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We introduce a quantum virial expansion for the optical response of a doped two-dimensional
semiconductor. As we show, this constitutes a perturbatively exact theory in the high-temperature or low-
doping regime, where the electrons’ thermal wavelength is smaller than their interparticle spacing. We
obtain exact analytic expressions for the photoluminescence and we predict new features such as a
nontrivial shape of the attractive branch peak related to universal resonant exciton-electron scattering and
an associated energy shift from the trion energy. Our theory furthermore allows us to formally unify the two
distinct theoretical pictures that have been applied to this system, where we reveal that the predictions of the
conventional trion picture correspond to a high-temperature and weak-interaction limit of Fermi-polaron
theory. Our results are in excellent agreement with recent experiments on doped monolayer MoSe2 and
they provide the foundation for modeling a range of emerging optically active materials such as van der
Waals heterostructures.
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The problem of a quantum impurity interacting with a
backgroundmedium represents a paradigmatic example of a
strongly correlated many-body system. First considered in
the context of electrons moving in a crystal lattice [1], the
quantum impurity (polaron) problem has since been gen-
eralized to many different systems across a wide range of
energy scales, including magnetic impurities [2], quantum
mixtures in ultracold atomic gases [3–5], and even protons in
neutron stars [6]. Most recently, it has provided key insights
into the optical response of doped two-dimensional (2D)
semiconductors [7–18]. Here, an optically excited exciton
(bound electron-hole pair) is immersed in a fermionic
medium of charge carriers (electrons or holes), leading to
the appearance of two peaks in the optical response—a
“repulsive polaron” and an “attractive polaron”—at energies
that evolve, respectively, into those of the exciton and a trion
(charged exciton bound state) in the limit of vanishing
doping. Such exciton polarons have attracted a large amount
of interest since they can be realized in atomically thin
transition metal dichalcogenides (TMDs), where there is the
prospect of technological applications involving both charge
doping and coupling to light [19,20].
However, there is an ongoing debate about whether the

optical response should be described within a Fermi-
polaron picture [7,9–13,21], where excitons are coherently
dressed by excitations of the medium to form new polar-
onic quasiparticles [22], or whether it is better to use a
more conventional trion picture [23–25] that involves

independent few-body states (excitons and trions). The
two pictures have been shown to give indistinguishable
results for some observables (e.g., the oscillator strength) at
low charge doping [26], but this requires an intrinsic
linewidth that exceeds the Fermi energy of the charge
carriers [27]. On the other hand, in the context of ultracold
atoms, it is known that at zero temperature there is a
density-driven transition between a Fermi polaron and few-
body bound states equivalent to trions [4,28–32].
Importantly, the nature of the exciton polaron has impli-
cations for other properties such as the transport of optical
excitations under an electric field [33] and optical non-
linearities [34–36].
In this Letter, we resolve this question and reveal that

these two pictures are in fact connected when we account
for the crucial role played by temperature. We introduce a
quantum virial expansion [37] for the optical response,
which we show is perturbatively exact when the temper-
ature T greatly exceeds the Fermi energy EF and is
therefore applicable at high temperature and/or low doping.
We show that this corresponds to a limit of the Fermi-
polaron picture where the coherent dressing cloud of the
attractive polaron quasiparticle is destroyed by thermal
fluctuations (see Ref. [38] for details), in contrast to the
situation at lower temperatures. We demonstrate that the
virial expansion predicts hitherto unrecognized features in
photoluminescence (PL), such as a nontrivial behavior of
the attractive peak near the trion energy related to 2D
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resonant exciton-electron scattering, and a Lorentzian
repulsive peak, as illustrated in Fig. 1(a). We compare
our results to recent experiments on doped MoSe2 mono-
layers [17] and find excellent agreement, which implies that
the trion binding energy has been previously overestimated.
Finally, we show analytically that the virial expansion
reduces to the predictions of the trion picture in the limit
where EF → 0.
Model.—We model a doped 2D semiconductor using the

following Hamiltonian for excitons and excess charge
carriers:

Ĥ ¼
X
k

�
ϵkĉ

†
kĉk þ ϵXkx̂

†
kx̂k

�
−
X
kk0q

vqx̂
†
kĉ

†
k0 ĉk0þqx̂k−q:

ð1Þ

Since the optically generated exciton is tightly bound, we
treat it as a structureless boson, with corresponding
operator x̂†k, mass mX, and free-particle dispersion
ϵXk ¼ jkj2=2mX ≡ k2=2mX, where the energy is measured
from that of the 1s exciton at rest. The fermionic operator

ĉ†k creates charge carriers (electrons or holes) with mass
m and dispersion ϵk ¼ k2=2m. For simplicity, we generally
assume the charge carriers are electrons, but note that our
results equally hold for the hole-doped case. We also
ignore the valley degree of freedom and consider spin-
polarized electrons that are distinguishable from the
electron within the exciton, since this is sufficient to
describe the polaron and trion physics in TMDs, such
as MoSe2 monolayers [9,18]. Here and in the following,
we set ℏ ¼ kB ¼ 1 and work in a system of unit area.
The second term in Eq. (1) describes the attractive charge

(-induced) dipole interactions between electrons and exci-
tons, which give rise to a trion bound state [13,40]. Note
that we can treat the trion as an effective two-body
(electron-exciton) bound state since the exciton binding
energy exceeds the trion binding energy εT by an order of
magnitude in TMDs [20]. Furthermore, the potential vq is
sufficiently short ranged that it can be described with a low-
energy s-wave scattering amplitude [41], scaling as 1=r4 at
large exciton-electron separation r. We neglect the inter-
actions between electrons since these are not necessary to
describe the trion bound state and they do not contribute to
the leading-order behavior in the high-temperature limit,
T=EF ≫ 1, as we discuss below. To be specific, we assume
that the temperature and density are such that the electrons
form a Fermi liquid rather than a strongly correlated
Wigner crystal [42]. At the same time, we assume that T
is sufficiently low such that phonon scattering effects can
be safely neglected.
While we formulate our results in the language of

excitons in a Fermi sea of charge carriers such as electrons,
our results apply more generally to any dilute gas of
impurities interacting via short-range interactions with a
2D Boltzmann gas. In particular, the features of the
spectrum discussed below would also be observable in
cold-atom experiments on 2D Fermi gases [43–45], and our
theory can straightforwardly be extended to the three-
dimensional case.
Photoluminescence.—The starting point of our analysis

is the detailed balance relation [46–50] between optical
absorption, which is proportional to the exciton spectral
function AðωÞ, and photoluminescence PðωÞ,

PðωÞ ¼ e−βωAðωÞ; ð2Þ

with β≡ 1=T. This expression is valid (up to an unim-
portant frequency-independent prefactor [38]) within linear
response for a system in thermal equilibrium, under the
assumption of a low density of excitons such that they can
effectively be treated as uncorrelated.
The spectral function is related to the (retarded) exciton

Green’s function GX via AðωÞ ¼ −ð1=πÞImGXðωþ i0Þ,
where the factorþi0 signifies that here and in the following
the poles are shifted slightly into the lower half of the
complex ω plane [51] (at this stage, we do not explicitly

(a)

(b) (c)

FIG. 1. (a) Schematic illustration [solid (blue) lines] of the key
features of PL from a doped semiconductor at low doping and/or
high temperature where EF ≪ T. For the attractive branch, this
includes the exponential tail related to electron recoil, the shape
of the onset due to resonant electron-exciton scattering, and the
shift of the peak from the trion energy. Here, we have neglected
any additional exciton broadening due to effects beyond those
described in the Hamiltonian (1), such as disorder and radiative
recombination. The (gray) dashed lines are the predictions from
the conventional trion theory [17,39]. (b) Leading-order contri-
bution to the exciton self-energy within the virial expansion,
describing the interaction between the exciton (red line) and an
electron (blue line). (c) Diagrams contributing to the two-body T
matrix (square) due to the exciton-electron interaction potential
(wavy line).
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introduce the exciton linewidth, which can mask the
intrinsic features of the PL). The Green’s function, in turn,
satisfies the Dyson equation

GXðωÞ ¼
1

ω − ΣðωÞ ; ð3Þ

in terms of the self-energy ΣðωÞ for the zero-momentum
exciton. Calculating the PL thus amounts to obtaining the
self-energy, which, in the general case of a strongly
correlated system, can only be done approximately.
Virial expansion.—A key insight is that we can apply the

quantum virial expansion to the exciton self-energy at finite
temperature. Specifically, this corresponds to a systematic
expansion in powers of the fugacity z ¼ eβμ, where μ is the
chemical potential of the background Fermi gas. In the
high-temperature and/or low-doping regime T ≳ EF, we
have z≲ 1, allowing us to perform an exact perturbative
expansion around the ideal Boltzmann gas limit of the
medium (where z ≃ βEF). The virial expansion has been
extensively used in other contexts, for instance, to obtain
thermodynamic quantities and quantum corrections to the
equation of state in condensed matter physics [52,53],
nuclear physics [54], and ultracold gases [37,55]. It has
also been used to calculate response functions for atomic
gases [56–62], magnetic impurities [63], magnons [64],
and Coulomb systems [65].
At lowest order in z, only two-point correlations involv-

ing the exciton and electrons are present in the self-energy,
corresponding to all the ladder diagrams depicted in
Figs. 1(b) and 1(c). Crucially, higher N-point correlations
withN > 2 only enter at higher order in z since they require
multiple electrons to be scattered from the medium,
where each medium excitation is weighted by z [61,66].
Furthermore, this means that we can neglect electron-
electron interactions if we work at lowest order in z, where
the medium corresponds to a Boltzmann gas. Thus, the
leading-order exciton self-energy takes the form

ΣðωÞ ¼ z
X
q

e−βϵqT ðqr;q;ωþ ϵqÞ: ð4Þ

Here the T matrix T ðk;Q;ωÞ describes the sum of
repeated scattering processes between an exciton and an
electron in vacuum, whereQ and ω are the total momentum
and energy, respectively, while k is the electron-exciton
relative momentum (where the incoming and outgoing
momenta are equal). Note that, due to Galilean invariance,
the center-of-mass and relative contributions separate. For a
zero-momentum exciton with energy ω and an electron
with kinetic energy ϵq, as in Eq. (4), the center-of-mass
momentum is simply q and the relative momentum
qr ¼ qmX=mT , with mT ¼ mþmX.
In principle, one can obtain the self-energy (4) for an

arbitrary electron-exciton T matrix. However, since the

relevant energy scales in TMDs (i.e., T, EF, and the trion
binding energy εT) are much smaller than that set by the
range of vq, i.e., the exciton binding energy, the T matrix is
well approximated by its low-energy s-wave form [67]

T ðqr;q;ωÞ ≃ T 0ðq;ωÞ ¼
2π

mr

1

ln½−εT=ðω − ϵTqÞ�
; ð5Þ

with the reduced electron-exciton mass mr ¼ mXm=mT

and the center-of-mass (trion) dispersion ϵTq ¼ q2=2mT .
This is independent of the relative momentum and coin-
cides with the limit of a zero-range potential, which has
been shown to provide a good approximation for the
interactions [13,18]. Together, Eqs. (2)–(4) and (5) allow
us to straightforwardly calculate the optical response in the
virial expansion.
The expressions in Eqs. (4) and (5) are in fact equivalent

to the celebrated Chevy ansatz [22] for the Fermi polaron
when we consider its finite-temperature generalization [68]
and take the limit z ≪ 1 (see also the companion paper [38]
for details). Thus, our approach is continuously connected
to the Fermi-polaron picture of excitons in doped semi-
conductors that is based on the zero-temperature Chevy
ansatz [9,10,13].
Features of the photoluminescence spectrum.—The

resulting exciton spectral function contains two well-
separated peaks, as illustrated in Fig. 1(a): a repulsive
branch centered close to the exciton at ω ¼ 0 and an
attractive branch that is peaked for frequencies ω≲ −εT .
For the repulsive branch, the leading order in z is obtained
by taking ω ¼ 0 in the self-energy. In this case we find, to
logarithmic accuracy in βεT [69],

Σrepð0Þ ≃
EFðm=mrÞ

π2 þ ln2ðeγEβεTÞ
½lnðeγEβεTÞ − iπ�; ð6Þ

with γE ≃ 0.5772 as the Euler-Mascheroni constant.
In the regime T ≲ εT , which is the situation in most

current experiments, the dominant contribution to the
attractive branch arises from the pole of the T matrix
when ω ¼ −εT þ ϵTq, related to the trion bound state.
Expanding Eq. (5) around the pole gives

T 0ðq;ωþ i0Þ ≃ ZT

ω − ϵTq þ εT þ i0
; ð7Þ

with ZT ¼ ð2πεT=mrÞ the residue at the pole. This allows
us to obtain the self-energy by straightforward contour
integration, with the result

ΣattðωÞ ≃ −zεT
�
mT

mX

�
2

e
mT
mX

βðωþεTÞ

×

�
Ei

�
−
mT

mX
βðωþ εTÞ

�
þ iπΘð−ω − εTÞ

�
; ð8Þ
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where EiðxÞ is the exponential integral. Note that the pole
expansion of the T matrix is exact for the imaginary part of
Σatt but only approximate for the real part, with the latter
becoming exact close to the trion energy.
Combining these results yields the spectral function

AðωÞ and, from Eq. (2), the PL,

PðωÞ ≃ −
1

π
e−βωIm

Θð−ω − εTÞ
ω − ΣattðωÞ

−
1

π
Im

1

ω − Σrepð0Þ
; ð9Þ

in terms of the self-energies in Eqs. (6) and (8).
Equation (9) is a key result of this Letter. We see that
the repulsive branch is a Lorentzian peak at ω ¼ ReΣrepð0Þ
with width ΓR ¼ πðm=mrÞEF=½π2 þ ln2ðeγEβεTÞ�, where
both the width and position scale with EF, similar to Fermi-
polaron theories [10,71,72]. However, for the attractive
branch, we find that we cannot satisfy the condition
ω ¼ ReΣattðωÞ, indicating that there is no attractive polaron
quasiparticle in the limit z ≪ 1, unlike for the quantum
degenerate case z > 1 [38]. Instead, we have an asymmetric
continuum of trion states, with a sharp onset at ω ¼ −εT
and an exponential tail involving trions and recoil electrons
at finite relative momentum, where PðωÞ ∝ eβωm=mX=ω2 for
−ω ≫ εT in agreement with Ref. [39]. Moreover, in the
limit of an infinitely heavy exciton, we see that the tail in
PL loses its exponential dependence, becoming a power
law, unlike in the case of absorption. The shape of the onset
is dictated by 2D resonant electron-exciton scattering
at the trion energy, leading to a universal logarithmic diver-
gence in the self-energy: Σattðω≲−εTÞ≃−zεTðmT=mXÞ2×
fln ½−eγEβðmT=mXÞðωþ εTÞ�þ iπg. Previous trion theories
of PL [17,39,73] focused on the imaginary part of the self-
energy, as we show below, and thus appear to have missed
this divergence in the real part.
Comparison with experiment.—Recently, the PL origi-

nating from a MoSe2 monolayer was measured for the case
of a hole doping (per valley) of nh ≃ 0.5 × 1011 cm−2 and
for lattice temperatures T ¼ 5–50 K [17], corresponding to
fugacities in the range z ≃ 1–0.1. Therefore, apart from the
very lowest temperatures explored, the experiment was
well within the regime of validity of the virial expansion.
Furthermore, we expect the role of phonons to be insig-
nificant in this temperature range [74], while Wigner
crystallization is predicted to occur only below 10 K at
this density [75], in agreement with recent experimental
observations [76]. Therefore, we only compare with experi-
ment for T ≥ 10 K. To compare our spectra calculated
using Eq. (9), we apply a Lorentzian broadening of 1 meV,
matching the experimental linewidth [17].
We start by analyzing the distance between the peaks of

the attractive and repulsive branches that, primarily due to
the nontrivial shape of the attractive branch, does not
correspond to εT even at very low doping. Figure 2(a)
shows our theoretical result for two values of the trion
binding energy, εT ¼ 22.5 and 23.5 meV, and for a range of

densities. Even though this is noticeably below the quoted
experimental value of 25 meV [9,17], we see that the virial
expansion correctly reproduces the splitting between the
peaks when we take εT ¼ 22.5 meV. Thus, the fact that
the attractive branch peak in PL does not correspond to the
onset implies that the trion binding energy is likely to have

FIG. 2. Photoluminescence in a hole-doped MoSe2 monolayer.
(a) Frequency difference between attractive and repulsive peaks
as a function of temperature. The black dot symbols are the
experimental peak positions obtained from Ref. [17]. The blue
and red shaded regions correspond to the results of the virial
expansion using binding energies εT ¼ 22.5 and 23.5 meV,
respectively. The solid lines correspond to the experimental hole
density nh ¼ 0.5 × 1011 cm−2, and the lower and upper bounds
of each shaded region correspond to densities of 0.25 × 1011 and
1011 cm−2, respectively. (b) Comparison between theoretical
(solid dark) and experimental [17] (solid light) photolumines-
cence spectra (arbitrary units and vertical offset) for the attractive
branch at different lattice temperatures. The theoretical spectra
were obtained by convolving Eq. (9) with a Lorentzian of width
1 meV [17] and using εT ¼ 22.5 meV, nh ¼ 0.5 × 1011 cm−2,
and the MoSe2 values of the exciton and hole effective masses:
mX ¼ 1.15m0 and m ¼ 0.59m0, with m0 the free electron mass
[79]. The experimental PL has been shifted horizontally to match
the peaks of the virial expansion.
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been overestimated by as much as 10% in previous works
[77]. We expect corrections to this result to be at most
comparable to the Fermi energy [38], which for this
experiment is 0.4 meV.
Figure 2(b) shows the comparison of our results for the

attractive branch PL with experiment, using the extracted
εT . We see that the agreement is essentially perfect at high
temperature, with small discrepancies at lower temper-
atures. Since our theory is fully analytic and contains no
free parameters, this is a remarkable agreement. The
remaining discrepancy could potentially be due to the
temperature of the system being different from that of
the crystal lattice at low T.
Connection to the trion picture.—Our results for the

attractive branch can be straightforwardly generalized
beyond the low-energy expression in Eq. (5). In this case,
we obtain T ðqr;q;ωÞ from the spectral representation of
the two-particle Green’s function close to the trion pole,
which finally gives [38]

ΣattðωÞ ≃ z
X
q

e−βϵq jηqr j2

×

�
P

ðϵrqr
þ εTÞ2

ωþ ϵrqr þ εT
− iπω2δðωþ ϵrqr þ εTÞ

�
;

ð10Þ

where P denotes the principal value, ηqr
is the trion wave

function, and ϵrqr ¼ q2r=2mr. In general, we have ηqr ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTðqrÞ

p
=ðεT þ ϵrqr

Þ [38], which yields Eq. (8) in the low-
energy limit where ZT can be approximated as the constant
in Eq. (7). Thus, to obtain the PL beyond the low-energy
limit requires a knowledge of the trion wave function (a
similar approach has been used to calculate absorption
[80]), which, in general, involves taking the details of the
dielectric environment of the monolayer into account.
It turns out that previous trion theories of PL [17,39,73]

correspond to the weakly interacting limit of our theory.
Here, one assumes that the self-energy is sufficiently small
such that the Dyson equation (3) can be expanded as
GXðωÞ ≃ 1=ωþ ΣðωÞ=ω2, which gives

PattðωÞ ≃ ze
βðmω−mT εT Þ

mX

				η ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mrjωþεT j

p
				
2

Θð−ω − εTÞ;

where in the last step we used Eq. (10). This precisely
matches the result of Refs. [39,73]. Given the connection
between the virial expansion and Fermi-polaron theory, we
conclude that the trion picture results corresponds to a
weak-coupling and high-temperature and/or low-doping
limit of the Fermi-polaron picture, thus providing a formal
unification of these two apparently disparate frameworks.
Note that the weak-coupling assumption explicitly fails at
the onset where the real part of the self-energy in Eq. (10)
diverges, and hence the trion picture only correctly

describes the shape of the attractive branch in the limit
EF → 0. Likewise, the broadening of the repulsive branch
depends on exciton-electron scattering states that are
neglected within trion-based theories [73,80].
Concluding remarks.—In summary, we have presented a

controlled virial expansion for the exciton-polaron prob-
lem, which we show corresponds to a thermally incoherent
limit of Fermi-polaron theory where the attractive polaron
quasiparticle no longer exists. Our theory has the advantage
of being fully analytic, and it yields excellent agreement
with experiment without the need for fitting parameters.
Our approach is very general and can be adapted to model
the case of composite excitons with internal structure by
using a modified trion wave function in Eq. (10). Thus, it is
potentially applicable to a broad range of systems, for
instance, emerging designer materials such as moiré super-
lattices where signatures of polaron physics have already
been observed [81–83].
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