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Fractionalization without time-reversal symmetry breaking is a long-sought-after goal in the study of
correlated phenomena. The earlier proposal of correlated insulating states at n� 1=3 filling in twisted
bilayer graphene and recent experimental observations of insulating states at those fillings strongly suggest
that moiré graphene systems provide a new platform to realize time-reversal symmetric fractionalized
states. However, the nature of fractional excitations and the effect of quantum fluctuation on the fractional
correlated insulating states are unknown. We show that excitations of the fractional correlated insulator
phases in the strong coupling limit carry fractional charges and exhibit fractonic restricted mobility. Upon
introduction of quantum fluctuations, the resonance of “lemniscate” structured operators drives the system
into quantum lemniscate liquid (QLL) or quantum lemniscate solid (QLS). We find an emergent
Uð1Þ × Uð1Þ 1-form symmetry unifies distinct motions of the fractionally charged excitations in the
strong coupling limit and in the QLL phase, while providing a new mechanism for fractional excitations in
two dimensions. We predict emergent Luttinger liquid behavior upon dilute doping in the strong coupling
limit due to restricted mobility and discuss implications at a general n� 1=3 filling.
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Fractionalization, where the quantum number of low-
energy excitations is a fraction of the physical constituents
(such as electrons), epitomizes strong correlation effects.
With reduced phase space amplifying the correlation
effects, fractionalization does not require a magnetic field
in 1D systems [1–5]. However, in higher dimensions,
fractionalization has only been confirmed with breaking
of time-reversal symmetry either under fractional quantum
Hall settings [6,7] or spontaneous time-reversal symmetry
breaking in fractional Chern insulators [8,9]. Theoretical
proposals for fractionalization without time-reversal sym-
metry breaking have invoked the effects of geometric
frustration with local constraints, giving rise to emergent
gauge theories in spin models and quantum dimer
models [10–19]. More recently, the notion of constraints
has been taken to new directions with the advent of
fracton models characterized by excitations with restricted
mobility [20–26]. While exactly solvable models offer
theoretical insight [11,20–23], finding a physical realiza-
tion has been challenging.
The recent observation of time-reversal invariant incom-

pressible states (i.e., zero Chern number) at fractional
filling in twisted bilayer graphene [9] presents a new
platform for a strongly correlated state at fractional filling.
While the nature of the observed states is still largely

unknown, two of us predicted that “fidget-spinner”-shaped
Wannier orbitals of twisted bilayer graphene can lead to a
correlated insulating phase at fractional filling due to
the geometric constraints imposed by the shape of the
orbitals [27]. While the extensive ground state degeneracy
observed in the strong coupling limit [27] implies novel
geometrical frustration effects in widely available physical
platforms, little is known about the nature of excitations
and effects of quantum fluctuations. In this Letter, we
evince the fractionalization of doped holes and fractonic
nature of the fractionally charged excitations in the strong
coupling limit. Furthermore, we derive a resonance in the
lemniscate configuration of Wannier orbitals as the leading
quantum fluctuation effect that can result in a quantum
lemniscate liquid (QLL) or solid (QLS) phase. We find an
emergent Uð1Þ × Uð1Þ 1-form symmetry at low energy and
relate the fractonlike behavior of the excitations to the
nontrivial string operator under the 1-form symmetry.
Finally, we generalize our formalism to other third fillings
and twisted trilayer graphene and discuss experimental
prospects of detecting the proposed fractionalization.
The model.—The topological obstruction forbids sym-

metric lattice description of the flat bands of magic angle
twisted bilayer graphene [28–35]. However, the common
alignment of twisted bilayer graphene with hexagonal

PHYSICAL REVIEW LETTERS 131, 106801 (2023)

0031-9007=23=131(10)=106801(6) 106801-1 © 2023 American Physical Society

https://orcid.org/0000-0003-0083-4032
https://orcid.org/0000-0002-9554-4443
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.131.106801&domain=pdf&date_stamp=2023-09-08
https://doi.org/10.1103/PhysRevLett.131.106801
https://doi.org/10.1103/PhysRevLett.131.106801
https://doi.org/10.1103/PhysRevLett.131.106801
https://doi.org/10.1103/PhysRevLett.131.106801


boron nitride explicitly breaks the C2 rotational symmetry
and justifies construction of Wannier orbitals. Nevertheless,
the resulting maximally localized Wannier orbitals are
extended beyond their AB-BA site centers [29,36] to the
three nearest AA sites, with most of the weight equally
divided among the three AA sites, forming a fidget-spinner
shape [see Fig. 1(a)]. Consequently, the dominant
interaction term is an on-site repulsive interaction projected
to the Wannier orbitals taking a “cluster-charging”
form [29,37],

HU ¼ U
2

X

r

�X

i∈⬡r

ni

�
2

; ð1Þ

where ⬡r labels the rth hexagonal plaquette and ni is
summed over spin and valley degrees of freedom.
We note that the convention in the experimental literature

is to view the moiré lattice as a triangular lattice with one
lattice site per unit cell. On the other hand, the Wannier
centers form a honeycomb lattice with two sites per unit
cell. Hence, the conventional filling of 1=3 electrons or
holes for each spin and valley per triangular lattice is
equivalent to the filling fraction of 1=6 per hexagonal lattice
per spin and valley [see Fig. 1(a)]. Hereafter, we refer to
such filling as 1=3 per moiré unit cell. At such 1=3 total
filling for spin and valley degrees of freedom (d.o.f.), the
energy can be minimized by having the charge carriers

occupying only one of the six possible registries
[see Fig. 1(b)]. Having 1=3 charges per moiré unit cell
corresponds to

P
i∈⬡r

ni ¼ 1 per honeycomb plaquette.
As pointed out in Ref. [27], the strong coupling limit (i.e.,
classical) ground state of Eq. (1) is extensively degenerate.
Two types of perturbations can lift the extensive ground

state degeneracy associated with the cluster-charging inter-
action of Eq. (1): further range interactions and quantum
fluctuations. For twisted bilayer graphene (TBG) systems,
the Coulomb interaction projected to low-energy Wannier
orbitals gives rise to various terms [29,38,39]. We focus on
the fourth nearest neighbor interactions and consider
the density-density interactions and Hund’s coupling to
obtain [40]

H4 ¼ ðV4 − Vapprox
4 Þ

X

hiji4
ninj −

J4
4

X

hiji4
ðSμi Sμj þ ninjÞ; ð2Þ

where ni ¼ c†iαciα is the density operator summing
over the spin and valley d.o.f. and Sμ ¼ c†i;αT

μ
αβcj;β is the

SU(4) spin operator; α, β denote the combined spin-valley
d.o.f. with the SU(4) generators Tμ ∈ fσν; τν0 ; σν ⊗ τν

0 g.
Following the notation of Ref. [30], V4 (Vapprox

4 ) is the
direct Coulomb interaction between fourth nearest
neighbor (“point-charge-approximated”) Wannier orbitals.
The point-charge approximation [30] views the fidget-
spinner-shaped Wannier orbitals as being composed
of three point charges at AA sites. Focusing on Eq. (2)
is justified by the fact that the difference between the
direct Coulomb interaction and the point-charge approxi-
mation is short ranged, while all tiling patterns in the
ground state manifold of Eq. (1) have the same electro-
static potential under the point-charge approximation.
Finally, J4 > 0 is the SU(4) ferromagnetic exchange
interaction [38]. Upon introducing quantum fluctuations
via hopping term HK ¼ P

hiji;α;τ tij;τðc†i;α;τcj;α;τ þ H:c:Þ,
the full Hamiltonian becomes

H ¼ HU þH4 þHK: ð3Þ

The ground states in the strong coupling limit (t ¼ 0) were
established in Ref. [27]. With finite hopping t, quantum
order by disorder [50] would select a different quantum
ground state, resulting in a qualitative phase diagram we
sketch in Fig. 1(c).
Strong coupling limit and fractional excitations.—In the

strong coupling limit, the characteristic energy scale is

U4 ¼ V4 − Vapprox
4 −

J4
2
: ð4Þ

For U4 < 0, the system will order into a low-symmetry
state dubbed the “brick wall” [27] [Fig. 1(c)]. The brick
wall tiling makes the maximal use of Hund’s coupling
to minimize H4 and will thus be an SU(4) spin-valley

FIG. 1. Wannier states and schematic phase diagram. (a) Wan-
nier states and a typical moiré pattern. The yellow and green
blobs schematically represent the shape of Wannier orbitals on
the BA and AB sublattices, respectively. (b) Schematic repre-
sentation of the six-phase registry of AB-BA sites. The vertices of
the triangle correspond to the three charge lobes. (c) Proposed
phase diagram for the model in Eq. (3). Black arrows in the brick
wall phase represent SU(4) spin-valley ferromagnetism.
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ferromagnet. The anisotropic shape of the mesoscale unit
results in low symmetry. Translation, mirror, and C3

rotation symmetries of the honeycomb lattice are all broken
in the brick wall phase. From the point of view of the
Wannier orbital centers [circles in Fig. 1(c)], the brick wall
state is closely related to the stripe ordered phase proposed
in Ref. [38] at filling n ¼ −3 of TBG since the brick wall
occupies every third site along a stripe. Hence, the brick
wall may be favored at 1=3 filling away from n ¼ −3. On
the other hand, for U4 > 0, the favored state would be theffiffiffi
3

p
×

ffiffiffi
3

p
ordered state, with uniform AB-BA registry. In

this case, from Eq. (2), configurations with different spin-
valley orientations are degenerate within the model. While
the two states break translational symmetry in terms of the
orbital centers [see filled circles in Fig. 1(c)], we anticipate
the observable effects of the translational symmetry break-
ing to be weak due to the spread of the Wannier orbitals.
This contrasts the proposed

ffiffiffi
3

p
×

ffiffiffi
3

p
state against the unit-

cell tripled charge density wave states proposed in momen-
tum space based numerical approaches [51,52].
A natural consequence of the incompressible tiling in the

strong coupling limit at �1=3 filling is the possibility of
fractionally charged holes. Intuitively, this can be antici-
pated by noting that 1=3 of the electron charge is con-
centrated at the vertices of the dual triangular lattice for any
of the incompressible states [30]. The configuration that
binds a 1=3 charge and the energy cost of such an excitation
depends on the classical ground state. However, as we show
below, their movements are restricted much like fractons
and lineons [23,25,26].
The

ffiffiffi
3

p
×

ffiffiffi
3

p
phase has two types of charge 1=3

fractional excitations with restricted mobility: vortices
[Fig. 2(a)] and solitons [Fig. 2(b)]. As it was previously
noted [53], a vortex of phase registry in a charge ordered
state usually carries fractional charge. An unusual property
of our vortices is their restricted mobility: the cluster
charging energyU makes the vortices practically immobile,
similar to fractons [23,24]. However, due to the extensive
energy cost proportional to U4 associated with the domain
walls, the observation of these vortices would require finite
temperature. We define a soliton of the

ffiffiffi
3

p
×

ffiffiffi
3

p
phase to

be the 1=3 charged excitation bound to the end of a line of
flipped trimers. In the limit of vanishingly small U4, a
single hole can fractionalize into three solitons that can
only move along one dimension associated with the flip
line. The soliton dynamics are as if a domain wall state of
the Su-Schrieffer-Heeger model [1] were embedded in a
two-dimensional space. Hence, the soliton behaves like a
lineon [23,24]. However, the solitons in the

ffiffiffi
3

p
×

ffiffiffi
3

p
state are confined. The balance between the flip-line
energy cost (2U4 per flip) and the Coulomb interaction
between the 1=3 charges determines the size of the
bound state. From the estimation of U4 in Ref. [54],
we have L ∼ 1.13aM (see Supplemental Material, Sec. B
for detailed discussion [40]).

Solitons in the brick wall phase are more intriguing
because they are deconfined. First we note that, as shown in
Figs. 2(c) and 2(d), the brick wall phase has subextensive
ground state degeneracy since each line of “bricks” can
choose between two degenerate choices of alternating
registries that give different slants to the brick tiling pattern.
Hence, the ground state degeneracy is 3 × 2L where L
is the linear dimension, and the configurational entropy is
L log 2 [55]. A defect associated with a domain boundary
within a row can also be viewed as a soliton carrying 1=3
charge [Fig. 2(e)] or 2=3 charge (see Supplemental
Material, Sec. B). Similar to the

ffiffiffi
3

p
×

ffiffiffi
3

p
phase, the

solitons in the brick wall phase also have restricted mobility
and can only move along the one dimension of the brick
wall rows, which are 2D analogs to the lineon excitations in
the 3D X-cube model [23,24]. Furthermore, the solitons in
the brick wall phase are deconfined excitations since they
cost a finite energy irrespective of the separation between
the solitons [see Fig. 2(e) and a more detailed illustration in
Supplemental Material, Sec. B].
The restricted mobility of the solitons seems to happen

by chance at first glance. However, as we will show later,
these properties are robust against small quantum fluctua-
tions and are closely related to emergent symmetries at low
energy.
Quantum fluctuations.—We now turn to the vertical axis

of the phase diagram [Fig. 1(c)] and explore the effects of
quantum fluctuations in the limit of U4 ≪ t. We ask how
the hopping t in HK would lift the extensive degeneracy of

FIG. 2. Fractionally charged excitations. (a) A single 1=3
charged vacancy (open circle), surrounded by all six registry
domains. (b) Three solitons with 1=3 charge and flip-line tails.
The brown lines indicate the energy cost U4 associated with the
domain walls. (c),(d) Two degenerate brick wall states. (e) Sol-
itons in the brick wall phase can move along a 1D line with
constant energy cost associated with brown triangles.
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the HU ground state manifold through quantum “order
from disorder” [50]. To start answering this question, we
look for an operator that can locally connect two different
states in the classical ground state manifold. Such operator
should commute with HU, i.e., keep the cluster charge
fixed. Moreover, the operator should act nontrivially in the
ground state manifold of HU at filling n ¼ �1=3, without
annihilating the states in the manifold. Since the ground
state manifold of HU at filling n ¼ �1=3 consists of states
with exactly one site of the hexagonal cluster occupied,
connecting such states requires coordinated multisite hop-
ping. We now show that the smallest such operator consists
of an eight-site hopping arranged in a lemniscate, or
sideways figure-eight shape [see Fig. 3(b)].
The lemniscate operator L2 is constructed from

the intrahexagon hopping operator O⬡¼c†i1ci2c
†
i3
ci4c

†
i5
ci6,

where i1;…;6 label the sites belonging to a hexagonal
plaquette, organized in a clockwise order [Fig. 3(a)].
Clearly, ½O⬡; HU� ¼ 0, but O⬡jψ0i ¼ 0 for any jψ0i in
the ground state manifold of HU at filling n ¼ �1=3, since
O⬡ annihilates three fermions on a hexagon, but the
cluster-charging constraint requires exactly one fermion
on each hexagon. However, a larger structure involving
multiple hexagons built from alternating O⬡ and O−1

⬡

operators would still commute with HU and can be made
to be compatible with the cluster-charging constraint. The
lemniscate operator L2 illustrated in Fig. 3(b) is the
smallest operator (see Supplemental Material, Sec. C [40])
that can semilocally resonate between two different states

in the classical ground state manifold. There are three
orientations of lemniscate operators, related by C3 rotation.
For each orientation, the lemniscate operator connects two
local tiling configurations, which we designate as the
“flippable” manifold of that operator. Therefore, the low-
energy effective Hamiltonian can be written as

Heff ¼ −t̃
X

i;α

ðL2;i;α þ L†
2;i;αÞ þH4; ð5Þ

where t̃ ∼ t8=U7, α∈ f1; 2; 3g label the three different
orientations, and i labels the position of the operator L2

[Fig. 3(b)].
The effective Hamiltonian Heff is highly frustrated since

different L2;i;α’s do not commute. Nevertheless, analogies
to the quantum dimer models [56] offer valuable insights.
Specifically, as in quantum dimer models, the quantum
fluctuations associated with the lemniscate operators would
select a novel quantum liquid state or a solid state as a
function of U4=t̃; we refer to these states as quantum
lemniscate liquid or solid [Fig. 1(c)]. The quantum fluc-
tuation through the lemniscate operators will avoid any
mobility restriction for doped charges in both phases.
Among possible QLS states are a plaquettelike state that

has resonance within supercells [Fig. 3(c)] and a columnar-
like state with fixed configurations within supercells that
repeats for U4 < 0 [Fig. 3(d)] or alternates for U4 > 0.
Both the plaquette- and columnarlike QLS states break C3

rotational symmetry in addition to the lattice translation
symmetry. The supercells act as emergent local degrees of
freedom analogous to the emergent orbitals in the so-called
cluster Mott insulators on the kagome lattice [57].
However, while such emergent orbitals are pinned to the
lattice, our supercells form an emergent superstructure in
the QLS. Doping away from 1=3 filling, holes added
to the QLS phases can also fractionalize into 1=3 charged
excitations. However, they are energetically confined
as in the

ffiffiffi
3

p
×

ffiffiffi
3

p
phase (see Supplemental Material,

Sec. C [40]).
While mapping out the conditions for the QLL ground

state of the Hamiltonian (5) would require numerical or
quantum simulation of the model, some properties of a
QLL state can be anticipated on general grounds. One
mechanism that would favor a QLL over a QLS state is
through resonances unconstrained to a rigid cell [e.g., the
dotted hexagon in Fig. 3(d)]. As we describe using a
minimal effective model in the Supplemental Material,
Sec. D [40], such resonance will promote a QLL state that
breaks the C3 rotational symmetry. A gapped and transla-
tionally invariant QLL state must host deconfined charge
1=3 anyonic excitations based on Lieb-Schultz-Mattis–type
constraints [58]. Such excitations can be viewed as the 1=3
charged lineons becoming fully mobile due to lemniscate
resonances. Alternatively, a QLL analogous to the valence
bond liquid state at the so-called Rokhsar-Kivelson

FIG. 3. Operators in effective Hamiltonian (5) and QLS. (a) The
lowest order term consists of a plaquette operator Or. The
annihilation (creation) operator acts on the sites marked by
−ðþÞ symbols. (b) The lowest order nonvanishing operator L2

spans ten plaquettes. (c) The plaquettelike candidate state for the
QLS, where the resonance happens between the darker shaded
triangles and lighter shaded ones. (d) The columnarlike state. The
dotted hexagon denotes an extra flippable pattern when the
surrounding three states are all aligned.
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point [11,15] would be an equal weight superposition of all
the possible tiling configurations. Such a QLL state will
respect C3 rotation symmetry.
Emergent 1-form symmetry.—We turn to the theoretical

implications of the fractonic restricted mobility of our
fractionally charged defects. It is believed that fracton
phases do not exist in fully gapped systems in two
spatial dimensions [21], without symmetry protection.
However subsystem symmetry [59–61] or multipolar
symmetry [62–64] can result in fractonic excitations with
restricted mobility in 2D [65]. Curiously, we find the
mobility restriction of fractional charge in our model is
tied to a new emergent 1-form symmetry; a new mechanism
for fractonic excitations in 2D.
The notion of p-form symmetry, a symmetry operator

acting on codimension-(pþ 1) submanifold of the space-
time, has garnered interest in the community as a
framework that unifies the Landau symmetry breaking
paradigm with topologically ordered phases [65]. As
we prove in the Supplemental Material, Sec. F [40],
the cluster charging constraint implies an emergent
Uð1Þ × Uð1Þ 1-form symmetry at low energy (see
Supplemental Material [40]). The string operator charged
under the symmetry moves the fractionally charged
excitation from one end to the other. This 1-form sym-
metry unifies the distinct descriptions of fractional charge
motion as follows. In the brick wall and

ffiffiffi
3

p
×

ffiffiffi
3

p
phases,

the string operators are rigid, resulting in restricted
mobility of the lineons. Contrastingly, in the QLL phase,
the string operator is allowed to fluctuate, resulting in
unrestricted motion of the fractional charge.
Experimental implications.—Our rich phase diagram

with exotic states in experimentally accessible platform
opens the door for detection and control of novel states. The
restricted mobility of lineons in the brick wall phase gives
rise to emergent Luttinger liquid behavior at small hole
doping away from filling of 1=3. The lineon motion can be
modeled using three flavors of solitons. In contrast to
the well-studied commensurate-incommensurate transition
near 1=3 filling in one dimension predicted to exhibit the
Luttinger parameter K ¼ 1=9 [41], we predict the Luttinger
parameter, the emergent lineon Luttinger liquid, to be
K ¼ 1=3 (see Supplemental Material [40]). The prediction
can be verified through Luttinger liquid scaling of con-
ductance and a violation of Wiedemann-Franz law and
divergent Lorentz number at low temperature (see
Supplemental Material, Sec. E).
More broadly, our formalism can be generalized and

applied to other third fillings by accommodating more
electrons per honeycomb plaquette (see Supplemental
Material, Sec. G). Furthermore, since the geometry of
the extended orbital does not require the fine-tuning of the
magic angle, we anticipate the fractional incompressible
states at n� 1=3 to be robustly present even at larger twist
angles [66].

For fillings larger than 1, some sites will have double
occupation, resulting in a competition between spin-singlet,
valley-polarized, and spin-triplet, valley-antialigned states.
Switching between competing states will manifest through
nonmonotonic magnetotransport under an in-plane field.
Finally, mirror-symmetric twisted trilayer graphene at

1=3 filling can host a fractional correlated insulating state
presented in this Letter with an additional Dirac cone at
charge neutrality (see Supplemental Material [40]).
Interestingly, recent experiments on twisted trilayer gra-
phene reported observation of zero Chern number incom-
pressible states [67].

We thank L. Balents, F. Burnell, O. Vafak, S. Vijay,
C. N. Lau, M.W. Bockrath, Z. Bi, C.-M. Jian, Y. You,
Y.-H. Zhang, T. Senthil, R. Nandkishore, and M. Hermele
for illuminating discussions and helpful comments. D. M.
was supported by the Gordon and Betty Moore
Foundation’s EPiQS Initiative, Grant No. GBMF10436.
K. Z. was supported by NSF EAGEROSP No. 136036 and
NSERC. E.-A. K. acknowledges funding through Simons
Fellows in Theoretical Physics Grant No. 920665 and by
the Ewha Frontier 10-10 research grant. Part of this work
was performed at the Aspen Center for Physics, which is
supported by National Science Foundation Grant No. PHY-
160761.

[1] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett.
42, 1698 (1979).

[2] K.-V. Pham, M. Gabay, and P. Lederer, Phys. Rev. B 61,
16397 (2000).

[3] K.-I. Imura, K.-V. Pham, P. Lederer, and F. Piéchon, Phys.
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