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Topological phases play a crucial role in the fundamental physics of light-matter interaction and
emerging applications of quantum technologies. However, the topological band theory of waveguide QED
systems is known to break down, because the energy bands become disconnected. Here, we introduce a
concept of the inverse energy band and explore analytically topological scattering in a waveguide with an
array of quantum emitters. We uncover a rich structure of topological phase transitions, symmetric scale-
free localization, completely flat bands, and the corresponding dark Wannier states. Although bulk-edge
correspondence is partially broken because of radiative decay, we prove analytically that the scale-free
localized states are distributed in a single inverse energy band in the topological phase and in two inverse
bands in the trivial phase. Surprisingly, the winding number of the scattering textures depends on both the
topological phase of inverse subradiant band and the odevity of the cell number. Our Letter uncovers the
field of the topological inverse bands, and it brings a novel vision to topological phases in light-matter
interactions.

DOI: 10.1103/PhysRevLett.131.103604

Introduction.—Light-matter interaction plays a crucial
role in the fundamental sciences [1,2], and it underpins the
rapid progress of quantum technologies. Understanding
intrinsic mechanisms of absorption as well as spontaneous
and stimulated emissions leads to the development of
practical applications, such as solar cells, light-emitting
diodes, and lasers [3]. Introducing topology into light-
matter interaction could bring new advances, such as
topological lasers [4–7], in which monochromaticity, effi-
ciency, and emission stability become superior to those
observed for conventional lasers. To unleash the power of
topology in light-matter interaction [8], it is important to
understand the role of topological phases at the microscopic
level of quantum electrodynamics (QED).
Waveguide QED studies photons propagating in wave-

guides, excitation of quantum emitters, and strong inter-
action between them [9–12], providing an excellent
platform to explore the interplay between topology and
light-matter interaction [13–26].We notice that the previous
studies are based on the well-established topological band
theory, allowing one to calculate topological phases and
topological invariants [27,28]. However, in waveguide QED
the energy band splits into two disconnected polariton
branches [29],which hinders the straightforward application

of the topological band theory. It is urged to develop a new
theoretical approach to explore topological phase in wave-
guide QED. Moreover, we need to answer how the bulk
topological phase or topological invariant is imprinted in
photonic scattering.
Here, we suggest and implement the topological inverse

energy band theory based on a proof-of-principle wave-
guide QED with inversion symmetry, as depicted in Fig. 1,
and we uncover a connection between topological phases
and photonic scattering. We find analytically unexpected
rich topological phase transitions driven by the spatial
structure and resonant frequency of emitters. We also
obtain analytically the resonant frequencies that favor a
completely flat band and a group of dark Wannier states
equally occupying two emitters. While the bulk-edge
correspondence is partially broken due to radiative decay,
we analytically prove that scale-free localized states can
exist in only one inverse band in topological nontrivial
phases and in two inverse bands in trivial phases. We use
the reflection and transmission coefficients to construct
scattering textures, which are winding as the photonic
frequency is swept along an inverse subradiant band.
Importantly, the winding number of scattering depends
on both the topological phase of the inverse band and
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odevity of the cell number. We believe our Letter opens a
field of topological inverse band theory, it provides new
insights into the role of topological phases imprinted in
light-matter interaction, and it paves a way to engineer the
dark states for quantum information storage and precision
frequency measurements.
Waveguide QED with inversion symmetry.—As a proof-

of-principle example, we consider an array of quantum
emitters in a photonic waveguide. The quantum emitters are
two-level systems with resonant frequency ω0 and positions
arranged as zj ¼ d½jþδcosð2π=qjþθÞ�; see Fig. 1(a).
Here, each unit cell contains q ¼ 2 emitters, d is the
spacing constant, and δ and θ are the modulation strength
and phase, respectively. The basic process is that the photon
is absorbed by emitters and transferred to an excitation,
which can be reversely transferred into a photon. The
motion of an excitation is described by an effective
Hamiltonian [30,31]

Heff ¼
X2N
j¼1

ℏω0b
†
jbj− iℏΓ0

X2N
j;l¼1

b†jble
iφjzl−zjj=d: ð1Þ

Here, N is the number of cells, and the scaled Planck
constant ℏ is set as a unit in the following. Γ0 ¼ g2=c
is the radiative decay rate of a single emitter with g
denoting the coupling strength between excitation and
photon and c being the velocity of light. The hopping of
excitation from any two emitters is assisted by emission
and reabsorption of a photon in the waveguide. The
hopping strength is an infinite range with a phase shift,
in which the phase unit φ ¼ ωd=c depends on the injected

photonic frequency ω. When the spacing constant is small
enough [d ≪ c=ðω − ω0Þ=N ∼ λ=ð2πNÞ], one may take
the Markov approximation by replacing the phase constant
with φ ¼ ω0d=c [30].
By applying the Bloch theorem, we can immediately

obtain the Hamiltonian in momentum space Hk and the
Bloch states jψn;ki ¼

P
j;l e

ikqjun;kðlÞjqjþ li with energy
ωn;k (see Supplemental Material [31]). We find that the
energy band is diverged at k ¼ �φ and is split into upper and
lower polariton branches; see Fig. 1(b). The divergence of
the energy band originates from the infinite-range coupling
in the Markov approximation. When considering the non-
Markov case in a small systemwithN ¼ 25 cells, there is no
divergence in the non-Markov energy bands [31]; see the
black circles in Fig. 1(b). However, the disconnection of
energy bands in bothMarkov and non-Markov cases hinders
the application of topological band theory. To avoid the
disconnection, we define the inverse energy band as

ω̄k ¼ ðωk − ω0Þ−1; ð2Þ

which can be obtained by solving H−1
k jūn;ki ¼

Γ0ω̄n;kjūn;ki. Here, the amplitudes of state jūn;ki are given
by ūn;kðlÞ, which are the same as un;kðlÞ if n and n̄ are one-to-
one correspondence. The inverse energy band glues the
upper and lower polariton branches and becomes a con-
tinuous function; see solid lines for Markov case and black
circles for the non-Markov case in Fig. 1(c). By fixing the
disconnection problem, we can easily define topological
phases and topological invariants based on the inverse band
as usual. We find that the energy bands, the inverse energy
bands, and the topological phase in Markov and non-
Markov cases are consistent with each other [31].
Although the Hamiltonian and its inversion share the same
eigenstates, they have different band indices and thus the
inverse energy band may uncover novel topological states
that are failed to be found by the original energy band.
Topological phase transition, partial breakdown of bulk-

edge correspondence, and dark Wannier states.—Since the
effective Hamiltonian has the inversion symmetryHði;jÞ¼
Hð2Nþ1− i;2Nþ1− jÞ, the Zak phase [46], as a geo-
metrical phase picked up by a particle sweeping the
Brillouin zone, is quantized. The Zak phase of the nth
inverse band is given by

γ ¼ i
Z þπ=2

−π=2
hūn;kj

∂

∂k
jūn;kidk: ð3Þ

Figure 2(a) shows the Zak phase as a function of the
modulation phase and the hopping phase constant.
Surprisingly, the topological phase diagram is unexpect-
edly rich, with a nontrivial phase γ ¼ π for yellow regions
and a trivial phase γ ¼ 0 for white regions. The red lines
and the black dashed lines mark the topological phase
boundaries and the parameters for the flat band with energy

Input

Reflection
Transmission

(a)

(b) (c)

FIG. 1. Schematic diagram of photonic scattering and inverse
energy band. (a) Diagram of photon in a waveguide scattered
by quantum emitters. The emitter positions are arranged as
zj ¼ d½jþ δ cosðπjþ θÞ� with the averaged spacing d, the
modulation strength δ, and the modulation phase θ. (b) Energy
band. (c) Inverse energy band. The red and blue inverse energy
bands originate from the red and blue bands, respectively. The
black circles denote the non-Markov cases in 25 cells. The
parameters are chosen as δ ¼ 0.4, θ ¼ 0, and φ ¼ 1.
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ω ¼ ω0 [31]. When a flat band with energy ω ¼ ω0 exists,
because its inverse band becomes divergent, we have to
combine the energy band to extract its topological phase;
see Fig. 2(b) for the topological case with δ ¼ 0.4,
θ ¼ π=3, and φ ¼ 5π=3. For the continuous flat band,
hσxi ¼ hun;kjσxjun;ki changes from −1 at k ¼ π=2 to 1 at
k ¼ 0, where σx is the Pauli matrix. The sign difference of
hσxi between high symmetric points is related to the Zak
phase, similar to Ref. [47]. For a fixed spatial structure, we
can drive the topological phase transition by the resonant
frequency (φ ¼ ω0=cd), which can be controlled by either
the resonant frequency of an injected photon or the Zeeman
shift induced by magnetic fields. This is in stark contrast to
the topological phases in electronic materials, which are
largely determined by the crystal structure.
To explore the bulk-edge correspondence, we calculate

the inverse participation ratio (IPR) of eigenstates in a finite
array under open boundary conditions, IPR ¼ P jψnðjÞj4,
where ψnðjÞ is the amplitude of the nth eigenstate at the jth
site. The IPR tends to 1 for the most localized state and 0
for the extended state, which can be used to distinguish
localized and extended states. Figure 2(c) shows the
dependence of IPRs on the hopping phase constant and
the inverse energy. The red solid lines separate the energy
spectrum into several regions with different Zak phases.
There are no edge modes in the inverse band gaps,

regardless of trivial or topological phases. The breakdown
of the conventional bulk-edge correspondence can be
explained by the inverse of the effective Hamiltonian,
which turns out to be a Su-Schrieffer-Heeger model
with effective radiative defects at the boundaries (see
Supplemental Material [31]). It immediately becomes clear
that an excitation at the end sites may well escape away
from the system of emitters as a propagating photon.
However, the bulk topological phase still has significant

consequences. First, symmetric scale-free localized states
[Fig. 2(d)], jψ locðjÞj2∼ ðe−αj=N þeαj=NÞ2, exist in the con-
tinuous spectrumwith larger IPRs [31–33]. Surprisingly, the
distribution of scale-free localized states in inverse energy
bands depends on topological properties; see Fig. 2(c). In the
topological phase with γ ¼ π, the scale-free localized states
can be distributed in only one single inverse energy band; in
the trivial phase with γ ¼ 0, they can be distributed in both
two inverse energy bands. We analytically prove this
observation and obtain the centered inverse energy of the
scale-free localized states denoted by the white dashed lines
in Fig. 2(c) [31]. Second, the number (S) of subradiant states
in the energy band aroundω0 is S ¼ N for a trivial phase and
S ¼ N − 1 for a topological phase. These subradiant states
become dark states when the band becomes completely flat
with energy ω ¼ ω0 [31]. Because the flat band has zero
group velocity and infinite effective mass, the lifetime of

(a) (b)

(d)

0 21

0
2

1

Periodic

(c)

(e)

Topological Trivial

FIG. 2. Topological phase transition, breakdown of bulk-edge correspondence, and topological flat band. (a) Topological phase
diagram where the white and yellow regions are trivial and topological phases, respectively. Black dashed lines denote the positions of
flat bands. (b) Flat energy band with θ ¼ π=3 and φ ¼ 5π=3. The colors denote hσxi of the corresponding eigenstates. hσxi are opposite
at the high symmetry points, indicating topological phase. (c) The inverse participation ratio of N ¼ 100 cells under open boundary
conditions with θ ¼ π=3. There is no edge state at the inverse band gap. White dashed lines denote the centered inverse energy of scale-
free localized states. (d) Symmetric scale-free localized states with the largest IPR (red solid line) and the fitting function jψ locðjÞj2 ∼
ðe−αj=N þ eαj=NÞ2 (blue dashed line). The other parameters are chosen as θ ¼ π=3 and φ ¼ π=3. (e) Topological interface state in a
structure spliced by two arrays with different modulation phases θ ¼ π=3 and θ ¼ 2π=3. The above calculations are performed with
modulation strength δ ¼ 0.4.
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excitation can be infinitely long. In the flat band, we find N
darkWannier states being intercell superposition ðj2j−1iþ
j2jiÞ= ffiffiffi

2
p

(j¼ 1;2;…;N) in the trivial phase andN − 1 dark
Wannier states being intracell superposition ðj2ji þ j2jþ
1iÞ= ffiffiffi

2
p

(j ¼ 1; 2;…; N − 1) in the topological phase.
These dark Wannier states form a decoherence-free sub-
space, which is simple, arranged in order, and with the same
energy of resonant frequency ω0. These features could
potentially be used for quantum memory, quantum infor-
mation process, and precision frequency measurement [31].
Third, we can further extract the Zak phase of the inverse
energy band via long-time average of mean cell position in
quantum walks [31,34,35].
We need to emphasize that the radiative defects at the

boundaries only partially break the bulk-edge correspon-
dence. In a splicing structure that connects two arrays with
different Zak phases, we find topological interface states
[Fig. 2(e)] appearing in the inverse energy gaps. Because of
no radiative defects at the interface, the topological inter-
face states in large inverse energy gaps are immune to
disorder to some extent. In contrast to the topological
materials, in the hybrid quantum waveguide QED systems
the bulk-edge correspondence is preserved in the interface
between two arrays, but fails in the interface between an
array and a vacuum.
Bulk topology of photonic scattering.—Because an

excitation will generally decay into a photon in the
long-time dynamics, it is highly appealing to explore
how the topology of excitation is mapped to the topology
of photonic scattering. We consider a photon with momen-
tum (κ) injected into the waveguide. After interacting with
the emitters and transferring into excitation, or vice versa,
the photon is either reflected or transmitted. The reflection
and transmission coefficients are given by

rκ ¼ −iΓ0

X
j;j0

Gj;j0 ðωκÞeiωκ=cðzjþzj0 Þ; ð4Þ

and

tκ ¼ 1 − iΓ0

X
j;j0

Gj;j0 ðωκÞeiωκ=cðzj0−zjÞ; ð5Þ

which satisfy jrκj2 þ jtκj2 ¼ 1 [31]. Here, GðωÞ ¼ ðω −
HeffÞ−1 is the Green’s function for an excitation. We
calculate the reflection spectrum as a function of the
inverse energy for the cases of topological nontrivial and
trivial phases; see Figs. 3(a) and 3(c), respectively. When
the photonic frequency is in resonance with the subradiant
states, the photon is completely transmitted, and there are
N − 1 (N) dips for the topological nontrivial (trivial) phase
in the shadow regions where the photonic frequency
sweeps across the lower inverse band.
To show how the topological phase affects the scattering,

we need to calculate the scattering textures si ¼ hψκjσijψκi

ði ¼ x; y; zÞ, where fjψκi ¼ ðrκ; tκÞTg and σi are Pauli
matrices. The scattering textures can potentially be
probed by interference between reflected and transmitted
photons. With the scattering textures s⃗ ¼ ðsx; sy; szÞ, we
can define the winding number of scattering along the xðyÞ
direction as

νxðyÞ ¼
Z �

s⃗ ×
∂s⃗
∂ω̄

�
xðyÞ

dω̄; ð6Þ

where ω̄ sweeps through the lower inverse band. However,
νxðyÞ is generally not quantized along the xðyÞ directions.
As the trajectories ðsx; sy; szÞ in Figs. 3(b) and 3(d) locate in
a plane parallel to the z direction and depart from both the x
and y directions, we can define a winding number around
the original point and along the direction perpendicular to
the plane as

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2x þ ν2y

q
: ð7Þ

We summarize the winding number in different topological
phases with even and odd cells; see Table I. Remarkably, the
winding number of the scattering textures depends on both
the topological phase and the odevity of the cell numbers.
We numerically find that a subradiant state contributes a π
phase shift (see Supplemental Material [31]). Based upon
the fact that there are (N − 1) subradiant states in a
topological phase and N subradiant states in a trivial phase,
we can reasonably argue that both the topological nontrivial

FIG. 3. Topology-dependent scattering in four cells. (a),(c)
Reflection as a function of inverse energy in topological and
trivial phases, respectively. The inset of (d) enlarges its region
with two nearby dips. There are NðN − 1Þ dips in reflection
spectrum around the subradiant inverse energy band for trivial
(topological) phase. (b),(d) The trajectory of ðsx; sy; szÞ as the
inverse energy sweeps through the shading regions for topologi-
cal and trivial phases, respectively. The parameters are chosen as
N ¼ 4, δ ¼ 0.4, g ¼ 1, Γ0 ¼ 0.01, ω0 ¼ c=d ¼ 100, θ ¼ 0, and
θ ¼ π for topological and trivial phases, respectively.
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phase with even cells and the trivial phase with odd cells
contribute π phase to the scattering texture, leading to
nontrivial quantization of winding number ν.
Topological interface state in transmission spectrum.—

A topological interface state exists in the structure spliced
by two arrays with different topological properties. Because
the topological interface state is a subradiant state, it will
enhance the transmission when an injected photon is in
resonance with it. We show the transmission spectrum as a
function of the modulation strength δ and the inverse
frequency; see Fig. 4(a). The red dashed line denotes the
inverse frequency of the topological interface state in the
inverse band gap, at which the transmission is strongly
enhanced.At a smallmodulation strength δ ¼ 0.1, the profile
of the transmission spectrum becomes an asymmetric Fano
resonance around the topological interface state [48,49]. The
Fano resonance is an interplay between the topological
interface state and the states close to the inverse band edge.
Discussion.—Since the inverse energy band is related to

the inverse of the Hamiltonian known as Green’s function,
the topological inverse energy band actually reflects the
topological phase of Green’s function, which is directly
related to the scattering of a photon. It means that the
topological inverse band could be a powerful and natural
theoretical framework for predicting and tailoring novel
topological-enriched light-matter interactions. We expect

an unexplored richness in topological QED within the
topological inverse band theory, considering higher dimen-
sions that favor a variety of symmetries [24,50], more
photons that support stimulated emission, quantum corre-
lations and entanglement [17], and cavity-mediated long-
range interactions [51–53].
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