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Nonreciprocal Cahn-Hilliard Model Emerges as a Universal Amplitude Equation
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Oscillatory behavior is ubiquitous in out-of-equilibrium systems showing spatiotemporal pattern
formation. Starting from a linear large-scale oscillatory instability—a conserved-Hopf instability—that
naturally occurs in many active systems with two conservation laws, we derive a corresponding amplitude
equation. It belongs to a hierarchy of such universal equations for the eight types of instabilities in
homogeneous isotropic systems resulting from the combination of three features: large-scale vs small-scale
instability, stationary vs oscillatory instability, and instability without and with conservation law(s). The
derived universal equation generalizes a phenomenological model of considerable recent interest, namely,
the nonreciprocal Cahn-Hilliard model, and may be of a similar relevance for the classification of pattern
forming systems as the complex Ginzburg-Landau equation.
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The concept of active systems emerged as a paradigm in
the description of a wide variety of biochemophysical
nonequilibrium phenomena on multiple scales ranging
from the collective behavior of molecules within biological
cells to the dynamics of tissues or human crowds [1]. In a
narrow interpretation, active matter always involves che-
momechanical coupling and shows some kind of self-
sustained (collective) motion of the microscopic agents
[2-5]. In a wider sense, active systems encompass open
systems that are kept out of equilibrium by a throughflow of
material or energy [6], and therefore may develop self-
organized spatiotemporal patterns. This then includes the
large spectrum of systems described by reaction-diffusion
models [7-9] and systems characterized by the interplay of
phase separation and chemical reactions [10].

In this context, predator-prey-type nonreciprocal inter-
actions between constituents of active matter have recently
become a particular focus as the implied breaking of
Newton’s third law results in a rich spectrum of nascent
self-excited dynamic behavior [11-15]. Besides various
(stochastic) agent-based models of Langevin-type, continu-
ous deterministic field theories have also been proposed
[5], most notably, in the form of nonreciprocal Cahn-
Hilliard models [16—-18]. The latter add nonreciprocal
interactions to classical Cahn-Hilliard models [19] (model
B in [20]) that describe the dynamics of phase separation,
e.g., in binary or ternary mixtures [21,22]. In particular, the
resulting nonreciprocal Cahn-Hilliard models represent two
conservation laws with nonvariational coupling. It is shown
that this coupling may result in traveling and oscillating
states [16—18], arrest or suppression of coarsening [18],
formation of small-scale spatial (Turing) patterns as well as
stationary, traveling and oscillatory localized states [23]—
all features that are forbidden in standard reciprocal Cahn-
Hilliard models.
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However, these nonreciprocal Cahn-Hilliard models are
introduced on phenomenological grounds by symmetry
considerations, but no derivation of the field theory from a
microscopic description or other deeper justification has
been provided yet. Here, we show that the model indeed
merits extensive study as it actually represents one of the
universal equations of pattern formation. One may even
argue that it corresponds to a “missing amplitude equation”
for the basic eight types of linear instabilities in spatially
extended isotropic homogeneous systems that can be
described by scalar fields. An amplitude (or envelope)
equation describes the universal bifurcation behavior char-
acterizing the spatiotemporal dynamics in the vicinity of
the threshold of a single instability or of several simulta-
neous instabilities, and can be systematically derived in a
weakly nonlinear approach [24]. The mentioned eight
instability types result from the combination of three
features: (i) large-scale vs small-scale instability, (ii) sta-
tionary vs oscillatory instability, and (iii) instability without
and with conservation law(s). The spatial and temporal
character of an instability encoded in features (i) and (ii) is
well captured in the classification of instabilities by Cross
and Hohenberg [25], and the four corresponding amplitude
equations for systems without conservation law are very
well studied. One example is the complex Ginzburg-
Landau equation [26] valid near the onset of a large-scale
oscillatory (also known as Hopf or type III, [25]) insta-
bility. An overview of the basic eight instability types in our
amended classification, their dispersion relations, and
seven existing amplitude equations, is provided in Sec. 1
of the Supplemental Material.

However, the consequences of conservation laws in the
full range of pattern-forming systems are less well studied:
Small-scale stationary and oscillatory cases with a con-
servation law are considered in [27] and [28], respectively,
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with applications to pattern formation in the actin cortex of
motile cells [29,30], in crystallization [31], and in magneto-
convection [32]. However, only recently it was shown that
the standard single-species Cahn-Hilliard equation does not
only describe phase separation in a binary mixture [19,33]
but furthermore can be derived as an amplitude equation
valid in the vicinity of a large-scale stationary instability in
a system with a single conservation law [34]. In conse-
quence, close to onset, a reaction-diffusion system with one
conservation law as, e.g., discussed in [29,35-43], can be
quantitatively mapped onto a Cahn-Hilliard equation.
Similarly, the equation captures core features of certain
collective behavior in chemotactic systems [44] and of cell
polarization in eukaryotic cells [45].

This leaves only one of the eight cases unaccounted for,
namely, the large-scale oscillatory instability with conser-
vation laws, that we call conserved-Hopf instability. In the
following, we consider active systems with two conserva-
tion laws and show that the general nonreciprocal Cahn-
Hilliard model emerges as a corresponding universal
amplitude equation. Thereby, all the particular phenom-
enological models studied in [16—18,23] are recovered as
special cases. This also applies to the complex Cahn-
Hilliard equation appearing as a mass-conserving limiting
case in Ref. [46].

Before we embark on a general derivation of the
amplitude equation we emphasize its applicability to the
wide spectrum of systems where the conserved-Hopf
instability and related intricate nonlinear oscillatory behav-
ior can occur: A prominent example is the spatiotemporal
pattern formation of proteins vital for cellular processes.
Although chemical reactions cause conformation changes
of proteins, their overall number is conserved on the
relevant time scale, e.g., MinE and MinD in ATP-driven
cellular Min oscillations [41]. Such an instability can also
be expected in other reaction-diffusion systems with more
than one conservation law, e.g., the full cell polarity model
in Ref. [36]. Relevant examples beyond reaction-diffusion
systems include oscillations in two-species chemotactic
systems [47]; an active poroelastic model for mechano-
chemical waves in cytoskeleton and cytosol [48]; thin
liquid layers covered by self-propelled surfactant particles
[49]; oscillatory coupled lipid and protein dynamics in cell
membranes [50]; multicomponent phase-separating reac-
tive or surface-active systems [51,52]; and two-layer liquid
films or drops on a liquid layer with mass transfer [53] or
heating [54] where the two interfaces may show intricate
spatiotemporal oscillation patterns [53,55,56].

In most cases, the two conserved quantities correspond
to concentration fields, film or drop thickness profiles,
particle number densities, and the conserved-Hopf insta-
bility occurs as a primary instability. However, another
class of examples exists where it appears as a secondary
instability. For example, in Marangoni convection the
interaction between a large-scale deformational and a

small-scale convective instability is described by coupled
kinetic equations for the film height and a complex
amplitude [57]. There, the liquid layer profile and the
phase of the complex amplitude represent the two con-
served quantities and the occurring conserved-Hopf insta-
bility corresponds to an oscillatory sideband instability.

Systems like the given examples that feature two con-
servation laws and exist in a sustained out-of-equilibrium
setting can become unstable through a conserved-Hopf
instability, i.e., the linear marginal mode [growth rate
A(k.) = 0] occurs at zero wave number (k, = 0) and zero
frequency [Q(k.) = Q. = 0]. This is determined via a
linear stability analysis of the trivial uniform steady state
yielding the dispersion relations 4 (k) of the dominant pair
of complex conjugate modes where A = Rel, and
+Q =1Iml,. Although 1.(k=0) =0 always holds, as
the two conservation laws imply the existence of two
neutral modes, the conserved-Hopf mode is oscillatory at
arbitrarily small wave numbers. In other words, directly
beyond instability onset the system undergoes large-scale
small-frequency oscillations, i.e., the conservation laws
imply that the first excited mode has the smallest wave
number compatible with the domain boundaries and
oscillates on a correspondingly large time scale as Q — 0
for k — 0. In consequence, the weakly nonlinear behavior is
not covered by any of the seven amplitude equations
summarized in Sec. 1 of the Supplemental Material.

Dispersion relations below, at, and above the threshold of
a conserved-Hopf instability are sketched in Fig. 1 and are
at small k given by

FIG. 1. Linear growth rates A(k) = Red. (k) in dependence of
the wave number k below (solid blue line, 6 < 0), at (solid purple
line, 6 = 0) and above (solid red line, 6 > 0) the threshold of a
conserved-Hopf instability as described by the dispersion relation
A+ (k) given by the series expansion Eq. (1). The black dashed
lines give the frequencies £Q (k) = ImA, (k) that are identical in
all three cases. Labeled thin dotted lines and solid bars indicate
typical quantities and scalings above onset as described in the
main text.
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Ay (k) = A(k) + iQ(k)
with  A(k) = 6k — 8k* + O(k®)
and Q(k) = wk® + @k* + O(KS). (1)

The onset occurs when & becomes positive while & > 0.
Above onset, Eq. (1) indicates modes within a band of
wave numbers 0 < k < k, = \/(% that exponentially
grow. The fastest mode is at k, =k / V2 and has the
growth rate A, = 6%/(45).

To determme an amplitude equation that captures the
bifurcation structure characterizing the spatiotemporal pat-
tern formation in the vicinity of the onset of a conserved-
Hopf bifurcation with a dispersion relation as depicted in
Fig. 1, we apply a weakly nonlinear approach [24]. First, we
introduce a smallness parameter £ with |¢| < 1 and consider
the system close to onset where & = &,¢. From hereon
subscript numerals indicate the order in € of the correspond-
ing term. Then, the width of the band of growing wave
numbers and the maximal growth rate scale as & and &*,
respectively. This determines the additional large spatial

scale X = &% and slow timescale T = &*f relevant for the
dynamics. Additionally, Eq. (1) indicates that the leading
order oscillation frequency scales like Q ~ wk? ~ 2. This
implies that a second slow timescale 7 = £ has to be taken
into account.

Specifically, we now consider a general homogeneous
isotropic multicomponent system with two conservation
laws,

i.e., coupled kinetic equations for two conserved (p and o)
and N nonconserved [r = (ny, ..., ny)] scalar field varia-
bles. Note that Eq. (2) can represent any of the examples
mentioned above. From here onwards, u = (p, 6, n) is used
as an abbreviation where convenient. The dynamics of the
two conserved quantities is given by the divergence of
corresponding fluxes that consist of the product of a
mobility (Q or R) and the gradient of a nonequilibrium
(chemical) potential (y or u) that, in general, still depends

on spatial derivatives V. The dynamics of the nonconserved
quantities is given by the vector F of general functions of
fields and their spatial derivatives. In the simplest case, the
system may represent a reaction-diffusion system with
N + 2 species that has been rearranged (similar to [42])
to explicitly show the two conservation laws [58]. More
complicated examples include multifield thin-film descrip-
tions where two components are conserved [56] and

multispecies membrane models showing phase separation
and chemical reactions [50]. For an active system the
potentials cannot be obtained as variational derivatives of a
single underlying energy functional. Here, we sketch the
derivation of an amplitude equation for the conserved-Hopf
instability (Fig. 1) of a homogeneous steady state of a
general system (2) while Sec. 2 of the Supplemental
Material presents the complete algebra.

To perform the weakly nonlinear analysis valid in the
vicinity of instability onset, we expand all fields in e,
ie., u()_f, 7,T) =uy+ eul(;(, ©.T)+ uy(X. 7, T) + - - -,
where u is the steady uniform state with F(uy) = 0 and
u,()? ,7,T), i =1,2,... are the deviations that describe the
(weakly) nonlinear behavior. We take the above discussed
scaling of space and time implied by the dispersion relation
into account by writing Vy=¢Vy and 9, = %0, + ¢*or,
respectively. With this we then consider Egs. (2) order by
order. The scaling implies that we need to successively
consider all orders up to O(¢’) to discover evolution
equations that capture dynamic effects on the slow time-
scale T.

In principle, at each order we first determine the non-
conserved fields as (nonlinear) functions of the conserved
fields, reflecting that the dynamics of the former is slaved to
the latter. Second, we obtain the continuity equations to the
corresponding order by inserting the obtained expressions
into the appropriate mobilities and potentials similar to
Taylor-expanding them. In particular, at order e, the
contributions of the two continuity equations vanish and
the remaining N equations become a homogeneous linear
algebraic system for the slaved quantities, solved by
n(X.7,T) = n,,pl()_f, ©.T) +n,0,(X,7,T) where n, and
n, correspond to the zero eigenmodes (1,0,n,) and
(0,1,n,) of the dominant eigenspace at k = 0 [59].

At order £2, again the continuity equations are again
trivially fulfilled, and the remaining equations form an
inhomogeneous linear algebraic system for n,. Thereby, the
inhomogeneity is nonlinear in lower order quantities. At
order &°, the first nonvanishing contributions from the
continuity equations appear, that, after ehmmatmg np,

correspond to linear equations in V& py and V& 0. They
provide the conditions for the instability onset at 6 = 0 in
Eq. (1). They also capture the leading order oscillations
with frequency o on the time scale 7 by an antisymmetric
dynamic coupling that represents a nonreciprocal coupling
of lowest order (a structure equivalent to the Schrodinger
equation for a free particle). Also for ny an inhomogeneous
linear algebraic system emerges. At the subsequent order
&*, further contributions to the evolution on the time scale t
are obtained from the continuity equations. Finally, at order
& we obtain expressions for drp, and d;0,. Using the
earlier obtained results for n;, n,, and nrs, the complete
continuity equations at this order can be written as non-
linear functions of the p; and ;. This provides the weakly
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nonlinear expression for the leading order time evolution
on the timescale 7. Next, the expressions found at the
different orders are recombined, in passing “inverting” the
scalings and expansions of time, coordinates, and fields p
and o. The resulting amplitude equation corresponds to a
generalized nonreciprocal Cahn-Hilliard model (i.e., two
nonreciprocally coupled Cahn-Hilliard equations) and is
given in Sec. 2 of the Supplemental Material. In the
common case of constant mobilities (Q = Q, and
R = Ry) in Eq. (2), cross-couplings in the highest-order
derivatives may be removed by a principal axis trans-
formation, resulting in

0A =V {alA + aB+ Ny(A.B) - DNQA}
0,B = V* {ﬁlA + BB+ Ng(A,B) - D}ﬁZB] )

Here, the spatially slowly varying real amplitudes A and B
are linear combinations of the deviations of the conserved
fields from their mean values, D, and Djp are effective
interface rigidities, and N, and N are general cubic
polynomials in A and B, e.g., Ny = azA> +a,AB + as B>+
agA3 + a;A’ B + agAB? + ag B> . All parameters are real [60)].

The derived general nonreciprocal two-component
Cahn-Hilliard model describes the universal bifurcation
behavior in the vicinity of any conserved-Hopf instability
independently of the particular system studied—all such
systems and most of their parameters at instability onset are
encoded in the rich parameter set of the derived equations.
It should further be noted that the derived general model
encompasses further primary bifurcations as it actually
corresponds to the amplitude equation for an instability of
higher codimension. This is shown in Sec. 3 of the
Supplemental Material employing the example of a
Cahn-Hilliard instability of codimension two. In other
words, the derived amplitude equation may be considered
as belonging to a higher level of a hierarchy of such
equations. It captures several qualitatively different linear
instability scenarios. Such hierarchies are useful to under-
stand the qualitative differences and transitions between
instability types. Amplitude equations on a higher hier-
archy level describe the bifurcation behavior close to higher
codimension points, i.e., the behavior in the vicinity of
several different instabilities. In the limiting case where
only one of the contained instabilities is close to its onset,
the higher level equation can often be reduced to a simpler
lower level equation [61]. However, such a further reduc-
tion of the derived nonreciprocal Cahn-Hilliard equation
remains a task for the future.

Note that the presence of additional subdominant neutral
modes (e.g., resulting from additional conservation laws) or
the simultaneous onset of several distinct instabilities
would (possibly in extension of the present work) also

result in amplitude equations on a higher level of the
“codimension hierarchy” [30,62].

It is an interesting observation that the various ad hoc
nonreciprocal Cahn-Hilliard models studied in [16-18]
emerge as special cases of the equation derived here
[63]. Table 3 in Sec. 2 of the Supplemental Material
provides the corresponding parameter choices in Eq. (3).
Two other limiting cases are also included: (i) If
certain symmetries between coefficients hold, one may
introduce a complex amplitude C=A+4iB and
present Eq. (3) as a complex Cahn-Hilliard equation

3,C = -GV {g+ (1+ib)V* = (1 + ic)|C|2} C.ie.asa

complex Ginzburg-Landau equation with an additional
outer Laplace operator reflecting the conservation property,
as briefly considered in Ref. [46]. This, in passing clarifies
that Eq. (3) is more than just a “conserved complex
Ginzburg-Landau equation” because it does not show its
phase-shift invariance. (ii) Imposing another symmetry
between coefficients renders the coupled equations varia-
tional. Then they represent a generic model for the
dynamics of phase separation in a ternary system [22,71].

To conclude, we have derived an amplitude equation
valid in the vicinity of a conserved-Hopf bifurcation and as
well at related bifurcations of higher codimension. It
qualitatively captures transitions generically occurring in
the wide variety of out-of-equilibrium systems that feature
two conservation laws. Note that close to the conserved-
Hopf instability it also provides a rather good quantitative
description of the bifurcation structure. This is exemplified
in Sec. 4 of the Supplemental Material [65] where the
amplitude equation is derived and analyzed in comparison
with the full system for the relatively simple case of a three-
component reaction-diffusion system with two conserva-
tion laws. As the latter reduce the local phase space
(defined as in Ref. [42]) to one dimension, the emerging
behavior will be much less complex than seen in the Min
system [41] and other high dimensional cases [49].

The derived equation forms part of the hierarchy of
universal amplitude equations for the above discussed eight
basic instabilities. Thus, its relevance for the classification
of pattern forming behavior close to the onset of insta-
bilities resembles that of the complex Ginzburg-Landau
equation that describes the universal bifurcation behavior in
the vicinity of a standard Hopf instability in systems
without conservation laws [24-26,72]. However, one has
to add restrictively that the large number of parameters of
the derived generic model might limit its practical use as a
complete parametric study of all generic behaviors is
prohibitively costly. Still its study has already started to
form a valuable bridge between the analysis of the many
specific models and the set of amplitude equations on a
lower hierarchy level (that still needs completion). In cases
where the primary bifurcation is subcritical (e.g., for the
Min oscillations [41]), even higher order amplitude equa-
tions might be insufficient to faithfully predict the
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spatiotemporal behavior. Then weakly and fully nonlinear
approaches should be employed in a complementary
manner.

Although it is known that the conserved-Hopf instability
is related to phenomena that are not covered by the complex
Ginzburg-Landau equation [56] only very few studies have
considered its (weakly) nonlinear behavior by correspond-
ing amplitude equations, normally, in special cases [57,73].
On the one hand, Ref. [57] restricts its focus to amplitude
equations for spatially periodic traveling and standing
waves, and on the other hand, Ref. [73] deals with a
particular case without reflection symmetry where one of
the two conservation laws is weakly broken. The universal
character of the model derived here, implies that literature
results on the onset of motion and oscillations [16—18] and
as well potentially on the suppression of coarsening and the
existence of localized states [18,23] may be applied to the
class of out-of-equilibrium systems that undergo a con-
served-Hopf instability. In consequence, spatiotemporal
patterns occurring in a wide spectrum of systems from
protein dynamics within cells and on membranes [41,50],
chemotactic systems of organisms [47], coupled cytoske-
leton and cytosol dynamics [48], multicomponent phase-
separating reactive, surface-active or active systems
[49,51,52], to two-layer liquid films with heating or mass
transfer [53-55] should be further studied to identify their
common universal features as out-of-equilibrium systems
with conservation laws as well as characterizing differences
that may prompt a further development of the hierarchy of
amplitude equations.

Note that the present work has entirely focused on
isotropic homogeneous systems described by scalar fields,
implying that systems like the active Ising model in [74,75]
are not covered as they involve a pseudoscalar. The
dispersion relations of such systems with conservation
laws have properties different from the ones considered
here. It would be highly interesting to produce a system-
atics similar to the one proposed here for systems involving
pseudoscalars. To our knowledge, so far only a few cases
have been treated by weakly nonlinear theory.
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