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Magnetic ordering beyond the standard dipolar order has attracted significant attention in recent years,
but it remains an open question how to effectively manipulate such nontrivial order parameters using
external perturbations such as electric currents or fields. In particular, it is desirable to have a conceptual
tool similar to nonequilibrium spin currents in spintronics to describe the creation and transport of
multipole moments. In this context, we present a theory for Cartesian spin magnetic multipole moments of
Bloch quasiparticles and their transport based on a general gauge-invariant formula obtained using the
wave packet approach. As a concrete example, we point out that the low-energy Hamiltonian of
phosphorene subject to a perpendicular electric field has a valley structure that hosts magnetic octupole
moments. The magnetic octupole moments can be exhibited by an in-plane electric current and lead to
accumulation of staggered spin densities at the corners of a rectangular sample. Our Letter paves the way
for systematically seeking and utilizing quasiparticles with higher-order magnetic multipole moments in
crystal materials towards the emergence of multipoletronics.
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Introduction.—Antiferromagnets, whose order parame-
ters can be generally described by higher-order electro-
magnetic multipole moments [1–5], have recently received
significant interest in several condensed matter commun-
ities [6–31]. For certain collinear or noncollinear antifer-
romagnets whose magnetic order transforms similarly as
the magnetic dipole, it has been established in recent years
that they can be measured using experimental setups
designed for phenomena in ferromagnets, e.g., the anoma-
lous Hall effect, anomalous Nernst effect, magneto-optical
Kerr effect, etc., and be manipulated using uniform
magnetic fields coupled through the symmetry-allowed
weak net magnetization [32–47]. However, it is imperative
now to go beyond this paradigm to fully exploit the
potential of antiferromagnets from the perspective of their
unique multipolar degrees of freedom, especially consid-
ering the establishment of new experimental techniques
that can potentially access nondipolar magnetic order para-
meters directly, such as nitrogen-vacancy imaging [48–50],
nonlinear transport [51], etc.
On the other hand, the rapid development of spintronics

in the past decades has suggested that quasiparticle currents
carrying the appropriate quantum number (spin), even if it
is not exactly conserved, can be highly useful both as a
conceptual tool and as a practical means for designing
experiments and devices [52–59]. This is because argu-
ments based on the spin current language still have the
correct symmetry that allows the corresponding effects to
occur [60,61]. It is therefore meaningful to discuss trans-
port of nonconserved quantities [62,63] with the purpose of
motivating experimental and theoretical searches of new

measurable effects. However, an immediate difficulty arises
when one tries to generalize quasiparticle spin currents to
that of multipole moments. That is, multipole moments
being local (both in real and momentum spaces) objects are
not as well defined as spin for Bloch electrons due to the
appearance of position operator in their definition.
For several low-order electric and magnetic multipole

moments of extended equilibrium systems, theories have
been developed in recent years to address the apparent
origin and gauge dependences [17–20,64–70]. In particu-
lar, for multipole moments that do not have an inherent
gauge dependence (such as electric polarization), a thermo-
dynamic approach can be used to obtain their gauge-
invariant forms [17–20,68,70]. Such a procedure can
also be applied to higher-order spin magnetic multipole
moments [71]. However, since it only gives the multipole
moments of an extended system in equilibrium, the
thermodynamic approach does not address the issue of
defining local objects for individual quasiparticles.
Having well-defined multipole moments attached to

individual quasiparticles is useful in developing semiclass-
ical pictures of nonequilibrium multipole phenomena that
involve boundaries or interfaces. This is in parallel to fully
quantum mechanical response theories that rely on physical
observables directly determined experimentally (e.g., local
spin densities rather than spin currents in spin-Hall-related
phenomena [60,61,72–75]) and has its own advantages. For
example, in the context of valleytronics [76], one can look
for new materials that host well-defined multipole moments
at different valleys, similar to the orbital magnetic moments
in monolayer 2H transition-metal dichalcogenides [77–79],
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so that a selective creation of quasiparticles in such valleys
and their currents directly leads to the corresponding
multipolar observables.
In this Letter we provide a framework for obtaining

arbitrary-order Cartesian spin magnetic multipole moments
of Bloch quasiparticles, which is analogous to the wave-
packet understanding of spin magnetic dipole moment of
Dirac electrons [80,81]. Based on it we introduce a semi-
classical Boltzmann theory for the transport of spin
magnetic multipole moments and apply it to a prototypical
example of monolayer phosphorene. As schematically
illustrated in Fig. 1, Bloch wave packets carrying spin
magnetic octupole moment Mx

xy (defined below) can be
excited by an in-plane electric current, which further lead to
accumulation of spins with staggered signs at the four
corners of a rectangular sample.
Spin magnetic multipole moments of Bloch wave

packets.—2lth order Cartesian spin magnetic multipole
moments of a continuous spatial distribution of spin density
are defined classically through Taylor expansion of the
Zeeman energy as

Mil
i1;i2;…;il−1

≡−
gμB
ℏ

Z
d3rsilðrÞri1ri2…ril−1 ; ð1Þ

where g ≈ 2 is the Landé g factor, μB is the Bohr magneton,
and i1;2;…l label Cartesian axes. For simplicity in this Letter
we ignore the overall factor −gμB=ℏ. Promoting the spin
density to an expectation value of the spin density operator
ŝδðr̂ − rÞ then converts Eq. (1) to an expectation value of
the multipole moment operator

M̂il
i1;i2;…;il−1

≡ ŝil r̂i1 r̂i2…r̂il−1 : ð2Þ

Our first task is to examine its expectation value in a Bloch
wave packet state. Awave packet of a nondegenerate Bloch
band labeled by n at momentum kc is defined as
jWi ¼ R

BZ d
3kwkjnki, where wk is a scalar function

localized at k ¼ kc. The case of degenerate bands which
requires the consideration of non-Abelian gauge trans-
formation [82,83] will be discussed in a future work, but
our approach applies to the situation that such degeneracies
can be lifted by infinitesimal external perturbations.

The naive expectation value

ðMgÞili1i2…il−1
≡ hWjM̂il

i1;i2;…;il−1
jWi ð3Þ

is, however, clearly dependent on the choice of origin,
which is expected since it is the case for classical multipole
moments Eq. (1) as well [84]. Nonetheless, the localized
nature of a wave packet makes it sensible to define
multipole moments by using the center-of-mass position
rc as the origin [17,18,66–68,80,81]. For the low-order
(l ≤ 3) multipole moments considered in these works the
resulting formulas are also gauge invariant, making it
meaningful to discuss the transport of such observables
by the center-of-mass motion of the wave packets.
However, at higher orders (l > 3) simply replacing r by
r − rc does not in general lead to a gauge-invariant
expression, nor is the result independent of the wave
packet shape [85].
Instead, we introduce the following formula for a

general 2l spin magnetic multipole moment of a Bloch
quasiparticle:

Mjl
j1j2…jl−1

≡N −1Re
X
fjgul−1

hunkjsjl
Y

j∈ fjgul−1
ði∂kj −AjÞjunkijk¼kc

; ð4Þ

where junki is the periodic part of the Bloch state jnki;
the Berry connection Aj ≡ hunkji∂kj junki; the summation
is over all unique permutations of l − 1 elements
fj1;…; jl−1g, denoted by fjgul−1. The normalization factor
N ¼ ðl − 1Þ!=ðNx!Ny!Nz!Þ, where Nj is the number of
times that the Cartesian index j appears in the
set fj1;…; jl−1g.
Equation (4) is both gauge invariant and independent of

the wave-packet shape wk. Details of its derivation are
relegated to Sec. I of [85]. The central idea is to use the
following identity:

ði∂x−A− i∂x ln jgj þ ∂x arggÞnðgfÞ ¼ gði∂x−AÞnf; ð5Þ

where n > 0 is an arbitrary integer, A, g, f are arbitrary
functions of the variable x, with g additionally required to
have nonvanishing norm and smooth argument across
potential branch cuts. Equation (5) allows one to eliminate
terms resulting from smooth transformations of jWi that
maintain the center-of-mass crystal momentum kc.
Alternatively, one can obtain Eq. (4) from a heuristic
approach [85] by replacing r̂ by r̂ − r̂c in Eq. (3) with
r̂c the requantized center-of-mass position [81,87].
Equation (4) reproduces the wave-packet contributions

in the previous results of spin quadrupole or toroidal
moments [85]. As new formulas resulting from Eq. (4)
we give below those for the spin octupole (l ¼ 3) and
hexadecapole (l ¼ 4) [30] moments:

FIG. 1. Schematic illustration of a wave packet carrying Mx
xy

and the corresponding corner spin pattern in a macroscopic
monolayer phosphorene sample with Rashba spin-orbit coupling.
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Mc
ab ¼ −hsc∂a∂bijA¼0;

Md
abc ¼ −

1

6
hisd∂a∂b∂cijA¼0 þ

1

6
∂a∂bAchsdijA¼0

þ 1

6
½∂aAbhsd∂ci þ ∂bAchsd∂ai þ ∂aAchsd∂bi�jA¼0

þ ða;b; cpermutationsÞ; ð6Þ

where h…i≡ Rehunkj…junki. Note that A ¼ 0 does not
necessarily mean that the derivatives of A also vanish.
Equation (6) can be used together with the explicit formulas
of the k derivatives of junki given in Sec. II of [85] in
model or first-principles calculations.
Semiclassical transport of spin magnetic multipole

moments and its physical consequences.—Since the spin
magnetic multipole moments Eq. (4) are properties of
individual Bloch quasiparticles jnki, their creation in real
space by external perturbations can be formulated as
quasiparticle excitations, i.e., intraband contributions to
the nonequilibrium density matrix, induced by the pertur-
bations. The intraband contributions are also expected to be
dominant in clean systems with a long relaxation time.
Such intraband contributions can be conveniently obtained

from semiclassical Boltzmann theory. For example, up to first
order in the electric field E, the Boltzmann equation with a
constant relaxation time τ gives the nonequilibrium distri-
bution function fð1Þ ¼ eτð∂f0=∂ϵnkÞvnk ·E, which leads to
the nonequilibrium spin magnetic multipole moment density

hMi ¼ eτ
X
n

Z
dDk
ð2πÞDMnk

∂f0
∂ϵnk

vnk ·E; ð7Þ

where Mnk is given by Eq. (4) and D stands for the spatial
dimension of the system. One can similarly define a non-
equilibrium multipole current density as

hM ⊗ vi ¼
X
n

Z
dDk
ð2πÞDMnkvnkgnk; ð8Þ

where g is a general solution of the Boltzmann equation
that can include higher-order terms in E. Note that one
can also use the Berry-curvature-corrected semiclassical
Boltzmann theory to account for any anomalous transport
coefficients [87,97,98], e.g., a Hall effect for the multipole
current.
The above nonequilibrium quantities have correspond-

ing macroscopic observables that can be intuitively under-
stood using coarse-grained macroscopic Maxwell
equations [84]. For example, uniform hMi of different
order corresponds to different boundary spin density
distributions, with one example illustrated in Fig. 1 and
discussed in detail below. ∂hMi=∂E in Eq. (7) is a crossed
susceptibility that can be measured if one can prepare
quasistatic magnetic fields of nearly constant spatial
gradients of the corresponding order. It is also possible

to measure the magnetic multipole moment through the
characteristic angular distribution of the multipole fields
generated by a macroscopic sample.
In contrast, the nonequilibrium multipole current has

similar issues as the spin current [62,63,99–102] since
multipole moment is not a conserved quantity and the
currents are not directly measured experimentally. It is
therefore better used as a conceptual tool for understanding
nonlocal transport phenomena. For example, one can use
symmetry analysis to know if aHall component of hM ⊗ vi
can be created by a given electric field in a nonmagnetic
material, which can flow into a neighboring layer of another
material with multipolar order and lead to dynamical
responses of the order parameter.
Spin octupole moments in phosphorene.—In this section

we give an example of the spin octupole moments in
phosphorene subject to a perpendicular electric field.
Monolayer phosphorene has a puckered honeycomb struc-
ture formed by P atoms as depicted in Fig. 2(a). The
buckling reduces threefold symmetries in the honeycomb
lattice to twofold D2h symmetry and suggests its potential
for Cartesian spin octupole moments. The low-energy
Hamiltonian of multilayer black phosphorous has been
shown to be [90–93,103–105] h0ðkÞ ¼ ½ðℏ2k2y=2myÞ þ
Δ�σx − ℏvxkxσy, where σ and s (appearing below) are
the Pauli matrix vectors in the pseudospin and real spin
basis, respectively, and Δ is a gap of structural origin.
All bands are doubly degenerate in pristine phosphorene

due to spatial inversion symmetry. We therefore consider
a Rashba-type spin-orbit coupling induced by a
perpendicular electric field. The Rashba term in the
continuum model is found to be [85]

hRðkÞ ¼ ΛR
0 σysy þ ΛR

1 kyσxsx − ΛR
2 kxσxsy; ð9Þ

where ΛR
0;1;2 are constants depending on the lattice param-

eters as well as the Rashba spin-dependent hopping in the
tight-binding model. hR is consistent with previous DFT
results [94,106]. Ignoring the less important ΛR

2 [85] allows
us to diagonalize h ¼ h0 þ hR analytically and to find two

(a) (b)
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FIG. 2. (a) Structure of monolayer phosphorene. (b) Contour
plot of the eigenenergy (in units of μeV) for the lower conduction
band of monolayer phosphorene minus Δ.

PHYSICAL REVIEW LETTERS 131, 106701 (2023)

106701-3



extrema of the bands at �Kv ¼ �ΛR
0 =ðℏvxÞx̂ ≈ �2×

10−4 Å−1x̂ (estimated based on the DFT results for a
2.6 V=Å electric field in [94]). This is consistent with
Fig. 2 which shows a contour plot of the lower conduction
band with ΛR

2 included.
We next focus on the center of each valley and consider the

octupole component Mk
xy since such a component corre-

sponds to a nontrivial staggered spin accumulation pattern at
the corners of a rectangular sample. Equation (6) leads to [85]

Mc
ab ¼ Re

X
m≠n

ðscÞnnð∂aHkÞnmð∂bHkÞmn

ðϵnk − ϵmkÞ2

−Re
X
m≠n

ðscÞnmð∂a∂bHkÞmn

ϵnk − ϵmk

−Re
X

l≠n;m≠n

�ðscÞnmð∂bHkÞlnð∂aHkÞml

ðϵnk − ϵlkÞðϵnk − ϵmkÞ
þ ða↔ bÞ

�

þRe
X
m≠n

�ðscÞnmð∂bHkÞmnð∂aHkÞnn
ðϵnk − ϵmkÞ2

þða↔ bÞ
�
:

ð10Þ
Still ignoringΛR

2 and considering the lower conduction band
only, we found [85] that at the valley centers onlyMx

xy ≠ 0,
which in the limit of ΛR

0 ≪ Δ becomes

Mx
xyðKvÞ ≈ −

ℏ2vxΛR
1Δ

4ðΛR
0 Þ3

≈ −1.66 × 106 Å2 ·
ℏ
2
: ð11Þ

Such a large result originates from the tiny splitting
between the two conduction bands at the valley center,
δϵðKvÞ ≈ 2ðΛR

0 Þ2=Δ. In practice this splitting must be
greater than ℏ=τqp, where τqp is the finite lifetime of Bloch
quasiparticles, for Eq. (11) to be relevant. Figure 3(a)
plots Mx

xy for the lower conduction band near the
Brillouin zone center with ΛR

2 included, which gives
Mx

xyðKvÞ ¼ −1.54 × 106 Å2 · ðℏ=2Þ, in good agreement
with Eq. (11).
We next discuss creation of the spin magnetic octupole

moment in phosphorene driven by electric fields based on
the semiclassical Boltzmann theory presented above. The
integrand of Eq. (7) for Mx

xy with EF − Δ ¼ 0.1 eV,
kBT ¼ 0.01 eV, and Ekx̂ is shown in Fig. 3(b). The
contribution due to each conduction band can be seen to
have a nonzero Fermi surface integral, although the two
bands have opposite contributions that largely cancel each
other. Taking ℏ=τ ¼ 0.1 eV, the result of Eq. (7) per
electric field in the units of V=Å is −1.65 × 10−2 ðℏ=2Þ
(assuming the same 2.6 V=Å perpendicular field).
To understand the implication of this result, we note that

a rectangular sample with a uniform Mx
xy density has an

approximate spatial dependence Mx
xyðrÞ ≈ Mx

xyΘ½�ðx −
xcÞ�Θ½�ðy − ycÞ� near a given corner bounded by x ¼ xc

and y ¼ yc, where ΘðxÞ is the step function. The local
spin at a given corner is therefore obtained as [84]
Sxc ¼

R
c d

2r∂x∂yMx
xyðrÞ ¼ �Mx

xy, where the integration
is in a small region near the corner where the integrand
is significant. The positive (negative) sign is taken when the
arguments of the two step functions have the same sign
(opposite signs), resulting in the corner spin pattern
in Fig. 1.
With this understanding, the above current-induced

octupole moment in phosphorene is equivalently described
as a corner-spin-electric-field response with the rough size
of −1.65 × 10−2 ðℏ=2ÞV−1 Å. For comparison, one can
calculate the current-induced uniform spin density due to
the Rashba spin-orbit coupling. The same set of parameters
give a y-spin density of −4.8 × 10−4 ðℏ=2ÞÅ−2 per 1 V=Å
electric field along x. However, the octupole-induced
corner spin is orthogonal to the uniform spin density
and should therefore be able to be isolated using magnetic
imaging techniques that are sensitive to local spin orienta-
tions, such as Lorentz TEM. In [85] we further show that
the boundary spin density due to current-induced quadru-
pole moment is also orthogonal to that due to the octupole
moment and can therefore be separated out.
Finally, we point out that a current along x and carrying

the octupole moment Mx
xy can be created by a nonlinear

response to Ex. Such a current does not arise from linear
response since it is forbidden by symmetry [85], which can
also be seen from Fig. 3(b). In general, if a multipole
moment vanishing in equilibrium becomes nonzero
through linear response to an electric field, a second-order
response to the same electric field can drive a current of that
multipole moment.
Discussion.—Our Letter only discussed semiclassical

transport based on the intrinsic multipole moments of
Bloch quasiparticles. Equilibrium and nonequilibrium
macroscopic multipole moments of a finite system in
general involve more contributions due to boundary and
interband terms [71,107]. The former, similar to the
situation of spin-orbit torques, depends on the boundary

(a) (b)

FIG. 3. (a) Mx
xy of the lower conduction band of phosphorene

in units of Å2 · ðℏ=2Þ. The regions where its values become too
large due to the vanishing spin-orbit splitting between the
two conduction bands are crossed out for better illustration.
(b) Integrand of Eq. (7) for Mx

xy with EF − Δ ¼ 0.1 eV,
kBT ¼ 0.01 eV, and Ekx̂.
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condition and is entangled with the bulk contribution due to
spin nonconservation. Complementary insights may be
obtained by the thermodynamic approach (for the equilibrium
case) and by explicitly calculating the spin density responses
at the boundary (for the nonequilibrium case) [60,61]. The
latter, for well-defined susceptibilities (i.e., not involving
multipole currents), can be captured by linear or nonlinear
response theories and will be left for a future work.
Our Letter shows that gauge dependence and origin

dependence can be separate issues in studying multipole
moments of quantum condensed matter systems. On the
one hand, classical multipole moments in general depend
on origin. On the other hand, explicitly fixing the origin
does not necessarily fix the gauge for a quantum multipole
moment, since the former only sets a linear-in-k phase of
the gauge transformation.
Separately, higher-order semiclassical theories based on

the wave packet approach in general include quantities that
depend on the wave packet shape [108,109]. Such shape
dependence must be compensated by other contributions to
the final macroscopic observable for a given system,
although it can also be potentially exposed by experiments
on individually prepared wave packets. In this regard, we
expect the shape-independent wave packet spin multipole
moment given in this Letter to bemost suitable for describing
diffusive transport among spatially separated subsystems.
Our gauge-invariant formula can also be applied to

electric multipole moments of Bloch wave packets. In
particular, we note that “composite” contributions to the
wave packet spin multipole moments can arise as products
of lower-order spin and electric (without the factor of e)
multipole moments of the wave packet. Such terms are
not considered here but will turn out to be relevant
when comparing the wave packet and thermodynamic
approaches to the equilibrium multipole moments [71].
For prototypical materials hosting magnetic multipole

moments in nonequilibrium, besides phosphorene, multi-
layer black phosphorus should also work since it has a
similar low-energy Hamiltonian [91]. In three dimensions it
will be interesting to look for hexadecapole moments with
xyz spatial indices, since they lead to staggered corner spins
in a cubic sample. We expect orthorhombic materials with
either time reversal or inversion symmetry broken to be
promising candidates for observing them.
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