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The dynamical phase diagram of interacting disordered systems has seen substantial revision over the
past few years. Theory must now account for a large prethermal many-body localized regime in which
thermalization is extremely slow, but not completely arrested. We derive a quantitative description of these
dynamics in short-ranged one-dimensional systems using a model of successive many-body resonances.
The model explains the decay timescale of mean autocorrelators, the functional form of the decay—a
stretched exponential—and relates the value of the stretch exponent to the broad distribution of resonance
timescales. The Jacobi method of matrix diagonalization provides numerical access to this distribution, as
well as a conceptual framework for our analysis. The resonance model correctly predicts the stretch
exponents for several models in the literature. Successive resonances may also underlie slow thermalization
in strongly disordered systems in higher dimensions, or with long-range interactions.
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Localized systems fail to thermalize under their own
dynamics due to strong spatial inhomogeneities [1].
Without interactions, a stable fully localized phase exists
in any dimension [2–4]. Including interactions, the exist-
ence ofmany-body localization (MBL) becomes difficult to
confirm. The consensus from the last decade and a half
[5–11] is that sufficiently strong random disorder produces
stable MBL in short-ranged one dimensional systems only.
Specifically, the best-studied model—the Heisenberg chain
with random fields [8]—was believed to have a direct
transition from a thermalizing phase to a fully MBL phase
at a critical disorder strength W ¼ Wc between 3 and 6 (in
units of the Heisenberg coupling) [8,12].
However, numerical evidence has been accumulating

that this understanding is wrong—there is no transition
near W ¼ 3 [13–21]. In fact, recent studies suggest Wc ≳
20 [19,20], which is larger than numerically or experi-
mentally observable [19,22]. The phase diagram must thus
be modified to contain a large prethermal MBL regime, in
which the system appears to be localized for a long time
[Fig. 1(a)].
Prethermal MBL phenomenology has been studied in

short chains using exact diagonalization techniques
[14,17,18,41,42]. Three key features have emerged: expo-
nential growth of the thermalization time τ with disorder,
approximately logarithmic decay of autocorrelators up to a
time OðτÞ, and apparent localization when τ exceeds the
Heisenberg time τHeis ¼ Oð2LÞ in finite chains. Rare
regions of anomalously high disorder can neither explain
the slow decay, nor are they empirically observed in
this parameter regime [15,16,26]. Rather, the observed
decay [43–49] and apparent localization can be partially

explained [22,50] through resonances between many-body
states [22,43,50–52].
At short times, a product state may resonatewith another

state with a locally different magnetization pattern.

FIG. 1. (a) Disordered many-body systems cross over from a
well-thermalizing regime into a prethermal many-body localized
regime, where the local equilibration time τ grows exponentially
with the disorder strength W. Any transition to an MBL phase
must occur at much larger disorder strength. (b) The successive
resonance model predicts that the stretch exponent (β) appearing
in stretched exponential decay of autocorrelators equals another
exponent (−θ) which describes the broad distribution of reso-
nance timescales. Data from a one-dimensional Floquet circuit
model of MBL [19], a Floquet-Ising model [23], and the usual
disordered Heisenberg model [24–26] are broadly consistent the
prediction β ¼ −θ in the prethermal MBL regime.
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Physically, this manifests as large oscillations in local
autocorrelators. In this Letter we propose that, in the
prethermal regime, states become involved in still more
resonances at longer times. Thus, a hierarchy emerges of
successive resonances forming at progressively longer
timescales. Our statistical treatment of this resonance
formation predicts exponentially long thermalization times,
and stretched exponential decay of disorder averaged
autocorrelators. Numerically, we find that autocorrelators
indeed decay as a stretched exponential [23] (Fig. 2).
The Jacobi algorithm for iterative matrix diagonalization

[53,54] is the basis of our analytical framework, and allows
us to extract the distribution of resonance frequencies. The
distribution is described by a power law with exponent
−1þ θ [22]. The successive resonance model predicts that
the stretch exponent β for autocorrelator decay is linearly
related to θ:

β ¼ −θ: ð1Þ

Both our own numerics and previously published data
show good agreement with this prediction [Fig. 1(b)].
Dynamics of autocorrelators.—Infinite-temperature

autocorrelation functions are a measurable probe of ther-
malization, and their slow decay is a notable characteristic
of the prethermal regime [23,25,55,56]. In a disordered

model, Fig. 2 shows that autocorrelators decay as a
stretched exponential (3) with a decay constant that is
exponential in the disorder strength (4).
We consider autocorrelators of operators which are

diagonal in the disorder basis (the z basis). The numerics
presented in the main text use

CðtÞ ¼ 1

2L
½Trðσz0ðtÞσz0ð0ÞÞ� ð2Þ

in the Floquet circuit model of Ref. [19] with periodic
boundary conditions, described in detail in the
Supplemental Material [26]. Here, σz0 is the z spin operator
on an arbitrary site (labeled 0), L is the number of qubit
degrees of freedom, σz0ðtÞ ¼ UðtÞ†σz0UðtÞ, UðtÞ is the
unitary evolution operator, and square brackets denote a
disorder average. In this model, every σz operator is
conserved in the W → ∞ limit [26].
The Floquet circuit model has a well-thermalizing

regime for W ≪ 1, where CðtÞ rapidly decays to zero.
In any MBL phase, CðtÞ acquires a nonzero late time value.
In the intermediate regime of prethermal MBL,
1≲W ≲ 25, CðtÞ decays slowly to zero in the L → ∞
limit [19].
In more detail, in the intermediate regime, CðtÞ first

drops to some Oð1Þ value within a few tens of periods, and
then decays very slowly. The functional form of this decay
appears logarithmic at small system sizes or short times
[17], but a better fit for larger system sizes is to a stretched
exponential (Fig. 2) [26],

CðtÞ ∼ Ae−ðt=τÞβ : ð3Þ

(It is notoriously difficult to distinguish stretched expo-
nential relaxation from a logarithm at intermediate
times [57].)
The timescale for decay (τ) is extracted from a fit of this

functional form to the late-time data for CðtÞ. Consistent
with other recent observations [14,17,41], τ increases
exponentially in the disorder strength.

log τ ¼ OðWÞ: ð4Þ

In a Hamiltonian system, local equilibration on the time-
scale τ would be followed by slow hydrodynamic decay.
The observations (3) and (4) are the primary features that

the model of successive resonances explains.
Jacobi algorithm.—In the prethermal MBL regime,

eigenstates of large systems should be expected to obey
the eigenstate thermalization hypothesis (ETH) [58–60].
This makes them a poor basis for predicting finite time
dynamics of local correlators. It is more revealing to use a
short time expansion in a dressed basis.
The Jacobi algorithm for matrix diagonalization [53,54]

provides a convenient numerical tool for constructing such

FIG. 2. (a) Within a broad regime of disorder strengths (specific
values marked yellow in the color bar), local autocorrelation
functions (2) for the Floquet circuit model decay very slowly.
Fits to a stretched exponential (red, dashed forW ∈ f3; 4; 5g) show
excellent agreement with the numerical data. (b) The decay times τ
extracted from stretched exponential fits (3) grow exponentially
with disorder W. (Fits with τ ≳ 104 exceed our maximum simu-
lation time, and are unreliable.) (Inset) The stretch exponent β
decreaseswithdisorder,andincreasesweaklywithsystemsize[26].
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a dressed basis. It also provides a more concrete framework
within which to understand what is meant by a many-body
resonance in a system which, ultimately, thermalizes.
We describe the algorithm for the case of a Hermitian

operator (the Hamiltonian, H). Generalizations to the
unitary case [61,62] are appropriate for the Floquet setting,
and are discussed in the Supplemental Material [26].
The algorithm begins by identifying the largest (in

absolute value) off-diagonal matrix element of H, Hab,
in the z basis. The 2 × 2 block containing this element is
diagonalized by the unitary rotation R0. (Note that R0

affects the entire a and b rows and columns of H.) The
ða; bÞ element of H is then set to zero in the rotated matrix
HðΓ1Þ ¼ R†

0HR0, where Γ1 is a flow time for the algorithm,
defined below in Eq. (6). We say the element Hab of H is
decimated, in analogy to the renormalization group.
This process is iterated, so that the weight in the off-

diagonal of HðΓjþ1Þ ¼ R†
jHðΓjÞRj strictly decreases. This

procedure constructs a basis

jaðΓjÞi ¼ Rj−1 � � �R1R0jaðΓ0Þi; ð5Þ

(where fjaðΓ0Þig is the bare product state basis) which is
dressed by the fast degrees of freedom in H.
The flow time Γ is defined in terms of a physical

timescale associated with the basis fjaðΓÞig (ℏ ¼ 1),

2π

Γ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L2L
X
a≠b

jhbðΓÞjHjaðΓÞij2
s

: ð6Þ

and strictly increases throughout the course of the algo-
rithm [54]. Henceforth, we neglect all subexponential
factors of L, as in the denominator of Eq. (6).
The Jacobi algorithm diagonalizesH withinOð4LÞ steps.

Only OðW2LÞ steps are necessary to construct the dressed
basis useful for computing autocorrelators. The dressed
states only have large overlap with Oð1Þ bare states on
average, as discussed in the next section.
Dynamics of successive resonance.—Expressing the

autocorrelator CðtÞ in the dressed basis relates it to the
statistics of the Jacobi algorithm (11). With two natural
assumptions—that dynamics are dominated by sparse
resonances (9), and that the timescales associated with
these resonances are power law distributed (13)—stretched
exponential decay follows.
When calculating autocorrelators of some operator Z

(assumed to be diagonal in the fjaðΓ0Þig basis) for t ≪ Γ,
we can treat the Hamiltonian as being diagonal in the basis
fjaðΓÞig at the cost of introducing a well-controlled error:

CZðtÞ ¼
1

2L
½TrðZðtÞZð0ÞÞ�

¼ 1

2L

�X
a;b

jZabðΓÞj2e−iωabðΓÞt
�
þOððt=ΓÞ2Þ; ð7Þ

where ZabðΓÞ¼ haðΓÞjZjbðΓÞi, ωabðΓÞ ¼ hbðΓÞjHjbðΓÞi−
haðΓÞjHjaðΓÞi, and square brackets are again used to denote a
disorder average.
The joint distribution function of jZabðΓÞj2 and ωabðΓÞ,

pðZ2;ω;ΓÞ, determines CZðtÞ through

CZðtÞ ¼ 2L½Z2e−iωt�pðΓÞ þO½ðt=ΓÞ2�: ð8Þ

The subscript on the square brackets indicates the distri-
bution over which the average is performed.
We can deduce properties of p, and hence CZðtÞ, from

the Jacobi algorithm. Namely, that large matrix elements in
the distribution only arise due to occasional large rotations
in the Jacobi algorithm.
As Z is diagonal in the initial basis fjaðΓ0Þig, its off-

diagonal elements only become large when some rotation
Rk affecting that element is also large. This happens when
the decimated off-diagonal matrix element is much larger
than the difference in diagonal elements ωabðΓkÞ—that is,
when the states jaðΓkÞi and jbðΓkÞi are resonant. Then, in
the next round of iteration,

jZabðΓkþ1Þj2 ¼ Oð1Þ;
HaaðΓkþ1Þ ≈HaaðΓkÞ � jHabðΓkÞj; ð9Þ

and similarly HbbðΓkþ1Þ ≈HbbðΓkÞ ∓ jHabðΓkÞj.
We make the approximation that rotations are either

trivial or cause resonances (9) [22]. Only the resonances
produce dynamics.
Before thermalization, resonances are sparse. The prob-

ability of a resonance occurring in a given rotation is small,
Pðjωabj < jHabjÞ ¼ OðW−1Þ. Further, the prefactor hidden
in this scaling expression is also small: between 0.1% and
1% of rotations are resonances in the studied parameter
regimes. Thus, after OðWÞ Jacobi steps per state (as in
Fig. 3), every dressed state jaðΓÞi is involved in Oð1Þ
resonances on average.
Technically, the sparse resonance assumption is that

jZabj2 ¼ Oð1Þ only for resonant states. This ignores the
effects of successive resonances which may reduce jZabj2,
and the possibility of many small rotations producing a
large jZabj2. This assumption is valid provided that the
number of resonances per state is Oð1Þ. This provides a
large intermediate window, a few multiples of τ, in which
we can make predictions.
The resonance assumption splits p into a part due to

resonances, which contributes to CZðtÞ, and a part where
matrix elements are all close to zero:

pðZ2;ω;ΓÞ ≈ δðZ2Þp0ðω;ΓÞ þ presðZ2;ω;ΓÞ: ð10Þ

Equation (9) leads to two conclusions regarding pres.
First, the matrix element jZabðΓkÞj2, being Oð1Þ, does not
depend strongly on ωabðΓkÞ. Consequently, the expectation
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of Z2 at fixed ω in pres can be factorized out of Eq. (8). This
gives a key intermediate result:

CZðtÞ ≈ 2L½Z2�presðΓÞFfpresðω;ΓÞgðtÞ; ð11Þ

where presðω;ΓÞ is the marginal distribution function of the
resonance frequencies and Ff·g is the Fourier transform.
The second consequence is found by repeatedly applying

Eq. (9) to find the energy differences ω. They are of the
form

ωabðΓÞ ¼
X
Γk<Γ

μkjHðΓkÞj; ð12Þ

where μk ¼ �1, and the sum runs over matrix elements
jHðΓÞj responsible for a resonance in either state jaðΓÞi or
jbðΓÞi at flow time Γ. We have neglected the initial value
ωabðΓ0Þ, which must be small if the states are to become
resonant. Equation (12) encodes the effect of many reso-
nances, each contributing to dynamics at progressively
longer timescales 2π=jHðΓkÞj.
Equation (9) relates the frequencies ωabðΓÞ to the

resonance timescales, and hence the distribution of deci-
mated elements. Our central assumption, verified numeri-
cally in Fig. 3, is that the distribution of decimated elements
is a power law (cf. Ref. [42]). This is natural if the dressed
basis is quasilocal, as the distribution of matrix elements of
a quasilocal operator in a quasilocal basis is a power law in
one dimension [19,22,50,63]. (Matrix elements decrease
exponentially with spatial range, but there are exponentially
many of them).

As ωabðΓÞ is the sum of many independent variables, the
central limit theorem may be invoked. The limit distribu-
tion for a sum of power-law distributed variables is not
normal, but is rather a Lévy stable distribution [64]. The
Fourier transform of a Lévy distribution is a stretched
exponential, which leads to the observed form of the
decay (3) through Eq. (11).
The distribution of decimated elements is parametrized

as a power law ansatz with an exponent θ [22]:

ρdecðjHjÞ ¼ 2LCjHj−2þθ: ð13Þ
Explicitly reinserting a local energy scale J ¼ OðΓ−1

0 Þ,
dimensional analysis gives C ¼ OðJ1−θÞ. The distribution
of jHðΓkÞj involved in resonances (treating ωabðΓÞ and
jHabðΓÞj as uncorrelated) is

ρresðjHjÞ ¼ Pðjωj < jHjÞρdecðjHjÞ
≈ 2Lþ1pðω ¼ 0ÞCjHj−1þθ; ð14Þ

where we assumed jHj is small, so that Pðjωj <
jHjÞ ≈ 2pðω ¼ 0ÞjHj, and pðωÞ ¼ OðW−1Þ is the ω mar-
ginal of pðZ2;ωÞ.
The distribution of resonances (14) is also a power law,

but with a larger exponent, −1þ θ, than ρdec.
The exponent θ appearing in Eqs. (13) and (14) is the

central parameter of the single resonance model introduced
in Ref. [22] (see also Ref. [43]). With the chosen para-
metrization, θ < 0 implies thermalization. Successive res-
onances may cause a drift of θ with Γ. However, for
sufficiently negative θ, the system thermalizes before any
significant drift, and θ may be treated as a constant.
Figure 3 shows this is a reasonable approximation in
accessible parameter regimes.
The exponent θ also controls the distribution of matrix

elements of generic local operators in the fjaðΓÞig basis,
not just the decimated elements [26,63].
The Supplemental Material [26] computes the Fourier

transform (11) and shows that, for θ < 0,

CZðtÞ ∼ Ae−ðt=τÞ−θ for J−1 ≪ t ≪ ω−1
c ; ð15Þ

where A is a constant, ωc ¼ Oðτ−1Þ is a small frequency
cutoff, and J gives the large frequency cutoff.
The linear scaling of logðJτÞ withW=J follows from our

previous assumptions and a linearization of −θ−1 in W=J
[22,26]. The power law formof ρres is appropriatewhile each
state is involved in few resonances. It breaks down when

Z
J

ωc

ρresðHÞdH ¼ Oð2LÞ; ð16Þ

which immediately provides

logðJτÞ ¼ O½−θ−1 logð−θW=JÞ� ð17Þ

FIG. 3. The Jacobi decimated elements for the Floquet circuit
model (the main text discusses the Hamiltonian case) for 200 2L

iterations are approximately power law distributed for intermedi-
ate decimated weights wab, which generalize the decimated
matrix elements jHabj to the unitary case [26]. Furthermore,
the power law is in good agreement with the predicted −2 − β
from the successive resonance model (dashed lines). For this
number of iterations, the average number of resonances per state
is ≲1. Matrix element distributions are averaged over 100
disorder realizations, ρdec is normalized as a number density,
and β is fit from Fig. 2.
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[usingpðω ¼ 0Þ ¼ OðW−1Þ,CJθ ¼ OðJÞ, and that the ratio
J=ωc is proportional toJτ].Theexactdependenceof−θ−1 on
W=J is unknown. Nevertheless, as−θ−1 is slowly varying in
the numerically accessibleW=J range [inset of Fig. 2(b)],we
linearize it. This gives logðJτÞ ¼ OðW=JÞ.
The dependence of logðJτÞ may be different for larger

W=J. The purely linear form for logðJτÞ obtained numeri-
cally [Fig. 2(b)] thus remain unexpected in the successive
resonance model.
Equation (15) accounts for both of our main observations

in Fig. 2. Furthermore, we have arrived at a falsifiable
prediction: the stretch exponent β of the decay should be
given by β ¼ −θ (1). An independent numerical measure-
ment of θ can test this prediction. Indeed, fitting a power
law −2þ θ to the distribution of decimated elements in
Fig. 3 produces exponents −θ which are in broad agree-
ment with β as fit to CðtÞ [Fig. 1(b)]. This agreement
extends to several models with prethermal MBL regimes
[23–26]. Note that, as ρdec is not a pure power law,
agreement should not be exact.
Discussion.—Theory forbids a stable MBL phase in

many settings in which experiment and numerics observe
MBL phenomenology [65–76]. Even in one dimension,
MBL may only exist at much larger disorder strengths than
previously anticipated [10,17–19,77]. These settings are
instances of prethermal MBL. We have begun the study of
such prethermal dynamics in one dimension. The succes-
sive resonance model predicts stretched exponential decay
of autocorrelators, an exponentially long thermalization
time, and the value of the stretch exponent, all of which are
supported by numerics in several models at intermediate
values of W. These values of W lie in the regime that
diagonalization studies previously identified as critical.
At larger values of W in the prethermal regime (pre-

viously identified as many-body localized), the decimated
elements can be controlled by a power law exponent θ that
is positive for small Jacobi flow times. Here, the flow of θ
cannot be ignored, as thermalization should be signaled by
a negative θ. Testing resonance model predictions then
requires longer flow times and larger system sizes, or an
analytic theory of the flow of θ.
The successive resonance model does not use any

properties of the random potential. As such, its predictions
are identical for correlated potentials in one dimension.
More generally, successive resonance model predictions

are identical in any setting where ρdec is a power law with
θ < 0. Future work should check this in higher dimensions
[65–67], translationally invariant MBL [68,69], and with
long range interactions [73–76]. Whenever ρdec has a strong
separation of scales, the model may still be predictive,
although decay need not be stretched exponential. An
interesting open question is the applicability to Floquet
prethermalization [78], in which there is only one long-
lived global conservation law, but fidelities still show slow
decay [79].

In Anderson models on random regular graphs and
related random matrix models, return probabilities exhibit
stretched exponential decay [11,80–85]. With the
assumption of sparse resonances, the formal calculations
in these models are very similar to ours. The application of
the Jacobi method to random regular graphs is worth
exploring.
The Jacobi algorithm provides an effective off-diagonal

matrix element distribution at different time scales. Its
applications to quantum dynamics, the emergence of
hydrodynamics, and connections to other techniques
[45,86–88] deserve further investigation. Indeed, the most
rigorous analysis of MBL uses the Jacobi algorithm [9,89].
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