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In direct-drive inertial confinement fusion, the laser bandwidth reduces the laser imprinting seed
of hydrodynamic instabilities. The impact of varying bandwidth on the performance of direct-drive
DT-layered implosions was studied in targets with different hydrodynamic stability properties. The stability
was controlled by changing the shell adiabat from (αF ≃ 5) (more stable) to (αF ≃ 3.5) (less stable). These
experiments show that the performance of lower adiabat implosions improves considerably as the
bandwidth is raised indicating that further bandwidth increases, beyond the current capabilities of
OMEGA, would be greatly beneficial. These results suggest that the future generation of ultra-broadband
lasers could enable achieving high convergence and possibly high gains in direct drive ICF.
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In laser-driven inertial confinement fusion (ICF) [1–3], a
spherical shell (ablator) with an inner deuterium-tritium ice
layer is accelerated inward to high velocities of hundreds of
km=s to achieve, upon stagnation, the conditions of density
and temperature required for thermonuclear ignition. In
laser-direct-drive (LDD) ICF [4], the ablation pressure from
the direct illumination of the shell is the mechanism driving
the implosion. The ablation pressure is produced by the
rocket effect from mass ablation off the shell outer surface
(the ablation front). During the target acceleration, the low-
density ablated plasma pushes on the dense shell, thus
making the ablation front unstable to the Rayleigh-Taylor
instability (RTI) [5,6]. Small-scale variations in the laser
irradiation (speckles) produce ablation pressure perturba-
tions resulting in surface nonuniformities known as “laser
imprinting” [7–9]. Laser imprinting occurs during the
initial interaction of the laser light with the target surface
when the ablated plasma is still tenuous and the perturba-
tions in ablation pressure are felt by the target. Once a large
plasma atmosphere is established with a critical surface
distance Dc from the ablation front, all short-wavelength
perturbations with wave number k > 1=Dc are damped by
thermal conduction and imprinting ceases to occur. The
surface nonuniformities from laser imprinting act as seeds
for the Rayleigh-Taylor instability. The RTI growth of these
perturbations can severely degrade the integrity of the
imploding shell, thus reducing the final compression and
preventing ignition. Imprint mitigation is considered criti-
cal in achieving ignition with LDD. To that intent, various

beam smoothing techniques have been developed [10–18].
Nominal OMEGA cryogenic implosions use distributed-
phase plates (DPPs) [14,19] and smoothing by spectral
dispersion (SSD) [12,13] to improve the laser uniformity
[20,21]. Past experiments were designed to study specific
aspects of imprinting growth [22–28]. For instance, burn-
through experiments in both planar [23–25] and spherical
geometry [26] were performed to investigate the depth of
the RT bubble front seeded by imprinting. Implosion
experiments on warm surrogate plastic shells were fielded
with full SSD smoothing [28] to study degradations at
different adiabats. None of these experiments can inform
on the effects of imprinting in ICF-relevant DT-layered
implosions which exhibit vastly different stability proper-
ties with respect to warm plastic shells. Furthermore,
varying the imprinting seed for a fixed laser pulse shape
is a much cleaner way to isolate and probe the effect of
imprinting. Here we report on the first experimental
campaign aimed at assessing the performance of cryogenic
DT-layered implosions as a function of laser smoothing.
The SSD smoothing is varied by changing OMEGA laser
bandwidth ΔνUV from approximately 0 to the maximum
value of ∼355 GHz (1 THz equivalent with three color
cycles [29]). An important outcome of these experiments is
a quantitative assessment of the benefits of laser bandwidth
on implosion performance. Data acquired at different
bandwidth also provides the basis for extrapolating the
results to bandwidths higher than currently achievable
on OMEGA. Such an extrapolation is critical in motivating

PHYSICAL REVIEW LETTERS 131, 105101 (2023)

0031-9007=23=131(10)=105101(7) 105101-1 © 2023 American Physical Society

https://orcid.org/0000-0003-1204-4468
https://orcid.org/0000-0002-5478-8820
https://orcid.org/0000-0002-7577-9309
https://orcid.org/0000-0002-3124-1355
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.131.105101&domain=pdf&date_stamp=2023-09-07
https://doi.org/10.1103/PhysRevLett.131.105101
https://doi.org/10.1103/PhysRevLett.131.105101
https://doi.org/10.1103/PhysRevLett.131.105101
https://doi.org/10.1103/PhysRevLett.131.105101


the development of broadband lasers for high-gain
direct-drive ICF [30,31] and other imprint mitigation
techniques [32,33].
The bandwidth scan was carried out for two fixed laser

pulse shapes designed to keep the minimum adiabat αF at
3.5 (low adiabat) and 5 (high adiabat). Here αF ¼ P=PFermi
is the ratio of the plasma pressure to the Fermi degenerate
pressure in-flight at about 2=3 of the inner radius. The
targets are from previous designs that achieved record
performance at αF ≈ 5 [34]. The main performance metrics
for DT-layered implosions are the fusion yields and the
areal densities which determine the no-alpha Lawson
parameter χno−α [35,36] with the ignition threshold set at
χno−α ≈ 0.96–1. Equivalent metrics such as ITFx [37] and
fα [38] can also be used to measure proximity to ignition.
Figure 1 shows the target and laser pulses used for these

experimental campaigns. Targets have a CD ablator of
∼8 μm, DT ice layer of ∼42 μm and total outer diameter of
∼980 μm with the exception of one shot where ∼3 μm
silicated plastic [CH-Si(6%)] outer layer with ∼4 μm inner
CH layer were used. Targets were layered with 40%–60%
(D–T) composition ice. Experiments employed 60-beams
symmetric drive of OMEGA 351 nm UV laser, with
SG5-850 DPP’s leading to a beam diameter of 830 μm
(enclosing 95% of the energy) and beam profile approxi-
mated by a super-Gaussian with an exponent ≈5. Pulse
shapes use a picket and a foot to set the shell adiabat,
followed by a ∼2 ns “double-spike” main drive, with an
average overlapped intensity of ∼7 × 1014 W=cm2. The
total energy delivered to target is ∼28.5 kJ.
Picket and foot power were lowered for αF ≃ 3.5 design

to send weaker shocks through the shell. Lower adiabats
lead to higher densities during the acceleration phase,
resulting in thinner shells and higher aspect ratios in flight,
making it more susceptible to the growth of short-scale
perturbations. Both designs have similar laser drives during
the acceleration phase, which results in similar implosion
velocities. According to 1D simulations, αF ≃ 3.5 design
shows higher DT neutron yield, and burn-averaged

areal density because of higher final convergence. These
LILAC 1D [39] calculated quantities are shown in Table I
for both designs. LILAC simulations include state-
of-art physics models for cross-beam-energy transfer
(CBET) [40,41], nonlocal heat transport [42], and first-
principles equation-of-state (FPEOS) [43]. The hydro-
dynamic stability is expected to be degraded at lower
adiabats resulting in higher growth of the RTI and deeper
penetration of the RT bubble front into the imploding shell.
Table II shows the experimentally measured data denot-

ing the performance of the implosions at full bandwidth.
Note that measured yields have been corrected for mode
l ¼ 1 using measured ion temperature asymmetries
[44,45]. The αF ≃ 3.5 implosions performed poorly com-
pared to αF ≃ 5 implosions, with ∼60% yield and ∼80% of
the areal density. Areal densities are measured along two
different lines-of-sight using a neutron time-of-flight
(nTOF) detector [46,47] and magnetic recoil spectrometer
(MRS) [48,49]. The average of the two ρR is quoted.
Inferred hot-spot radii from x-ray self-emission images
from the gated monochromatic x-ray imager (GMXI) [50]
and convergence ratios are similar for both designs.
Statistical modeling attributes this yield degradation to
the growth of short-wavelength modes during the accel-
eration phase [44,51], which is governed by the shell
adiabat and in-flight aspect ratio. Note that this dependence
is also justified by an independent theoretical analysis [52].
See the Supplemental Material [53] for details. Known
sources of short-scale perturbations are target surface
roughness, ablator defects produced by beta decay of
tritium during filling and ice layering [56], and laser
imprinting. Statistical models cannot differentiate among
the different sources. As shown in the Supplemental
Material [53], these models attribute ∼10% yield degra-
dation to short-scale perturbations for αF ≃ 5 and ∼40% for
αF ≃ 3.5 implosions with full SSD smoothing.
In these SSD-scan experiments, the laser bandwidth

ΔνUV was varied between ∼0.355 and ∼0.05 THz
(0.355 THz≡ 100% SSD). Dedicated experiments with
≈100 ps picket intensity pulses (no main drive) were also
performed to measure the variation in single beam intensity
smoothing level with varying bandwidth, using ultraviolet
equivalent-target-plane (UV-ETP) images [21]. In addition,
on-shot bandwidth was measured using UVSPEC (UV
spectrometer) [57]. Figure 2 shows single pixel intensity
line-outs from UVETP images (denoting spatial variations

FIG. 1. (a) Target geometry for cryogenic SSD-scan implo-
sions. Variation in outer diameter was �5 μm, CD ablator
thickness varied to within �0.4 μm. (b) Laser pulses for the
αF ≃ 3.5 (in black dashed) and αF ≃ 5 (in solid red) baseline
implosions.

TABLE I. 1D (LILAC) calculated design parameters and
performance metrics for nominal (100% SSD) implosions.

αF IFAR
V imp

(km=s)
Convergence

ratio
Total
yield

ρR
(mg=cm2)

5 22 457 17 4.1 × 1014 187
3.5 31 462 19 5 × 1014 206
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across the beam), for bandwidth of 0.355 THz in red and
0.15 THz in black.
The total on-target illumination nonuniformity σrms was

calculated using hard sphere (no plasma) superposition of
60 such beam profiles, leading to σrms ≃ 20.3ð%Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

47.5 × SSD fractionþ 1
p

. Note that, although reducing
SSD bandwidth also degrades low and intermediate mode
uniformity, primarily due to reduction in the beam waist
(radius enclosing 95% energy) with decreasing SSD
bandwidth, laser imprint modes (l > 20) dominate the
total nonuniformity. Note that nonuniformity is not a linear
function of SSD bandwidth and exhibits progressively
diminishing smoothing as SSD bandwidth is increased.
See the Supplemental Material [53] for details of non-
uniformity calculations.
Next, we discuss implosion results from the SSD scans.

To better visualize the trends, we normalize the measured
values at each SSD bandwidth fraction to measured values
at 100% SSD. Also, there are unintended small variations
in laser pulse and target geometry resulting in small
variations in 1D calculated yields (ρR variations in one
dimension are negligible). Additionally, laser beam waist
also varies by a small amount (≈5%) with SSD bandwidth.
We take into account the effects of these variations by
normalizing yields to 1D calculated values for the res-
pective experiment by defining YOC≡ YExp=Y1D. If multi-
ple shots are available at the same SSD bandwidth, we
report an average of the measurements. Additionally, we
observed ion-temperature asymmetries in a few of these
experiments from a mode 1 perturbation. As shown in
Refs. [44,45], the degradation from mode 1 can be

accurately quantified using the maximum and minimum
apparent ion temperatures measured along six lines of
sight. For ion-temperature ratios RT ¼ Tmax=Tmin > 1.14,
yields can be corrected for a mode 1 degradation by
ðRT=1.14Þ1.37. Most likely, the mode 1 perturbation is
not related to a specific implosion design but rather caused
by a random source, such as target offset from target-
chamber center, laser beam mispointing, or laser power
imbalance which affect a specific shot or all experiments
carried out on a specific day.
We first consider αF ≃ 5 SSD scan. Figure 3 shows the

variation in the primary performance metrics, neutron yield,
and areal density as the SSD bandwidth is varied.
Experiments show no variation (beyond measurement
uncertainty) in yield and areal density above the SSD
bandwidth fraction of 40%, indicating that above ∼40%
SSD, there is no degradation from imprinting left to be
mitigated. Figure 3 clearly shows that the αF ≃ 5 implo-
sions would not benefit from higher bandwidth than
currently available on OMEGA.
Next, we discuss results from αF ≃ 3.5 SSD scan.

Figure 4 shows the observed trends in YOC and areal
density with least-square-fits to the data. Both performance
metrics begin to degrade as soon as the SSD bandwidth is
lowered from 100% SSD. Trends are statistically signifi-
cant at a 95% confidence interval, with reduced χ2 statistics
of 1.16 and 0.97, respectively. Observed sensitivity of the
performance close to 100% SSD suggests a high likelihood
that even at 100% SSD there is performance degradation

TABLE II. Experimentally measured performance metrics for nominal (100% SSD) implosions. Note: Yields are corrected for l ¼ 1
asymmetries [44,45].

αF Yield ρR (mg=cm2) RhsðμmÞ Convergence Ratio Min. hT ionin (keV)

5 1.29� 0.1 × 1014 145� 26 29.5� 0.1 14.3� 0.2 4.29� 0.3
3.5 0.83� 0.07 × 1014 116� 18 29.0� 0.1 14.7� 0.2 3.95� 0.3

FIG. 2. Single pixel line-out from measured UVETP images for
a single beam. Data are shown in red solid lines for 100% SSD
and in black dashed lines for 20% SSD.

FIG. 3. Trends in measured YOC (in open red circles) and areal
density (in open black triangles) as SSD bandwidth is varied in
for αF ≃ 5 implosions. Least-square fit with a plateau above 40%
SSD is shown as solid lines. All data normalized to 100% SSD
experiment.

PHYSICAL REVIEW LETTERS 131, 105101 (2023)

105101-3



from laser imprinting. Unlike the αF ≃ 5 implosions
(Fig. 3), the lower adiabat αF ≃ 3.5 implosions (Fig. 4)
would benefit from higher bandwidth (than presently
available on OMEGA) in both yields and areal densities.
Additionally, other core properties were measured as a

function of bandwidth. All these measurements, described
in the Supplemental Material [53], corroborate the behavior
of performance metrics for both αF ≃ 5 SSD-scan (insen-
sitive to bandwidth at 100% SSD) and αF ≃ 3.5 SSD-scan
(sensitive to bandwidth up to 100% SSD). Note, that
changes in SSD bandwidth (besides laser-imprinting) also
change the behavior of laser-plasma instabilities [58–60]
(primarily CBET and two-plasmon-decay), which may
impact implosion performance. However, measured
absorption [61] and hard x-ray (HXR) data [62] indicate
that the effects of the SSD bandwidth on these instabilities
are minimal (except the lowest of SSD bandwidths below
20%, where modestly enhanced HXR emission is
observed). See the Supplemental Material [53] for the
details. Note also that, if laser-plasma instabilities are
driving the trends with SSD bandwidth for αF ≃ 3.5
implosions, then even αF ≃ 5 implosions should show
similar trends. This leaves laser imprinting as the main
physical mechanism driving the trends in Fig. 4.
To infer performance improvements achievable with

future-generation ultra-broadband lasers [30,31], we
extrapolate the measured trends beyond 100% SSD. This
is done using both a power law fit to the data and
simulations. Note that the σrms of overlapped nonuniformity
is the physical quantity determining yield degradation.
Since, σrms is a nonlinear function of SSD bandwidth, we
first determine YOC’s dependence on σrms and sub-
sequently convert σrms to SSD bandwidth. Also, the lowest
SSD bandwidth data point is excluded from the fits as we
are interested in behavior close to 100% SSD. The same
procedure is used to extrapolate ρR. Figure 5 shows the
YOC and ρR improvements predicted for higher SSD

bandwidths using power-law extrapolations of the data
(red dashed). We also compare them to 2D DRACO [63]
simulations of similar low-adiabat targets described
in [64,65]. In these simulations, imprinting levels are varied
using a multiplier to the imprint spectrum, and the nominal
100% SSD σrms is augmented by 1.5× from tuning 2D
simulations with dedicated mix experiments [27] (see the
Supplemental Material [53]). Since there is significant
performance degradation even for the imprint insensitive
αF ≃ 5 100% SSD bandwidth implosions, caused by
presently unexplained 1D=3D physics, we use measured
YOC and ρR=ρR1D of α ≃ 5 100% SSD bandwidth
implosions, as the maximum achievable YOC and
ρR=ρR1D for α ≃ 3.5 implosions (dot-dashed lines in
Fig. 5). Using the lowest extrapolated values [red dashed
in Fig. 5(a), solid black in Fig. 5(b)], an improvement of
≈1.9× in yields and ≈1.3× in areal densities can be
expected with ultra-broadband lasers with ≈6× the current
OMEGA bandwidth. Note that αF ≃ 3.5 adiabat is an
optimistic upper limit on the adiabat required for high-
gain fusion. However, in reality, adiabats αF ≃ 1–2 may
be needed, and the requisite improvement may be
higher than 6×. This bandwidth extrapolation implies

FIG. 4. Trends in measured YOC (in open red circles) and areal
density (in open black triangles) as SSD bandwidth is varied for
αF ≃ 3.5 implosions. Least-square fit to the data (shown as solid
lines) indicates trends are statistically significant with reduced χ2

of 1.12 and 0.97, respectively. All data normalized to 100% SSD
experiment.

(a)

(b)

FIG. 5. Performance extrapolation to higher bandwidth using
power law least-square fits for αF ≃ 3.5 implosions: (a) Extra-
polation of YOC. (b) Extrapolation of areal density. Top axis
shows corresponding σrms values. Open red circles show the
measured data. Open black triangles show results from 2D-
DRACO simulations described in [64,65]. Black dot-dashed lines
show upper bounds on achievable improvements based on results
from αF ≃ 5 SSD scan.
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≈3× reduction in nonuniformity σrms. Note that improve-
ments at higher bandwidth shown in Fig. 5 refer only to
imprint mitigation and do not include the expected
enhancement in energy coupling and suppression of
laser-plasma instabilities [66,67], which would further
improve implosion performance.
In summary, the sensitivity of the performance of

OMEGA cryogenic implosions to SSD bandwidth was
studied to assess the role of laser imprinting in high
performance DT-layered implosions with different in-flight
stability characteristics. αF ≃ 5 design was found to be
insensitive to imprinting at maximum bandwidth. Instead
αF ≃ 3.5 designs were found to be sensitive to laser
imprinting up to full bandwidth. These results corroborate
conclusions from statistical modeling, which show signifi-
cant degradation from short-scale perturbations for
αF ≃ 3.5 design but not for αF ≃ 5 design. These experi-
ments indicate that the dominant source of short-scale
perturbations degrading αF ≃ 3.5 implosions is laser
imprinting. Based on extrapolation of the measured data,
significant improvement in performance is expected for
next-generation broadband ICF lasers [30,31].
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