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Quasi-isentropic compression enables one to study the solidification of metastable liquid states that are
inaccessible through other experimental means. The onset of this nonequilibrium solidification is known to
depend on the compression rate and material-specific factors, but this complex interdependence has not
been well characterized. In this study, we use a combination of experiments, theory, and computational
simulations to derive a general scaling law that quantifies this dependence. One of its applications is a novel
means to elucidate melt temperatures at high pressures.
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Quasi-isentropic (e.g., ramp) compression has emerged
as a powerful means to probe the behavior of matter at
extreme conditions that lie at the frontier of knowledge in
modern science [1,2]. The relatively low rates of entropy
generation and extremely rapid nature of the compression
process has made it an ideal technique to examine the
thermodynamics and kinetics of phase transitions, espe-
cially solidification, that occur under far-from-equilibrium
conditions [3–6]. For such first-order phase transitions, the
reordering of matter occurs via a process of nucleation and
growth [7–11]. In particular, the solidification of metallic or
molecular materials is known to be greatly influenced by
the degree to which the system is undercooled beyond the
equilibrium melt curve. As the magnitude of undercooling
is increased (typically accomplished by imposing a varia-
tion in cooling rate but can also be attained via volumetric
compression) the nucleation rate can be tremendously
enhanced, resulting in reduced grain size, altered morphol-
ogy, and the appearance of metastable structures along the
transition path. Through application of the principles
governing nucleation far from equilibrium, the ability to
engineer materials with specific properties—by utilizing
control over the nonequilibrium path—comes into view.
Three types of experimental quasi-isentropic loading plat-

forms have been used to investigate nonequilibrium solidi-
fication kinetics: those involving (i) laser drives [12,13];
(ii) magnetic drives [14,15]; and (iii) gas guns [16,17]. For a
given target sample and initial state, the thermodynamic path

followed in all three platforms is the same [Fig. 1(a)], barring
small differences due to experimental uncertainties and
relatively modest variations in the amount of entropy gen-
eration (i.e., in the deviation between the quasi-isentrope and
the actual isentrope). However, the compression rate dP=dt
with which this path is traversed differs drastically—by 2
orders of magnitude—among the three platforms [Fig. 1(b)].
The phase transition often appears in velocimetry traces as a
brief transient pullback in the pressure (due to the newly
formed solid having a higher density than the original liquid
phase), and the pressure Ptrans at the peak of this pullback
loop, which far exceeds the equilibrium melt pressure Pmelt
and is commonly interpreted to be at or near the onset time for
the nonequilibrium solidification of metastable liquid, tends
to increase with dP=dt. This implies that Ptrans depends not
only on the physical conditions along the compression path,
but also on how fast those conditions are traversed; a fact that
has puzzled researchers to this day.
Modern studies of solidification kinetics under quasi-

isentropic compression have focused on water [4,6,18–23],
and it is known from these studies that solidification to the
high-pressure ice VII phase is dominated by homogeneous
nucleation if Ptrans is at least about 6 GPa. The primary aim
of our work is to provide a quantitative explanation of the
dependence of Ptrans under homogeneous nucleation on
dP=dt, culminating in a general scaling law that is
applicable to water and to other materials as well.
Our scaling law rests on the foundation of the published

data on water [4,6,18–23], plus our own magnetic-drive
experiments on the solidification of gallium (Ga) to the Ga-
III phase that are depicted in Fig. 1(c) and are described in
more detail in the Supplemental Material [24]. Because Ga
has very different properties than water (e.g., monatomic
metal vs molecular insulator), a scaling law that can
describe both materials may therefore be applicable to a

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 131, 106101 (2023)

0031-9007=23=131(10)=106101(7) 106101-1 Published by the American Physical Society

https://orcid.org/0000-0003-4383-5350
https://orcid.org/0000-0003-2447-2865
https://orcid.org/0000-0001-6551-7439
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.131.106101&domain=pdf&date_stamp=2023-09-07
https://doi.org/10.1103/PhysRevLett.131.106101
https://doi.org/10.1103/PhysRevLett.131.106101
https://doi.org/10.1103/PhysRevLett.131.106101
https://doi.org/10.1103/PhysRevLett.131.106101
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


wide variety of materials under quasi-isentropic compres-
sion. Furthermore, the Ga data present an interesting
challenge: Figure 1(d) suggests that normalizing Ptrans with
the melt pressure Pmelt can largely account for differences
in Ptrans due to the choice of the initial temperature T init, but
it clearly cannot capture material-specific differences that
exist between water and Ga.
We develop the scaling law for Ptrans by applying the

well-known technique of dimensional analysis [39,40]. A
necessary first step in dimensional analysis (see the
Supplemental Material [24] for more details) is to ascribe

a physical framework to the problem of interest, and for this
purpose, we employ models based on classical nucleation
theory (CNT) and growth [7–11]. According to CNT,
solidification is controlled by the liquid-solid interfacial
free energy σ, the density ρ of the liquid, as well as the
temperature T and pressure P. A natural choice that we
follow is to use the equilibrium melt values of these
properties [i.e., properties evaluated at the intersection
point of the isentrope with the melt curve; this point is
indicated by Pmelt in Fig. 1(a)] as characteristic values in the
nondimensionalization. By simplifying the problem down

(a) (b)

(c) (d)

FIG. 1. Different quasi-isentropic loading platforms (laser drives, magnetic drives, gas guns) traverse roughly the same compression
path, but at significantly different rates dP=dt, with faster rates tending to increase the nonequilibrium transition pressure Ptrans where
solidification becomes macroscopically observable: (a) schematic illustration of the temperature-pressure path (the thick arrows
indicate the direction along this path) followed in quasi-isentropic loading, showing the sensitivity of Ptrans to dP=dt; (b) pressure vs
time in simulations of three experiments on water [4,6,18] that all start at ambient conditions, but each conducted with a different
quasi-isentropic loading platform; (c) Ptrans vs dP=dt for various studies on water [4,6,18–20] and our own magnetic-drive
experiments on gallium (Ga), in all of which the transition occurs primarily through homogeneous nucleation; (d) same as in (c),
except that Ptrans is normalized by the equilibrium melt pressure Pmelt at which the corresponding isentrope intersects the melt curve
(solid-liquid equilibrium phase boundary). Note that all of the studies on water are nominally initiated from room temperature, except
for the three Nissen and Dolan [20] points colored in orange, which involve preheated water samples where the initial temperature
T init ¼ 317 K. In (c) and (d), as well as in all subsequent figures, the triangles, squares, and circles denote experiments conducted with
laser drives, magnetic drives, and gas guns, respectively. Ice VII is formed in all the water experiments, while Ga-III is formed in our
Ga experiments.
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to its essence, the dimensional analysis reveals that
the nondimensionalized transition pressure P̃trans ¼
Ptrans=ðρmeltRTmeltÞ is a function of just three dimension-
less parameters: (i) the compression rate Π ¼ ðdP=dtÞ=
½ρ2meltσ

−1
meltðRTmeltÞ5=2�, (ii) the initial temperature T̃ init ¼

T init=Tmelt, and (iii) the melt pressure P̃melt ¼ Pmelt=
ðρmeltRTmeltÞ, where R is the gas constant expressed per
unit mass. Nucleation and growth processes also depend on
bulk chemical potential (free energy) differences between
liquid and solid, which we denote as Δμ, but the conun-
drum here is that with our choice to use equilibrium melt
properties as characteristic values in the dimensional
analysis, Δμ becomes trivial because Δμmelt ¼ 0 by defi-
nition. However, as discussed further in the Supplemental
Material [24], the relative difference between T init and Tmelt
gives a sense of how large Δμ is at the transition pressure
(smaller differences between T init and Tmelt are correlated
with smaller values of Δμ), and so we use the non-
dimensionalized initial temperature T̃ init ¼ T init=Tmelt as
a nontrivial surrogate for Δμ. The Supplemental Material
[24] also describes how we apply our constitutive models
(those pertaining to phase-transition kinetics, equations of
state, interfacial free energy) and our kinetics code Samsa
developed over the past several years [5,41–47] to simulate
all of the experiments in Fig. 1, calculate relevant quan-
tities, and execute the dimensional analysis. Doing so
yields the following scaling law depicted in Fig. 2:

P̃trans¼ P̃meltþ7.06298ðΠÞ0.06976ðP̃meltÞ0.56842ðT̃ initÞ−2.97690:
ð1Þ

Comparing the “raw” data in Fig. 1(c) with the transformed
results in Fig. 2, we see that the scaling law in Eq. (1)

quantifies the observed transition pressure Ptrans in both
water and Ga under the vastly different compression rates
exhibited in laser-drive, magnetic-drive, and gas-gun ex-
periments. Because it apparently normalizes out material-
specific differences between water and Ga—two very
different kinds of substances—this suggests that the scaling
law, perhaps after additional refinement as more data
become available, may be used to predict Ptrans in quasi-
isentropic compression experiments on a wide range of
materials so long as their equilibrium melt properties (Pmelt,
σmelt, ρmelt, and Tmelt) are known, and the phase transition is
well described by CNT.
The fact that the same solidification process is observ-

able across the three types of experimental platforms (laser
drives, magnetic drives, gas guns) considered in our study,
even though these different platforms access timescales that
can differ by over 2 orders of magnitude, clearly suggests
that the compression rate influences the observed kine-
tics of the phase transition. The precise mechanistic de-
tails as to how this compression-rate dependence arises
warrant further investigation through atomistic simulations,
but CNT already provides valuable insight into this.
Intuitively, it stands to reason that higher compression
rates allow the metastable liquid to be undercooled further
along the quasi-isentrope [see Fig. 1(a)] because equilib-
rium restoring forces (i.e., those that are trying to cause
solidification) have less time to act. Larger undercooling
means that Δμ=kBT at the transition time increases with
dP=dt, where Δμ is the chemical potential difference
between liquid and solid, and kB is the Boltzmann constant.
As a result, the nucleation energy barrier ΔG�=kBT ¼
16πσ3=½3kBTðρΔμÞ2� must decrease with dP=dt, as
shown in Fig. 3(a). CNT gives the nucleation rate as

(b)(a)

FIG. 2. Illustration of the scaling law: (a) in nondimensionalized terms, where the y-axis label is just a rearrangement of Eq. (1) and
represents the “projection” of the dimensionless transition pressure P̃trans on the dimensionless compression rate Π; (b) Ptrans predicted
by the scaling law vs the actual value. The black line in (b), which is simply a plot of y ¼ x, indicates a perfect prediction. The insets in
these figures show the results of applying the same dimensional analysis to the particle speed up;trans, which leads to the scaling law
ũp;trans ¼ up;trans=ðRTmeltÞ1=2 ¼ 0.000208ðΠÞ0.05751ðP̃meltÞ4.15801ðT̃ initÞ7.83119. The blue bands indicate �5% and �2% intervals centered
around the black curves for the transition pressure P̃trans and particle speed ũp;trans, respectively.
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J ¼ A expð−ΔG�=kBTÞ, where the preexponential factor
A largely reflects the availability of nucleation sites.
Although A varies from one experiment to another, these
differences are negligible compared to the overwhelming
importance of expð−ΔG�=kBTÞ, which dominates the
high-pressure, homogeneous-nucleation regimes of interest
in this study [5]. The variation exhibited by ΔG�=kBT in
Fig. 3(a) is enough to explain the nearly 108 factor of
difference in J across the different studies in Fig. 3(b). This
108 variation in J is consistent with the fact that the
Kolmogorov time τ, which is a characteristic time asso-
ciated with the phase transition [9,48], is proportional to

J−1=4 so that τ varies by a factor of about 102 ¼ ð108Þ1=4
across the different experiments, as shown in Fig. 3(c). This
102 variation in τ matches the 102 variation in dP=dt. If τ
were unaffected by dP=dt, solidification would not occur at
higher compression rates, in contradiction to experimental
observations. Thus, in summary, CNT posits that the larger
undercooling (or equivalently, the smaller energy barrier
ΔG�=kBT) that one generally achieves with increasing
dP=dt can translate to an orders-of-magnitude increase in
the nucleation rate J, ultimately resulting in a characteristic
transition time τ that scales proportionally with the time-
scale of the experiment itself. This seemingly automatic

(b)

(c)

(a)

FIG. 3. Demonstration of the increased extent of undercooling with higher compression rates, where the quantities in this figure are
evaluated at the time in our simulations of each experiment where the nucleation rate J attains a peak value (this maximum is almost
coincident with, but occurs slightly earlier than when Ptrans is achieved): (a) the nucleation energy barrier ΔG�=kBT; (b) the nucleation
rate J; (c) Kolmogorov time τ ¼ ðπJγ3=3Þ−1=4. Here, γ is the growth rate of the nucleated solid clusters. If J and γ were held fixed at
some constant set of values, the solid phase fraction ϕwould increase with time t according to ϕ ¼ 1 − exp½−ðt=τÞ4�, and so τ represents
a characteristic time of the phase transition. The growth rate is given by γ ¼ ðRTÞ1=2½1 − expð−Δμ=kBTÞ�, and unlike J—which varies
by nearly a factor of 108 across the different experiments—γ varies by less than a factor of 3. The inset in (a) illustrates that faster
compression rates enable the metastable liquid to be undercooled further to states with a higher driving force Δμ=kBT for solidification,
analogous to how the restoring force in a spring becomes stronger as it gets increasingly stretched. This translates to reduced energy
barriers ΔG�=kBT, higher nucleation rates J of smaller but more densely packed clusters, faster growth rates γ, and shorter transition
times τ, allowing for the possibility of solidification across multiple timescales.
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ability of the solidification process to “renormalize” itself is
what enables solidification to be observed in all three
experimental platforms examined in this study, despite the
vastly different timescales associated with those platforms.
Finally, we brieflymention two applications of the scaling

law, both of which are described further in the Supplemental
Material [24]. On the first of these two applications, we note
that although our study has focused on homogeneous
nucleation, the analysis also has implications for designing
experiments that primarily involve heterogeneous nuclea-
tion induced by dissolved impurities. By a simple extension
of the arguments surrounding Fig. 3, the Supplemental
Material [24] explains why heterogeneous nucleation
becomes less prominent compared to homogeneous nucle-
ation with increasing compression rates. Thus, even if
heterogeneous nucleation is found to be negligible at high
compression rates, say in a laser-drive experiment, one
cannot necessarily conclude that it would also be unim-
portant at the lower compression rates of a gas-gun experi-
ment. Conversely, if heterogeneous nucleation is found to be
important in a gas-gun experiment, the samemay not be true
in a laser-drive experiment. The second application of the
scaling law that we highlight here is, in our opinion,
potentially more important. We have seen that the equilib-
riummelt propertiesPmelt, σmelt, ρmelt, andTmelt that underlie
the dimensional analysis and scaling law in Eq. (1) can serve
as good predictors of the observed nonequilibrium transition
pressurePtrans. But what about the “reverse” direction? That
is, if we have experimental information on Ptrans as well as
dP=dt, canwe use that information together with the scaling
law to infer Pmelt, σmelt, ρmelt, and Tmelt of a material where
these melt properties are unknown? The Supplemental
Material [24] shows that it is indeed possible to reliably
infer the equilibriummelt temperatureTmelt in thismanner. It
therefore provides an intriguing way to determine melt
temperatures (i.e., temperatures along solid-liquid equilib-
rium phase boundaries) at high pressures, which is a topic of
paramount importance that remains a long-standing chal-
lenge to this day.
Through the application of dimensional analysis to

theoretical and experimental results (including our own
Ga experiments) on nucleation and growth processes, we
have derived a physics-based scaling law for how the
timescale of solidification under homogeneous nucleation
depends upon compression rate in both metallic and
molecular systems. This renormalized theory for solidifi-
cation under quasi-isentropic compression invites ques-
tions of whether a similar type of scaling approach could
be useful for phase transitions via heterogeneous nucle-
ation or along other compression paths, such as shock
Hugoniots [49,50], which would complement the now
well-known Swegle-Grady relation [51,52]. Prominent
examples of such phase transitions are melt (solid-to-
liquid) transitions [53], which are the opposite of the
solidification processes considered in our study. Another
interesting case for future consideration are solid–solid

transitions, where the mechanism may be governed not
only by nucleation and growth but also dislocation-
mediated processes (e.g., those that get manifested in
material strength) [13,54,55]. The scaling law also raises
the question of whether the most undercooled state
theoretically possible, in which the nucleation barrier
ΔG�=kBT ¼ 1, could be accessed at extreme compression
rates that lie far beyond any experimental method currently
available. We encourage future atomistic simulations and
experiments to explore these questions and to further test,
refine, and apply the scaling law on a wider range of
materials and nonequilibrium settings.
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