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When a system is swept through a quantum critical point, the quantum Kibble-Zurek mechanism makes
universal predictions for quantities such as the number and energy of excitations produced. This
mechanism is now being used to obtain critical exponents on emerging quantum computers and emulators,
which in some cases can be compared to matrix product state (MPS) numerical studies. However, the
mechanism is modified when the divergence of entanglement entropy required for a faithful description of
many quantum critical points is not fully captured by the experiment or classical calculation. In this Letter,
we study how low-energy dynamics of quantum systems near criticality are modified by finite
entanglement, using conformally invariant critical points described approximately by a MPS as an
example. We derive that the effect of finite entanglement on a Kibble-Zurek process is captured by a
dimensionless scaling function of the ratio of two length scales, one determined dynamically and one by the
entanglement restriction. Numerically we confirm first that dynamics at finite bond dimension χ is
independent of the algorithm chosen, then obtain scaling collapses for sweeps in the transverse field Ising
model and the three-state Potts model. Our result establishes the precise role played by entanglement in
time-dependent critical phenomena and has direct implications for quantum state preparation and classical
simulation of quantum states.
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Introduction.—The long-time dynamics of a many-body
quantum system is challenging to study on classical
computers even if the system is initialized in a weakly
entangled state, as the entanglement entropy will generi-
cally grow linearly in time [1–4]. At the same time, this
regime of dynamically produced entanglement is of great
interest in modern research, as it contains insights into such
fundamental questions as how apparently nonreversible
thermalization emerges from unitary dynamics in isolated
quantum systems [5,6]. The dynamical aspect is particu-
larly important in quantum simulation on current quantum
computers, on which preparing a nontrivial ground state is
often harder than performing coherent evolution. Yet,
compared to static properties, nonequilibrium time evolu-
tion is less understood in terms of either conceptual guiding
principles or effective methods of calculation.
An exception is the dynamics of a system swept slowly

through a quantum critical point, when universal properties
are known to emerge in the limit of long times and
distances via the quantum Kibble-Zurek (KZ) mechanism.
We focus on this mechanism as an example of universal
out-of-equilibrium dynamics that is theoretically funda-
mental and also used in experiments to probe quantum
criticality in emerging platforms that maintain quantum
coherence well but have difficulty in reaching thermal
equilibrium [7]. The modification of quantum criticality by
limits on observation time or system size is of renewed
interest in light of these new efforts to study such criticality
on quantum computers and emulators. Another, more

challenging, kind of modification arises from noise or
other effects in the system that act to limit quantum
entanglement. The goal of the present work is to capture
how the quantum Kibble-Zurek mechanism is universally
modified in systems with finite entanglement.
Quantum critical points are of particular interest because

of their emergent universal properties: their large-scale
behavior is insensitive to some “irrelevant” microscopic
details and is the same across vast groups of models known
as universality classes. However, certain other microscopic
perturbations are “relevant” and change the universality
class, and indeed finite entanglement will turn out to be
such a perturbation. Despite having a degree of robustness
to irrelevant perturbations, quantum critical points are also
well known to be challenging for computational methods
on classical computers, for reasons such as requiring large
system sizes that also apply to new efforts on quantum
computers. Indeed, finite size can be viewed as a relevant
perturbation to criticality, and this insight underlies the
successful theory of finite-size scaling [8].
Dynamically, the most straightforward manifestation of

universality is the (classical or quantum) Kibble-Zurek
scaling. It describes the number and energy of excitations
produced in a system that is driven through a second-order
phase transition. The scaling of the corresponding density
with the drive rate is determined by combinations of
standard critical exponents. This behavior is often one of
the first phenomena probed on new quantum simulation
platforms [9–11], which has also motivated numerical
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studies of this process [12,13]. We derive forms for the
fidelity and excitation energy produced by the sweep based
on the existence of two relevant scales: the KZ length ξKZ
arising from falling out of adiabaticity with a nonzero
sweep rate, and one ξχ arising from the restricted
entanglement.
We test the resulting theory using an example of

entanglement restriction that is familiar on classical com-
puters: restriction of the bond dimension of a tensor
network. The emergence of this length scale ξχ is a widely
used tool in understanding calculations based on matrix
product states (MPS), and as these calculations are among
the most used to model the experimental platforms above,
we review their use briefly.
MPS originally emerged as the output of the density

matrix renormalization group algorithm [14,15], which
provides an approximation to the ground states of 1D
local Hamiltonians. The efficiency of this algorithm in
many cases is underpinned by the area law of entanglement
entropy in gapped one-dimensional systems [16] which
implies that the exact ground state can be represented
efficiently by a MPS [17,18]. Later, MPS inspired the
development of other tensor networks, including the multi-
scale entanglement renormalization ansatz for critical states
[19,20] and projected entanglement pair states [21–24].
MPS applications extend beyond ground state properties to
include excited states [25–30] and quantum dynamics
[30–36].
MPS have also found applications beyond classical

simulations of quantum systems. There is a direct mapping
between a MPS and certain quantum circuits [37–39]. In
such mappings the physical qubits are coupled to some
χ-dimensional ancillary system, such as an optical cavity
[37], or other qubits [38,39]. Recent work has also
demonstrated a mapping between tensor networks and
neural networks, the main architecture for machine learning
(ML) and artificial intelligence [40,41], allowing for deep
learning architectures to be understood from an entangle-
ment perspective [42]. Tensor networks have been success-
fully used for ML applications, such as image classification
[43–49].
For a periodic (or infinite) MPS (iMPS), the expressive

power of the ansatz is fully specified by the dimension of
the matrices χ, called the bond dimension, which is related
to the entanglement entropy of the state [15]; for definitions
and details, see the Supplemental Material [50]. However,
if the entanglement is unbounded, the existence of an
efficient representation of the state with finite χ is no longer
guaranteed. This applies whether the MPS is approximating
a critical ground state or the entanglement was dynamically
generated. Here we consider dynamics where, as in many
practical computations, the state is represented by a MPS at
finite χ during the full time evolution. We focus on
dynamics near a quantum critical point and the goal is
to gain insight about properties of the time-evolved state;

using the universality of critical behavior, we are able to
predict how observables scale with χ and controllably
approach the χ ¼ ∞ state from finite-χ data.
We begin with a time evolution protocol known as a

Kibble-Zurek sweep [54–57]. We then show that finite χ
dynamics is well defined, in that different procedures for
time evolution produce the same result in the appropriate
limits. A subtlety is that different definitions that all give
the exact ground state are no longer equivalent at finite χ,
and how algorithms resolve this ambiguity. We then
demonstrate our results by examining the transverse-field
Ising model (TFIM) and the three-state Potts model,
verifying our finite χ scaling hypothesis in detail.
Kibble-Zurek scaling.—We consider an extended quan-

tum system described by a Hamiltonian HðλÞ with some
parameter λ. We further assume that λ ¼ λ0 corresponds to
an isolated quantum critical point. For the correlation
length ξ and time τ in the vicinity of the critical point
we expect [58]

ξ ∼ jλ − λ0j−ν; τ ∼ jλ − λ0j−zν; ð1Þ

where ν and z are the corresponding critical exponents.
Let us now consider the evolution of the system initiated

in the ground state (that we assume to be nondegenerate) far
away from the critical point with the parameter changing in
time as λðtÞ ¼ λ0 þ υt. We assume that v is slow compared
to the bandwidth and t runs from −∞ to t0 > 0. Far from
the critical point the gap is large compared to v and the
adiabatic theorem applies. Because the breakdown of
adiabaticity only occurs close to the critical point, proper-
ties of the resulting state will obey universal scaling laws,
the KZ scaling [54–57].
The scaling exponents can be deduced from a simple

reasoning. The adiabaticity is lost when t ≈ −τ, where τ is
determined by Eq. (1); this corresponds to

τKZ ∼ υ−½ðνzÞ=ð1þνzÞ�; ξKZ ∼ υ−½ν=ð1þνzÞ�; ð2Þ

thus defining the Kibble-Zurek time and length, corre-
spondingly. Since the adiabaticity is restored after t ¼ τ and
we expect the generated exitations to freeze-out and the
average density of excitations and energy will be (in one
spatial dimension)

nex ∼ 1=ξKZ ∼ υ½ν=ð1þzνÞ�; ð3Þ

ϵex ∼ 1=ξ2KZ ∼ υ½ð2νÞ=ð1þzνÞ�: ð4Þ

This scaling has been verified by extensive numerics
[59,60] as well as experiments [9,10,61]. There exists
also an exact solution for the transverse-field Ising model
[51,62].
In Eq. (3), ϵex is the energy above the ground state

divided by the volume and nex needs to be defined with care
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when the particle number is not well defined. We propose
to use fidelity density, which is given by

fðtÞ ¼ −
1

N
log

�
jhψðtÞjψ0ij2

�
; ð5Þ

where jψ0i is the ground state, jψðtÞi the time evolved
state, and N is the total number of sites in the system. fðtÞ
has the same scaling as we expect for nex [59,63], and is
proportional to it at low densities when the system has a
free fermion description, as we explain in Supplemental
Material [50].
MPS dynamics and finite bond dimension.—The time

evolution of a state under a Hamiltonian HðtÞ is given by

jψðtÞi ¼ UðtÞjψð0Þi ð6Þ

UðTÞ ¼ T exp

�
−i

Z
T

0

dtHðtÞ
�
; ð7Þ

where T ð·Þ is the time ordering operator. If we write
tn ¼ nΔt, and T ¼ tN , then this is equivalent to writing

UðtÞ ¼ lim
N→∞

h
e−iHðtNÞΔt � � � e−iHðt0ÞΔt

i
: ð8Þ

Conceptually, this amounts to treating the Hamiltonian as a
piecewise constant over an interval of sizeΔt, and the exact
time evolution is found in the limit that Δt → 0. For finite
Δt, treating the Hamiltonian as a piecewise constant
produces an error of order OðΔtÞ. To implement time
evolution using an MPS, if Δt is sufficiently small, it is
sufficient to define time evolution for a constant
Hamiltonian over a time Δt. We demonstrate in the
Supplemental Material [50] that finite χ dynamics is
independent of the algorithm used as Δt → 0.
Nowwe turn to howKZscaling ismodifiedwhen the state

is represented at all times by anMPSwith a fixed finite bond
dimension χ. The effect of finite bond dimension is to limit
the amount of entanglement in the system.And since close to
conformal critical points entanglement is related to the
correlation length by the celebrated expression [64]

S ¼ c
6
log ξ; ð9Þ

for fast sweeps, when ξKZ is small, the effect of χ will be
small, whereas for slower sweeps, when ξKZ is large, the
number of excitations will be suppressed compared
to Eq. (3).
This situation is similar to the one studied in [12], where

the KZ scaling in the TFIM was studied in the presence of a
symmetry breaking bias gk that kept the gap finite at all
times during the sweep. It was numerically verified that the
effect of gk could be described by a single length scale

ξk ¼ g
−νk
k , where νk is the corresponding critical exponent,

and all KZ scaling laws were modified by a scaling function
that depended on the ratio ξk=ξKZ. We also expect the
scaling behavior to occur for finite system size, in which
case the argument of the scaling function would be L=ξKZ
with L, the system size.
Returning to the case of finite bond dimension, we

conjecture its effect to be describable by a single length
scale ξχ . Thus, we expect that the χ ¼ ∞ result is
modulated by a dimensionless scaling function, similar
to the scaling theory of entanglement entropy [65]. In
particular, we expect

Oðυ; χÞ ¼ Oðυ; χ ¼ ∞ÞζOðξKZ=ξχÞ; ð10Þ

where ζO is some scaling function for the observable O.
Here, we look at the fidelity density f from Eq. (5) and the
excitation energy ϵex. The fidelity density f is computed via
the largest eigenvalue of the transfer matrix formed by the
full contraction of both states (see the Supplemental
Material [50]). Both of these quantities require the ground
state at finite χ, where equivalent definitions of the χ ¼ ∞
ground state are no longer equivalent. See the Supplemental
Material for more details on choosing the relevant finite χ
ground state [50].
The length scale ξχ has been previously studied for

ground state properties and the scaling given by ξχ ∼ χκ

was observed in [66]. The conformal field theory (CFT)
entanglement spectrum was used to obtain a form for the
exponent [67]

κ ¼ 6

c
� ffiffiffiffi

12
c

q
þ 1

� ð11Þ

in surprisingly good agreement with numerical data
[66–68]. Looking ahead, we will find that the same critical
exponent governs the dynamical problem of Kibble-Zurek
scaling.
Numerical verification.—We look at two models in this

study. First, the transverse-field Ising model (TFIM),
defined by the Hamiltonian

H ¼ −J
X
n

σznσ
z
nþ1 − g

X
n

σxn; ð12Þ

where σin is the ith Pauli matrix at site n. Equation (12) has
a Z2 symmetry ⊗i σ

x
i . This system has a quantum phase

transition at g ¼ J that separates a disordered phase with a
unique GS for g > J and an ordered phase with a twofold
degenerate GS for 0 < g < J. The CFT describing the
critical point is the minimal model with c ¼ 1=2 and the
critical correlation length critical exponent is given by
ν ¼ 1 [69]. Thus, for the KZ scaling we expect

nex ∼ υ1=2; ϵex ∼ υ: ð13Þ
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The coupling constants have a υ dependence given by

JðtÞ ¼ 1þ υt

gðtÞ ¼ 1 − υt
t∶ − 1

υ → 0: ð14Þ

The initial coupling is given by J ¼ 0, and g ¼ 2. The
ground state at this point is a simple product state given by
jψ0i ¼ j →i⊗N . We then time evolve this state with the
time dependent Hamiltonian using the time-evolution
block-decimation (TEBD) algorithm [15,36]. We use a
fourth order Trotter decomposition [70], with a timestep
of dt ¼ 0.005.
We enforce the Z2 symmetry during the ground state

search, and time evolution, producing a Z2 symmetric state
in both cases. For different values of the bond dimension χ,
we calculate f and ϵex, and show the results in Fig. 1. The
black line illustrates the χ ¼ ∞ result. We see that for large
υ, the effect of finite bond dimension is minimal, but as we
decrease the speed, the deviations become dramatic. The
systematic nature of the deviations is a focus of the
present work.
In Fig. 2, we show the scaling function collapse assum-

ing the scaling hypothesis in Eq. (10). We expect the
scaling hypothesis to be valid for large χ but it already
begins to work for χ ≥ 4, with the exponent κ specified
by Eq. (11).
The second model we explore is the three-state Potts

model defined by the Hamiltonian [71]

H ¼ −J
X
n

�
η†nηnþ1 þ ηnη

†
nþ1

�
− g

X
n

�
τn þ τ†n

�
ð15Þ

η ¼

2
64
1

ei
2π
3

e−i
2π
3

3
75; τ ¼

2
64
0 1 0

0 0 1

1 0 0

3
75: ð16Þ

Equation (15) enjoys S3 symmetry comprised of all
permutation of the basis states on all sites. However, we
explicitly enforce the only Z3 ⊂ S3 symmetry containing
cyclic permutations.
Analogously to the TFIM, at g ¼ J there is a critical

point that separates a Z3 symmetric phase for g > J and a
Z3 ordered phase for 0 < g < J. The CFT is similarly a
minimal model (Z3 parafermion) with c ¼ 4=5 and ν ¼
5=6 [69]. Accordingly, the KZ scaling is

nex ∼ υ5=11; ϵex ∼ υ10=11: ð17Þ

For the dynamics, we use the same time dependent
coupling used for the TFIM, given in Eq. (14). We again
use TEBD with a fourth order Trotter decomposition,
except with a time step of dt ¼ 0.01. The excitation energy,
and fidelity density, are qualitatively identical to the TFIM,
except with different scaling exponents with υ, and so we
relegate the figures to the Supplemental Material [50]. We
do show the scaling function collapse in Fig. 3. Again we
see a clear collapse of the data, further confirming the
scaling hypothesis of Eq. (10).

FIG. 1. The fidelity and excitation energy densities after a
Kibble-Zurek sweep performed at speed v for the TFIM. We
show the results for different maximum bond dimensions χ. We
show a black line illustrating the scaling prediction for χ ¼ ∞.

FIG. 2. The scaling function collapse for the fidelity density
and excitation energy in the TFIM. The length scale introduced
by the bond dimension, ξχ , follows a power law with exponent
given by Eq. (11), with a central charge of c ¼ 1=2.

PHYSICAL REVIEW LETTERS 131, 106501 (2023)

106501-4



Conclusions.—We found that a Kibble-Zurek sweep
through a one-dimensional quantum critical point is modi-
fied by finite entanglement, i.e., fixed finite bond dimen-
sion χ for an iMPS, in a way similar to relevant
perturbations of the Hamiltonian, even though finite χ is
not equivalent to any local Hamiltonian perturbation.
Properly defined, the sweep-induced differences from an
adiabatically defined ground state are captured by a
universal scaling function that unusually involves both
scaling dimensions and central charge. The scaling function
involves the ratio of two length scales ξKZ and ξχ and the
essential features are independent of the specific imple-
mentation of the dynamics, suggesting that the finite-
entanglement scaling form for dynamics will have similar
utility in practice as the form for ground states, by enabling
systematic extrapolation from finite-χ results (see the
Supplemental Material for further details [50]).
Whether bond dimension can be treated as a relevant

perturbation in an even more general setting, and whether
other non-Hamiltonian perturbations to quantum dynamics
can similarly be captured by scaling functions, remains an
open question. The way matrix product states implement
finite entanglement is via the restriction on bond dimension
and therefore Schmidt rank: the relevant ground state here
was the lowest-energy state within a specified symmetry
sector and Schmidt rank. It would be worthwhile to
generalize the scaling theory to (pure or mixed) states
approximating criticality that arise via other mechanisms
that also put a limit on entanglement, such as some
nonunitary processes arising from environmental

interactions in quantum hardware, and to understand
how these approximate states compare to MPS. It would
also be interesting to see if our analysis applies beyond
Kibble-Zurek scaling to the more general finite-time scal-
ing [72,73]. Lastly, the finite χ scaling of dynamical
observables opens up an interesting application of quantum
computers in the NISQ era. Since quantum circuits can
represent MPSs with a physically relevant bond dimension
[37–39], running such simulations at different bond dimen-
sions could enable a novel way to extract the central charge
of critical theories. This procedure is well suited for
quantum computers, on which unitary dynamics are easily
programmed.
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