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Cold atoms in an optical cavity have been widely used for quantum simulations of many-body physics,
where the quantum control capability has been advancing rapidly in recent years. Here, we show the atom
cavity system is universal for quantum optimization with arbitrary connectivity. We consider a single-mode
cavity and develop a Raman coupling scheme by which the engineered quantum Hamiltonian for atoms
directly encodes number partition problems. The programmability is introduced by placing the atoms at
different positions in the cavity with optical tweezers. The number partition problem solution is encoded in
the ground state of atomic qubits coupled through a photonic cavity mode, which can be reached by
adiabatic quantum computing. We construct an explicit mapping for the 3-SAT and vertex cover problems
to be efficiently encoded by the cavity system, which costs linear overhead in the number of atomic qubits.
The atom cavity encoding is further extended to quadratic unconstrained binary optimization problems.
The encoding protocol is optimal in the cost of atom number scaling with the number of binary degrees of
freedom of the computation problem. Our theory implies the atom cavity system is a promising quantum
optimization platform searching for practical quantum advantage.
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Introduction.—Quantum optimization aims at utilizing
quantum fluctuations to solve difficult binary optimization
problems. The idea is to encode the computation solution
into the ground state of certain programmable quantum
many-body Hamiltonian systems. Their ground states can
be prepared using quantum adiabatic or variational prin-
ciples, for example with adiabatic quantum computing
(AQC) [1] or quantum approximate optimization algo-
rithms [2]. It has wide applications that include protein
folding [3], simulating molecular dynamics [4], and mod-
eling wireless communication networks [5]. While quan-
tum optimization may not solve NP-complete or NP-hard
problems at polynomial costs, it is widely expected to
exhibit significant quantum speedup over classical comput-
ing [6,7], and recent studies have shown the quantum
dynamics are less vulnerable than classical searching
algorithms to trapping at local minima, a standard obstacle
for finding the optimal solution [8,9]. Quantum optimiza-
tion protocols could benefit from even more drastic
quantum speedup with machine learning based quantum
algorithm configuration [10–13].

A fascinating route to implement quantum optimization
has been provided by Rydberg atom arrays [14]. This atomic
system naturally encodes maximum independent set prob-
lems on unit disk graphs [5]. A quantumwiring approach has
been developed to mediate arbitrary connectivity, which
makes the Rydberg atomic system a generic quadratic
unconstrained binary optimization (QUBO) solver despite
its finite interaction range [15,16]. Tremendous research
efforts have been devoted to this system in recent years with
remarkable progress accomplished [8,17–21]. The Rydberg
system has become a prominent platform to achieve quan-
tum advantage in practical applications [8,15,16,19,20].
However, one key limitation of this system is its quantum
coherence time for the encoding Rydberg qubits involves
highly excited atomic states, whose quantum coherence is
fundamentally affected by blackbody radiation [22] and
electromagnetic noise [23].
In this Letter, we consider a system of cold atoms in an

optical cavity, whose experimental technology has been
advancing rapidly in recent years [24–30], and develop a
novel quantum optimization scheme for generic QUBO
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problems with arbitrary connectivity using atomic ground
states. The long-range atomic interactions mediated by
cavity photons in this system naturally encode number
partition problems (NPPs), having direct applications in
multiprocessor scheduling of parallel computations and
large scale truck delivery management [31]. Introducing a
series of auxiliary squarefree integers, we show that 3-SAT
and vertex cover problems can be efficiently encoded by
the atom cavity system, where the cost of atom number
scales linearlywith number of binary degrees of freedom of
the computation problem, in contrast to the quadratic
scaling in the corresponding Rydberg encoding [15,16].
Based on this scheme, we construct an encoding scheme
where QUBO problems with arbitrary connectivity are
mapped to the atom cavity system. The overhead in the cost
of atom number in representing QUBO problems has a
quadratic scaling in our scheme, which is already optimal.
With our theory, the atom cavity system has a potential to
become a universal quantum optimization platform to
demonstrate practical quantum advantage.
Solving NPPs by cold atoms in an optical cavity.—Given

a set of n positive integers, S ¼ fp1; p2;…; png, NPP is to
divide the set into two subsets A and Ā in order to minimize
the imbalance I ¼ jPi∈A pi −

P
j∈ Ā pjj. In order to map

this computation problem to a quantum system, we rescale
the integers in S by their maximum pmax, and introduce
λj ¼ pj=pmax. The solution to NPP corresponds to the
ground state of an Ising Hamiltonian,

ĤNPP ¼
 Xn

i¼1

λiσ̂
x
i

!
2

; ð1Þ

where σ̂xi is the Pauli-x matrix for the ith qubit. The
measurement of σ̂ix being positive (negative) encodes the
ith integer, pi, given to A (Ā). The physical implementation
requires the coupling between two qubits, say as labeled by
i and j, to be λiλj, which is nonlocal.
The required Hamiltonian ĤNPP with nonlocality has

natural realization with atoms interacting with cavity
photons. The key idea is to utilize a cavity-mediated
four-photon process to realize the desired interactions in
Eq. (1). We consider N three-level atoms in a high-finesse
optical cavity (Fig. 1). The qubit is encoded by the two
ground states j↑i and j↓i with an intrinsic energy splitting
ℏΔF. Both ground states are coupled to the excited state jei
by the cavity photons ℏω, with detunings ofΔþ ΔF andΔ,
respectively. The atoms are individually trapped by optical

FIG. 1. Cavity QED setup for solving number partition problem. (a) Atoms are coupled to a high-finesse optical cavity. The single-
photon Rabi frequency 2gi for the ith atom is individually programmable by controlling the position of the atom with an optical tweezer.
The atoms are illuminated by two additional beams, which are in a plane transverse to cavity axis, to generate the two Raman couplings.
(b) The atomic level diagram. The qubit levels j↑i and j↓i are coupled to jei by the same cavity mode with detunings Δþ ΔF and Δ,
respectively. By applying two coupling beams Ω1, Ω2, and setting their detunings as Ω1=Ω2 ¼ ðΔþ ΔFÞ=Δ, we construct two Raman
processes that couple j↑i to j↓i with equal two-photon Rabi frequencies gR. The detuning δ is chosen to be much larger than gR to
suppress transitions generating multiple cavity photons. As we tune δm to 0, the four-photon processes become resonant. (c) Diagram of
the resonant four-photon processes. These consist of two Raman processes with opposite detuning, and correspond to σ̂þi σ̂

þ
j , σ̂

−
i σ̂

−
j ,

σ̂þi σ̂
−
j , and σ̂−i σ̂

þ
j .
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tweezers with programmable relative positions to the
standing-wave cavity mode, leading to programmable atom
cavity coupling strengths. Denoting the single-photon Rabi
frequency at antinodes as 2g0, the coupling strength of the
ith atom at position Xi is given by 2gi ¼ 2g0 sinðQXiÞ, with
Q the cavity-mode wave vector. By manipulating the atom
positions, we reach a programmable coupling gi ¼ λig0.
In order to realize the Raman coupling between j↓i and

j↑i, we send in two side coupling beams to off-resonantly
couple j↓i (j↑i) to jei with frequencies ω1 (ω2) and
Rabi frequencies Ω1 (Ω2), as shown in Fig. 1(b). The
Hamiltonian Ĥexp of such system is given by

Ĥexp=ℏ

¼ ωâ†â−
XN
i¼1

fω0j↓iih↓j þ ðω0 −ΔFÞj↑iih↑jg

þ
X
i

fΩ1 cosðω1tÞjeiih↓j þΩ2 cosðω2tÞjeiih↑j þH:c:g

þ
X
i

λig0fâjeiih↓j þ âjeiih↑j þH:c:g; ð2Þ

where â† (â) is the creation (annihilation) operator of the
cavity mode. Here, ΔF is the hyperfine splitting between
the two ground states j↑i and j↓i, the energy zero point is
set at the level of jei, ω is the cavity mode frequency,
and ω0 is the frequency of the transition j↓i → jei. The
detunings are organized as ω1 ¼ ω0 þ Δþ ΔF − δ − δm,
ω2 ¼ ω0 þ Δ − ΔF − δ, and ω ¼ ω0 þ Δ. The atom num-
ber N is equal to the number of integers (n) to divide
for NPP.
After rotating wave approximation and adiabatically

eliminating the excited state [32,33], each side coupling
beam combined with the cavity mode forms a detuned
Raman coupling between the two ground states, described
by the Hamiltonian

Ĥ0
exp=ℏ ≈ δâ†âþ δ̃m

X
i

σ̂zi

þ
X
i

λifðgR;1âþ gR;2â†Þj↓iih↑j þ H:c:g; ð3Þ

where the two-photon couplings are given by λigR;1 ¼
Ω1λig0=2ðΔþ ΔFÞ and λigR;2 ¼ Ω2λig0=2Δ, respectively,
σ̂z is the Pauli-z operator, and δ̃m describes the splitting
between the ground states ac-Stark shifted by the coupling
beams. By setting Ω1=Ω2 ¼ ðΔþ ΔFÞ=Δ, we achieve
equal coupling strengths gR;1 ¼ gR;2 ≡ gR.
When jgR=δj ≪ 1, both two-photon processes are sup-

pressed. The two Raman processes have opposite detunings
�δ since one of them absorbs a cavity photon while the
other emits one. Therefore, the four-photon process con-
necting two Raman couplings becomes resonant. As shown
in Fig. 1(c), the total four processes realize the full λiλjσ̂ixσ̂

j
x

coupling. For example, at the leftmost of Fig. 1(c), a
Raman process λigR;1σ̂

þ
i â

† of the ith atom and a λjg�R;1σ̂
−
j â

process of the jth atom can form a resonant process
λigR;1σ̂þλjg�R;1σ̂

−. Even when the cavity is in vacuum
states, the spins can still interact with each other via
exchanging virtual photons through the cavity. Together
with the other three similar processes that conserve the
cavity photon number [see Fig. 1(c)], the system could
realize the terms of σ̂þi σ̂

þ
j , σ̂

−
i σ̂

−
j , σ̂

þ
i σ̂

−
j , and σ̂−i σ̂

þ
j . Since

these four processes have equal coupling strengths, this
leads to an effective Hamiltonian,

Ĥeff=ℏ ¼
XN
i¼1

δ̃mσ̂
z
i þ g4

 XN
i¼1

λiσ̂
x
i

!
2

: ð4Þ

Both δ̃m and g4 are dynamically tunable in experiments
with constraints jΩ1;2j ≪ jΔj, and jgRj; jδ̃mj ≪ jδj.
To reach the many-body ground state of ĤNPP, we apply

the AQC protocol in the following way. First, we begin
with a finite detuning δ̃mðt ¼ 0Þ and set g4ðt ¼ 0Þ ¼ 0 by
turning off the coupling beamsΩ1 andΩ2. The ground state
at this point is a trivial product state j↓i⊗n that can be easily
prepared by optical pumping with high fidelity. Then we
adiabatically ramp the Hamiltonian following a path sðtÞ
that goes from zero to unity. That is, we control the
detuning as δ̃mðtÞ ¼ ½1 − sðtÞ�δ̃mð0Þ. Simultaneously, we
ramp the intensity of the two incident lasers to the desired
value as Ω1ð2ÞðtÞ ¼

ffiffiffiffiffiffiffiffi
sðtÞp

Ω1ð2Þ, so that g4ðtÞ ¼ sðtÞg4.
Finally, the solution to the NPP problem is obtained by
measuring the atomic spins in the Pauli-σ̂x basis. There are
several ways to improve the success probability of AQC,
for example with optimizing the Hamiltonian path [10–13]
or by iterative reverse annealing schemes [34–36].
For solving NPPs, besides our atom cavity proposal,

there are also other candidate systems or protocols such
as trapped ions [37], and Grover search in a central spin
setup [38]. Our proposing atom cavity realization is expected
to be more scalable for its convenience in increasing atom
numbers. The theory we shall develop below may well
be used to show all these systems have potential to solve
generic quantum optimization with arbitrary connectivity.
Nonetheless, we mainly consider the atom cavity system in
this Letter.
Encoding for 3-SAT.—We consider a 3-SAT problem

with n variables x1;…; xn, and m clauses f1;…; fm [39].
The 3-SAT problem is defined by twom × 3matrices I and
B, with

fj ¼ ðxIj;1 ⊕ Bj;1Þ∨ðxIj;2 ⊕ Bj;2Þ∨ðxIj;3 ⊕ Bj;3Þ; ð5Þ

where I contains integers from 1 to n, and B contains binary
values. Solving 3-SAT has direct applications in compu-
tation technologies such as symbolic model checking [40],
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automated theorem proving [41], and planning in artificial
intelligence [42]. The idea is to map the 3-SAT problem to
the atom cavity Hamiltonian in Eq. (1). We introduce

ai ¼ ffiffiffiffiffiffiffiffiffiffi
αmþi

p þ
X

j∶ xi in fj

ffiffiffiffiffi
αj

p

bi ¼ ffiffiffiffiffiffiffiffiffiffi
αmþi

p þ
X

j∶ xi in fj

ffiffiffiffiffi
αj

p
;

cj ¼ dj ¼ ffiffiffiffiffi
αj

p
; ð6Þ

with αp the pth squarefree integer, starting from 1. Here, we
have i∈ ½1; n�, and j∈ ½1; m�. The numbers faig, fbig,
fcjg, and fdjg form a set R, which contains 2nþ 2m
numbers, to be referred to as rkðI; BÞ, with k∈ ½1; 2nþ 2m�.
Solving 3-SAT problem is equivalent to finding a subset of
R with its numbers added up to a target,

Tðn;mÞ ¼
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffi
αmþi

p þ 3
Xm
j¼1

ffiffiffiffiffi
αj

p
; ð7Þ

or more specifically solving
P

k ykrkðI; BÞ ¼ Tðn;mÞ with
yk taking binary values (0 or 1). This equivalence is
guaranteed by the property of linear independence of
radicals obeyed by the squarefree integers [32,43].
The 3-SAT problem now becomes optimizing

minfykg

�X
k

ykrkðI; BÞ − Tðn;mÞ
�

2

; ð8Þ

which directly maps onto the atom cavity system [Eq. (1)].
The optimization here only involves local fields and
interactions of the factorized form of rkrk0 as existent in
the cavity system. The additional requirement for encoding
3-SAT compared to NPP is the control over Rabi frequency
for each atom, which is feasible to the atom cavity system
through local addressing for each atom.
The ground state y⋆k can be obtained by performing

AQC. With our scheme, a 3-SAT with n variables and m
clauses would cost 2nþ 2m atoms. The corresponding
atom number overhead in this encoding is

Overhead ¼ nþ 2m: ð9Þ

The 3-SAT solution is directly given by xi ¼ y⋆i .
We remark here that vertex cover problems can also

be encoded by the atom cavity system in a similar way as
3-SAT [32].
We also mention that in computation theory, an alternative

approach has been developed to construct the equivalence
between NPP and 3-SAT, by using a series of integer power
of fours (4p) [44], instead of squarefree integers. This would
then require the atom couplings to grow exponentially with
the atom number or to be exponentially precise, which is
problematic for experimental implementation of large scale

computation. This problem is absent in our construction
using squarefree integers.
Encoding for QUBO.—QUBO is to minimize a quadratic

objective function of binary variables with no constraints
[45]. It corresponds to finding the ground state of an Ising
model of n classical spins (si ¼ �) on a graph [46],

EðfsigÞ ¼
X
i;i0>i

Jii0sisi0 : ð10Þ

Mapping this Ising model on a physical system requires
engineering nonlocal interactions, which is challenging to
implement in experiments. Although the atom cavity
system has long-range interactions [λiλi0 in Eq. (4)], their
form does not necessarily match Jii0 . The number of free
parameters in J scales quadratically with the number of
Ising spins, whereas it scales linearly with the atom number
for the interactions of the atom cavity system. This implies
the minimal number of encoding atoms has to scale
quadratically with n.
We now develop a protocol for mapping the QUBO

problem to the atom cavity system. To proceed, we first
adopt the parity encoding, introducing bii0 ¼ sisi0 [47].
Treating ðii0Þ as a one single site of a square lattice
(with size n × n), the interactions in J then become
local fields, with a cost of introducing constraints
bii0bii0þ1biþ1i0þ1biþ1i0 ¼ 1 [47]. The total number of these
independent constraints is ðn − 1Þðn − 2Þ=2. We then
rewrite the constraints in terms of 3-SAT formula

ðβ∨xii0∨xii0þ1Þ ∧ ðβ∨xii0∨x̄ii0þ1Þ ∧ ðβ∨xiþ1i0þ1∨xiþ1i0 Þ
∧ ðβ∨x̄iþ1i0þ1∨x̄iþ1i0 Þ ∧ ðβ̄∨x̄ii0∨xii0þ1Þ
∧ ðβ̄∨xii0∨x̄ii0þ1Þ ∧ ðβ̄∨x̄iþ1i0þ1∨xiþ1i0 Þ
∧ ðβ̄∨xiþ1i0þ1∨x̄iþ1i0 Þ; ð11Þ

with xii0 ¼ ðbii0 þ 1Þ=2, and β an introduced auxiliary
variable. Taking all constraints into account, we have a
3-SAT problem with n0 ¼ ðn − 1Þ2 variables, and m0 ¼
4ðn − 1Þðn − 2Þ clauses. The corresponding defining
matrices Iconst and Bconst are directly given according to
Eqs. (5) and (11).
As shown above, the 3-SAT formulas are equivalent to

the optimization problem in Eq. (8). Now, the QUBO
problem becomes optimizing

min

( Xnðn−1Þ=2

k¼1

Jkyk

þM

 X2ðn0þm0Þ

k¼1

ykrkðIconst; BconstÞ − Tðn0; m0Þ
!

2
)
; ð12Þ

with the first nðn − 1Þ=2 elements of yk representing xii0 ,
and Jk representing Jii0 correspondingly. Here, energy
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penalty termM > 0 should be sufficiently large to enforce
the required constraints. For practical AQC, it is suggested
to start from a moderate M, and check for convergence
upon its increase.
Since the optimization in Eq. (12) only involves local

fields and interactions of the factorized form of rkrk0 , it
maps directly to the atom cavity system. The solution of
QUBO can be efficiently decoded from yk using the
algorithm developed for parity encoding [48]. The over-
head in the cost of atom number for the QUBO problem is

Overhead ¼ 2ðn − 1Þð5n − 9Þ − n: ð13Þ

The quadratic scaling of the overhead is already optimal.
We thus have a universal atom cavity based quantum
optimization solver for generic QUBO problem, with the
scaling of the cost of atom numbers being optimal. We
remark here that the atom cavity solver for QUBO problem
does not require arranging the atoms in a regular two-
dimensional array. Our scheme fully exploits the form of
the nonlocal interactions of the cavity system.
Discussion.—We develop a universal quantum optimi-

zation architecture based on cold atoms in an optical cavity.
A Raman scheme is constructed using four-photon proc-
esses, where the cavity photon induced atomic interactions
naturally encode NPPs. We find 3-SAT and vertex cover
problems can also be efficiently encoded by the atom cavity
system, at a linear cost of atom number, which is in contrast
to the quadratic overhead in the Rydberg encoding [15,16].
Based on the encoding scheme for 3-SAT, we further
design an atom cavity architecture for generic QUBO
problems with arbitrary connectivity. The atom number
overhead for encoding QUBO has quadratic scaling, which
is optimal for QUBO. We anticipate the atom cavity system
to provide a compelling platform for quantum optimization
having wide applications in academia and industry [49].
With our theory, the cavity system has a potential to
become a universal quantum optimization platform to
demonstrate practical quantum advantage. The de-
coherence of this system is mainly from the finite atomic
excited state lifetime and the photon leakage, both of which
are controllable by the two-photon detuning. Their tradeoff
sets the limit of the quantum coherence time T. A worst-
scenario estimate gives g4T ∝ η1=2=N, with η the cavity
cooperativity [32]. The quantum coherence can be further
improved by considering more advanced techniques
such as cross cavities, by which we have g4T ∝ η3=2

in the large atom number limit. This implies that our
scheme is scalable, and that the coherence time can be
systematically improved by advancing the cavity engineer-
ing technology.
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