced in the next section. In particular,
for any completely positive trace preserving map E it is
known that a state assemblage given by the operators σbjy ¼
tr½ð1 ⊗ MbjyÞðid ⊗ E½Φþ�Þ� admits a LHS model if and
only if the set of measurements fE�½Mbjy�g is jointly
measurable. Hence, the state ðid ⊗ E½Φþ�Þ is unsteerable
if and only if the channel E is incompatibility breaking
[30,36,37], that is for any measurement assemblage fMbjyg
the resulting assemblage fE�½Mbjy�g is jointly measurable.
Thus, statement (i) is implied by the following lemma.
Lemma 2.—The channel E ¼ Lη∘Wp is incompatibility

breaking if η ≤ ð1 − pÞd−1.
The proof of the lemma is rather straightforward once we

have solved the question of joint measurability of all
measurements subject to white noise and loss in a given
finite dimension d. This is a question of independent
interest, and will be exposed in the next section. Then
these results are used in SM [35] to give a formal proof of
Lemma 2.

Compatibility of all measurements with losses and
noise.—Measurement incompatibility is a property of a
set of measurements which cannot be performed simulta-
neously on a single copy of a system. Formally, a set of
measurements fMajxg is called incompatible if there exists
no “parent” POVM fEλg and classical postprocessings
fpðajx; λÞg such that

Majx ¼
X
λ

pðajx; λÞEλ: ð11Þ

Sets of measurements allowing for such a model are called
jointly measurable; see, e.g., Refs. [38,39] for reviews.
Our focus is on the (in)compatibility of measurements

which are noisy and lossy. For any POVM fMag with m
outputs a ¼ 1;…; m acting on a system of dimension d,

we define its imperfect version fM̄ðη;pÞ
a g as a POVM with

mþ 1 elements given by

M̄ðη;pÞ
a ¼

�
ηpMa þ ηð1 − pÞðtrMaÞ 1dd a ¼ 1;…; m

ð1 − ηÞ1d a ¼ ø
:

ð12Þ

The noisy measurement apparatus behaves like the ideal
one with probability ηp, produces a random outcome with
probability ηð1 − pÞ, and does not click with probability
1 − η (formally this corresponds to the no-click outcome
a ¼ ø). We are interested in knowing for which values
of ðη; pÞ all measurements in a given dimension d be-
come compatible. The following result gives a sufficient
condition.
Result 2.—The set of all POVMs fM̄ðη;pÞ

ajU gU on Cd is
jointly measurable if

η ≤ ð1 − pÞd−1: ð13Þ

Proof.—To prove the result we present an explicit
construction, inspired by Ref. [40], able to simulate all
imperfect POVMs with noise parameters fulfilling Eq. (13).
Note that it is sufficient to show that it can simulate all rank-
one POVMs fMa ¼ αajφaihφajg with

P
αa ¼ d, since

they can be postprocessed to simulate all other measure-
ments. The postprocessing is done by mixing POVM
elements, i.e., coarse graining the corresponding outputs,
by linearity it is consistent with the noisification of the
measurements defined in Eq. (12).
We take the parent POVM to be the covariant one—the

continuous-valued measurement with the density

Ez ¼ djzihzj ð14Þ

where jzi ¼ P
d−1
k¼0 zkjkiwith z ∈ Cd and jzj2 ¼ 1, and dz is

the invariant (under unitary transformations) measure over
pure quantum states jzi such that

R
dzjzihzj ¼ ð1=dÞ1d.
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To define the response function pðajzÞ simulating a
notified rank-one POVM fαajφaihφajga we proceed in two
steps. First one samples a possible output a from the
probability distribution ðαa=dÞ. Given a and the corre-
sponding state jφai, one simulates a two outcome POVM

fNðaÞ
a ; NðaÞ

ø g by using the deterministic response functions

pðaÞðajzÞ ¼
�
1 jhφaizj2 ≥ t

0 otherwise
ð15Þ

and pðaÞðøjzÞ ¼ 1 − pðaÞðajzÞ, with a parameter t ∈ ½0; 1�.
Let us now compute the resulting operators

NðaÞ
a ¼

Z
dzpðaÞðajzÞEz ð16Þ

and NðaÞ
ø ¼ 1d − NðaÞ

a . One notes that NðaÞ
a ¼ UNðaÞ

a U† is
invariant under all unitary transformations U which leave
the state jφai unchanged Ujφai ¼ jφai, since both the
measure dz and the response function pðaÞðajzÞ are invari-
ant under such transformations. In other words, any

such unitary commutes with our operator ½U;NðaÞ
a � ¼ 0.

It follows that NðaÞ
a has jφai for an eigenstate, and is

furthermore proportional to identity on the orthogonal
subspace, i.e., it is of the form

NðaÞ
a ¼ ĀdðtÞjφaihφaj þ B̄dðtÞ

1d − jφaihφaj
d − 1

; ð17Þ

with the scalar functions that can be computed as

ĀdðtÞ ¼ trNðaÞ
a jφaihφaj ¼ d

Z
dzpðaÞðajzÞjhφaizj2

ĀdðtÞ þ B̄dðtÞ ¼ trNðaÞ
a ¼ d

Z
dzpðaÞðajzÞ: ð18Þ

These integrals are straightforward to compute. In the
SM [35] we show that they give ĀdðtÞ ¼ ð1 − tÞd−1
½ðd − 1Þtþ 1� and T̄dðtÞ≡ ĀdðtÞ þ B̄dðtÞ ¼ dð1 − tÞd−1.
Finally, averaging over the sampled value a we see

that this strategy simulates Na ¼ ðαa=dÞNðaÞ
a and Nø ¼P

aðαa=dÞNðaÞ
ø , leading to

Na ¼
αa
d

�
ĀdðtÞjφaihφaj þ B̄dðtÞ

1d − jφaihφaj
d − 1

�
ð19Þ

and Nø ¼ 1d −
P

a Na. On the other hand from Eq. (12)

we obtain M̄ðη;pÞ
a ¼ ðαd=dÞðdηpjφaihφaj þ ηð1 − pÞ1dÞ.

Comparing with Eq. (19) we conclude that for

η ¼ T̄dðtÞ
d

¼ ð1 − tÞd−1;

p ¼ dĀdðtÞ − T̄dðtÞ
ðd − 1ÞT̄dðtÞ

¼ t ð20Þ

and t ∈ ½0; 1� any POVM fM̄ðη;pÞ
a g can be simulated.

Reproducing measurements that are even more noisy is
straightforward by adding noise to the above construction.
Hence, for any noise level p ¼ t our construction simulates

all POVMs fM̄ðη;pÞ
a g if η ≤ ð1 − tÞd−1 ¼ ð1 − pÞd−1. ▪

Finally, we note that Result 2 is only relevant in the
presence of losses, i.e., η < 1. For a channel with white
noise but without loss, a condition for being incompatility
breaking is given in Ref. [36].
Discussion and conclusion.—Considering a bipartite

steering scenario based on high-dimensional entanglement,
we have investigated how asymmetrical the effect of
steering can become. We presented entangled states ϱAB
such that Alice can convince Bob that ϱAB is of high
Schmidt number, while Bob can never convince Alice that
the state is even entangled. Thus, one-way steering can
become unlimited.
Specifically, we constructed families of entangled states

that exhibit genuine d-dimensional steering in one direc-
tion, while remaining unsteerable (under the most general
measurements) in the other direction. We note that this
construction can be straightforwardly generalized to states
with genuine n-dimensional steering in one direction and
unsteerable the other way around, for any 1 < n ≤ d [for
this, one should simply adapt the bounds in Eqs. (9) and
(10) to demand only n steerability, following the results of
Ref. [31] for Eq. (9) and Ref. [24] for Ref. (10)]. A practical
implementation of such states should be feasible, e.g., with
the setups of Refs. [41,42] for an experimental demon-
stration of unlimited one-way steering.
Finally, our work also contributed to the characterization

of joint measurability in high-dimensional measurements.
In particular, we obtained a criterion for the compatibility
of arbitrary measurements subjected to both noise and loss.
This result is of independent interest and may find other
applications.
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3, 043100 (2021).
[18] S. L. W. Midgley, A. J. Ferris, and M. K. Olsen, Phys. Rev.

A 81, 022101 (2010).
[19] M. K. Olsen, Phys. Rev. A 88, 051802(R) (2013).
[20] V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T.

Franz, R. F. Werner, and R. Schnabel, Nat. Photonics 6, 596
(2012).

[21] S. Wollmann, N. Walk, A. J. Bennet, H. M. Wiseman, and
G. J. Pryde, Phys. Rev. Lett. 116, 160403 (2016).

[22] K. Sun, X.-J. Ye, J.-S. Xu, X.-Y. Xu, J.-S. Tang, Y.-C. Wu,
J.-L. Chen, C.-F. Li, and G.-C. Guo, Phys. Rev. Lett. 116,
160404 (2016).

[23] N. Tischler, F. Ghafari, T. J. Baker, S. Slussarenko, R. B.
Patel, M. M. Weston, S. Wollmann, L. K. Shalm, V. B.
Verma, S. W. Nam, H. C. Nguyen, H. M. Wiseman, and
G. J. Pryde, Phys. Rev. Lett. 121, 100401 (2018).

[24] S. Designolle, V. Srivastav, R. Uola, N. H. Valencia, W.
McCutcheon, M. Malik, and N. Brunner, Phys. Rev. Lett.
126, 200404 (2021).

[25] S. Designolle, Phys. Rev. A 105, 032430 (2022).
[26] C. de Gois, M. Plávala, R. Schwonnek, and O. Gühne, Phys.

Rev. Lett. 131, 010201 (2023).
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