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We present a microscopic study of chiral plasma instabilities and axial charge transfer in non-Abelian
plasmas with a strong gauge-matter coupling g2Nf ¼ 64, by performing 3þ 1D real-time classical-
statistical lattice simulation with dynamical fermions. We explicitly demonstrate for the first time that—
unlike in an Abelian plasma—the transfer of chirality from the matter sector to the gauge fields occurs
predominantly due to topological sphaleron transitions. We elaborate on the similiarities and differences of
the axial charge dynamics in cold Abelian U(1) and non-Abelian SU(2) plasmas, and comment on the
implications of our findings for the study of anomalous transport phenomena, such as the chiral magnetic
effect in QCD matter.
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Introduction.—Novel transport phenomena in the pres-
ence of chiral fermions have received a considerable
amount of attention with manifestations from high-energy
physics to condensed matter systems [1–4]. Specifically,
the emergence of the chiral magnetic effect (CME) [5–9]
has been widely investigated in recent years, as a possible
way to provide insights into the dynamics of topological
structures in quantum chromodynamics (QCD) [10] or to
realize transport phenomena in Dirac or Weyl semimetals
[11–16].
Generically, such anomalous transport phenomena rely

on the presence of a net chirality or axial charge imbalance
j05 ≠ 0 in the fermion sector. However, due to quantum
effects, the axial current jμ5 ¼ ðj05; |⃗5Þ is not conserved, as
expressed by the anomaly relation [17–19]

∂μj
μ
5 ¼ −

g2Nf

2π2
tr½E ·B� ð1Þ

valid for Nf degenerate flavors of massless Dirac fermions
in the presence of dynamical gauge fields. Notably the
expression ðg2=4π2Þtr½E ·B� on the right-hand side can be
expressed as the divergence ∂μKμ of the Chern-Simons
current Kμ describing the net helicity of the gauge fields,
such that Eq. (1) effectively describes the conservation of
the combined net chirality of fermions and helicity of gauge
fields. Since by virtue of Eq. (1) the axial charge density j05
in the fermion sector is manifestly not conserved, a crucial

aspect of anomalous transport is therefore to understand
how exactly and on what timescale the net chirality is
transferred between fermionic and the gauge degrees of
freedom.
Specifically, in the context of Abelian gauge theories

such as quantum electrodynamics (QED), it is well estab-
lished [20–23] that fluctuations of the electric, and mag-
netic fields can deplete the net axial charge density in the
system, thus requiring the application of external electro-
magnetic (EM) fields to sustain anomalous transport
phenomena [24] such as the CME in condensed matter
systems [25]. Conversely, in electromagnetic plasmas
where no external fields are applied, any net chirality
imbalance in the fermion sector is eventually transferred to
the gauge field sector. Based on a series of studies based on
weak-coupling techniques [21,22,26,27], effective macro-
scopic descriptions [20,28,29] as well as nonperturbative
real-time lattice simulation [23,30,31], it has been estab-
lished that the chirality transfer proceeds via an exponential
growth (and decay) of right- (left-) handed helical magnetic
field modes due to the so-called chiral plasma instability
[32]. Eventually, the unstable growth saturates, leading to a
self-similar turbulent cascade that results in the generation
of large scale helical magnetic fields [20,23,33].
Despite the fact that different theoretical approaches are

able to describe the dynamics of chirality transfer in
Abelian gauge theories, the theoretical description of
chirality transfer processes in non-Abelian gauge theories,
such as QCD or the electroweak sector of the standard
model, is significantly more involved. Because of the
nontrivial structure of the gauge group, non-Abelian
SUðNcÞ gauge theories possess an infinite number of
physically equivalent configurations whose vacua are
topologically distinct [34,35], which differ from each other
by an integer amount of the chiral charge NCS ¼

R
x K

0.
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Nonperturbative real-time processes can lead to so-called
sphaleron transitions between the different topological
sectors [36,37], which tend to erase any preexisting chiral
charge imbalance in the fermion sector [38,39], such that
ultimately one expects all chiral charge to be absorbed into
the topology of the non-Abelian gauge fields. Despite the
fact that such processes are not only important for under-
standing the real-time dynamics of anomalous transport
phenomena, but also play a crucial role in different
scenarios of baryo- or leptogenesis in the early Universe
[40–42], a microscopic theoretical description is compli-
cated by the interplay of several scales [43], and one
typically resorts to effective macroscopic descriptions in
the form of hydrodynamic equations [44–49] or classical
effective theories [50–52].
In this Letter, we report on the first microscopic study of

chirality transfer in non-Abelian plasmas. Specifically, we
investigate the dynamics of chiral plasma instabilities and
chirality transfer in an environment where the ambient
temperature is much lower than the initial helicity chemical
potential. Unlike at weak coupling and high temperatures
where the primary unstable modes reside at magnetic scale,
there is no natural separation of scales in this regime.
Starting from a large helicity imbalance in the fermion
sector, we employ a classical-statistical description [53–57]
to simulate the subsequent nonequilibrium evolution of the
system. Beginning with the early onset of exponentially
growing primary instabilities, we follow the evolution of
the system to the highly nonlinear regime where the
unstable growth saturates and chirality transfer from the
fermion to the gauge sector proceeds as anticipated via a
sequence of correlated sphaleron transitions. We explicitly
demonstrate that chirality transfer in non-Abelian plasmas
is primarily driven by such topological transitions and
comment on the consequences of our findings for the
emergence of anomalous transport phenomena such as the
CME in non-Abelian plasmas.
Simulation setup.—We perform real-time simulation of

Nf degenerate flavors of Dirac fermions of mass m,
coupled to classical-statistical non-Abelian SUðNcÞ gauge
fields [58–63]. We numerically solve the coupled set of
Dirac equations

i∂tΨ̂xðtÞ ¼ γ0ð−iγiDi½A� þmÞΨ̂xðtÞ; ð2Þ

for the fermion fields Ψ̂xðtÞ, where Di½A�≡ ∂
i − igAi

xðtÞ is
the covariant derivative in temporal-axial (A0 ¼ 0) gauge,
and the Yang-Mills equations for the non-Abelian gauge
fields Ea

xðtÞ and Ba
xðtÞ,

∂tgEa
xðtÞ − ½D × gBxðtÞ�a ¼ −g2NfjaxðtÞ: ð3Þ

Evolution equations (2) and (3) include the effects of color
fields on the fermion sector as well as the nonlinear back-
reaction of fermion currents jaxðtÞ¼h1

2
½Ψ̂†

xðtÞtaγ0γ;Ψ̂xðtÞ�i,

on the dynamical evolution on the non-Abelian fields in
Eq. (3). We note that the classical-statistical description in
Eqs. (2) and (3) is accurate to leading order in the gauge
coupling g2, but to all orders in the coupling g2Nf between
matter and gauge fields [58,60]. In this work we focus on
the simplest non-Abelian gauge group SU(2) and employ
g2Nf ¼ 64 to implement a strong backreaction of the
matter fields to the gauge fields. This allows us not only
to properly resolve all relevant scales of the problem, but
also to investigate the mechanism of the chirality transfer
beyond the weak-coupling limit [32,51].
We formulate the problem on a N3

s spatial lattice with
lattice spacing as, using a compact Hamiltonian lattice
formulation of SU(2) gauge theory [64], with Oða3sÞ tree-
level improved Wilson fermions [63] which is essential for
realizing the chiral anomaly with a good precision on a
finite size lattice. Clearly, the implementation of the
fermion field operator Ψ̂xðtÞ is the most expensive part
of our numerical algorithm as the solution to the operator
Eq. (2) is constructed from linear combinations of a
complete set of 8N3

s wave functions [58,63].
We will analyze the nonequilibrium evolution of a

chirally imbalanced charge neutral ensemble of fermions,
by specifying the initial occupation numbers of left- (L)
and right- (R) handed fermions at t ¼ 0 according to a
Fermi-Dirac distribution nL=RF ðt¼0;pÞ¼½1=ðeðEp�μhÞ=Tþ1Þ�
with a helicity chemical potential μh and energy
Ep ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
for particles and antiparticles, respec-

tively. The initial conditions for the gauge fields are chosen
as a classical-statistical ensemble representing vacuum
fluctuations [23,65]. We focus on the dynamics in a cold
and dense plasma with an initial T=μh ¼ 1=8 to make a
comparison with our earlier studies of an Abelian plasma
[23] and please refer to the Supplemental Material of [23]
for additional details of the implementation. To estimate the
residual effects of finite lattice spacing and lattice size, we
have performed variations of μhas ¼ 0.8–1.0 and Ns ¼
24–40 and if not stated otherwise, we will present results
for our largest and finest lattices with Ns ¼ 40 and
μhas ¼ 0.8. Simulations are performed close to the chiral
limit m ≪ μh by fixing mas ¼ 5 × 10−4. We will express
all results in the units of the only dimensionful scale, the
helicity chemical μh. By appropriate choice of μh, this
allows for a translation of the physical timescales in
different physical settings. So, for instance, if in a cosmo-
logical setting μh ¼ 100 GeV and T ≪ μh then the time-
scale 1=μh ≈ 0.002 fm=c. Generally, changing from SU(2)
to SUðNÞ can be expected to change the order one
prefactors in the dynamics. Similarly, the dependence on
the gauge coupling g is only logarithmic, as is typically the
case for the dynamics of instabilities, so the only relevant
parameter affecting the timescales is the gauge matter
coupling g2Nf. While it would be interesting to investigate
the dependence on g2Nf further, the numerical cost of the
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simulations prohibits a full exploration of the parameter
space.
Chiral plasma instabilities.—We now proceed to analyze

the mechanism of chirality transfer from fermions to gauge
fields, and frequently contrast our findings for non-Abelian
plasmas with earlier studies in Abelian gauge theories [23].
Starting from a large net chirality imbalance in the fermion
sector, both Abelian and non-Abelian plasmas exhibit an
instability [32] resulting in an exponential growth or
suppression of right- or left-handed magnetic field modes
at early times. We illustrate this behavior in Fig. 1, where
we present the evolution of the spectrum of (chromo-)
magnetic field modes

nBðt;pÞ ¼
1

ν

XNc

a¼1

jBaðt;pÞj2
jpj ; ð4Þ

where Baðt;pÞ ¼ ð1= ffiffiffiffi
V

p Þ R d3xBaðx; tÞe−ip·x is the
Fourier transform of the (chromo-)magnetic field strength
Baðx; tÞ extracted from elementary lattice plaquettes as in
[23] and ν ¼ ðN2

c − 1Þ for SUðNcÞ and ν ¼ 1 for the U(1)
gauge group, respectively. [Since themagnetic field strength
Baðx; tÞ transforms nontrivially under non-Abelian gauge
transformations, we follow [55,66] and calculate the equal
time correlation function in Eq. (4) in Coulomb gauge to
minimize gauge artifacts.]
Starting from initial vacuum fluctuations, the chiral

plasma instability results in a rapidly growing population
of primarily unstable modes with jpj=μh ≲ 0.8. Small
momentum modes with jpj=μh ∼ 0.5 feature the largest
growth rates, resulting in a pronounced peak in the spectra.
Since at early times μht≲ 300 the occupation numbers are

small, g2nBðt;pÞ ≪ 1, such that the field strength remains
perturbative, the qualitative behavior of the Abelian U(1)
and non-Abelian SU(2) theories is essentially the same; the
only notable exception is the earlier onset of secondary insta-
bilities for the latter due to non-Abelian self-interactions
[67] around μht ∼ 200, which results in the population of
higher momentum modes jpj=μh ≳ 1 for the SU(2) plasma.
Striking differences between the evolution in the Abelian

and the non-Abelian plasma start to emerge for times μht≳
300 depicted in Fig. 2, where the occupation numbers
become nonperturbatively large, g2nB ∼ 1, and the dynam-
ics becomes highly nonlinear. Specifically, for the SU(2)
gauge theory, the non-Abelian self-interactions of the
gauge fields lead to saturation of the unstable growth once
the occupation numbers nB of unstable modes become on
the order of the inverse self-coupling ∼1=g2 [67,68]. While
at intermediate times μht ∼ 300 interactions between unsta-
ble modes produce distinct peaks in the spectrum at integer
multiples of the momentum of the primarily unstable mode
jpj=μh ∼ 0.5 successive interactions lead to rapid popula-
tion of the ultraviolet tails of the spectrum. Subsequently,
for μht≳ 360, the spectrum of the (chromo-)magnetic
SU(2) fields features a large infrared occupation nB ∼
1=g2 for jpj=μh ≲ 0.5 followed by a rapid decrease towards
the ultraviolet and approximately retains this shape over the
course of the entire evolution depicted in Fig. 2.
Conversely, in the case of the Abelian U(1) gauge theory,

the growth of unstable modes only saturates at a later
time leaving a pronounced peak in the spectrum around

10
-8

10
-4

10
0

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

SU(2)U(1)g
2
 nB(t,p)

|p|/�h

�ht=150
=210
=240
=270

FIG. 1. Evolution of the (chromo-) magnetic field spectra
g2nBðt;pÞ at early times μh:t < 300 in an SU(2) plasma
ðV ¼ 32=μ3h; μhas ¼ 0.8Þ shown in shades of blue and a U(1)
plasma ðV ¼ 48=μ3h; μhas ¼ 1Þ, shown in shades of orange. Chiral
plasma instabilities lead to the exponential growth of right-handed
magnetic field modes with momenta jpj=μh ∼ 0.5 with compa-
rable growth rates in SU(2) and U(1) plasmas.
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FIG. 2. Evolution of the (chromo-) magnetic field spectra
g2nBðt; jpjÞ at late times μh:t > 300 in an SU(2) plasma
ðV ¼ 32=μ3h; μhas ¼ 0.8Þ shown in shades of blue and a U(1)
plasma ðV ¼ 48=μ3h; μhas ¼ 1Þ), shown in shades of orange.
Because of non-Abelian self-interactions the unstable growth
saturates for the SU(2) plasma and the magnetic field occupation
numbers do not exceed the nonperturbative threshold
nBðt; jpjÞ ∼ 1=g2. Conversely, the Abelian U(1) plasma shows
an inverse cascade of magnetic helicity, resulting in the gen-
eration of strong large scale coherent magnetic fields [23].
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jpj=μh ∼ 0.5 for μht ∼ 360. Subsequently, the characteristic
peak moves towards lower and lower momenta, where in
sharp contrast to the SU(2) plasma, infrared occupation
numbers at late times μht≳ 360 do exceed the nonpertur-
bative threshold nB ≳ 1=g2. Strikingly, this behavior can be
associated with a self-similar inverse cascade of the
magnetic helicity, where the evolution of the spectrum
can (approximately) be described in terms of universal
scaling functions and scaling exponents [23]. Over the
course of this process, the net axial charge of the fermions
is transferred to the gauge field sector, and subsequently
transported to lower and lower momentum scales, even-
tually resulting in the generation of long range helical
magnetic fields [20,23,33].
Chirality transfer and fate of axial charge imbalance in

non-Abelian plasmas.—Since in contrast to the Abelian
U(1) plasma no long-range coherent fields are generated in
the case of a non-Abelian SU(2) plasma (see also [55,68]) it
becomes a crucial question to what extent and by which
mechanism axial charge is transferred from fermions to
gauge fields over the course of the instability dynamics. In
order to investigate the chirality transfer mechanism in non-
Abelian plasmas, it proves insightful to study the evolution
of the Chern-Simons number

ΔNCSðtÞ ¼
g2

4π2

Z
t

0

dt0
Z
x
Tr½Exðt0Þ · Bxðt0Þ�; ð5Þ

which represents the gauge field contribution to the
anomaly budget in Eq. (1), such that when integrated over
space the balance equation (1) for the axial charge takes the
form (Note that strictly speaking this balance equation is
only valid for Nf flavors of massless fermions. However,
since in practice the fermion massm=μh ≪ 1 is sufficiently
small, finite mass effects are negligible over the timescales
of our simulations and we have verified this explicitly by
tracking the corresponding contribution to the anomaly
budget.)

ΔJ05ðtÞ
Nf

¼ −2ΔNCSðtÞ: ð6Þ

Our results for the chirality transfer in the non-Abelian
SU(2) plasma are depicted in the top panel of Fig. 3, where
we present the time evolution of the axial charge densities
of fermions [J05=ðVNfÞ] and net helicity of gauge fields
½2ΔNCSðtÞ=V�. Different curves show the results for two
different lattice discretizations (Ns ¼ 40, μhas ¼ 0.8 and
N ¼ 32, μhas ¼ 1), indicating excellent convergence for
ΔNCS, whereas a sufficiently fine discretization is neces-
sary to properly resolve the evolution of the axial charge of
fermions J05 and satisfy the anomaly relation in the lattice
discretized theory (also see [63,69]). (We find that for
μhas ¼ 0.8 residual violations of the anomaly relation are
always below the ∼5% level even at late times μht≳ 500.)

Starting around μht ≈ 300 where the chiral plasma
instability saturates, one observes an initially rapid transfer
of chirality from fermions to gauge fields which sub-
sequently slows down and continues over the course of the
entire evolution in Fig. 3. While at first sight, the evolution
of J05=ðVNfÞ and 2ΔNCSðtÞ=V, normalized in units of μ3h in
the non-Abelian plasma appears to be similar to the
corresponding results in the Abelian U(1) case presented
in [23], there is a crucial difference with regards to the
nature of the configurations of the gauge fields that carry
the net axial charge. Specifically it turns out that—in sharp
contrast to Abelian gauge theories—the changes in Chern-
Simons number can be attributed to the change in topology
of the non-Abelian gauge field configurations emerging
from a correlated sequence of sphaleron transitions. In
order to isolate the topological contribution to ΔNCS, we
follow standard procedure and perform a gauge covariant
cooling of the SU(2) gauge field configurations [70], which
removes all excitations carrying a finite amount of energy
while leaving the topology of the configuration untouched
(see Appendix for details).
The bottom panel of Fig. 3 shows the change in

Chern-Simons number ΔNtop
CSðtÞ ¼ ΔNcooled

CS ðtþ Δt=2Þ −
ΔNcooled

CS ðt − Δt=2Þ due to topological transitions over a
small time interval Δt=as ¼ 7.5, and can essentially be
understood as the (discrete) time derivative of the solid
curves in the top panel (times VΔt). Because of its
topological nature, this quantity is integer valued and
represents the number of sphaleron transitions over the

 0

0.02

0.04

0.06

0.08

 0.1

2�NCS(t)/(V �h
3
)

J5
0
/(Nf V �h

3
 )Fermion:

Gauge:

solid lines: Topological contr.

�h.a =1.0
 =0.8

 0

 8

 16

 24

 0  100  200  300  400  500  600  700  800

�NCS
top

noitubirtnoc lacigolopoT)t(

�h.t

FIG. 3. (top) Evolution of the axial charge density of fermions
J05=ðNfμ

3
hVÞ and gauge fields 2ΔNCS=ðμ3hVÞ in the SU(2)

plasma. Different symbols show the results for two different
lattice spacings μhas ¼ 0.8 (green) and μhas ¼ 1 (red), respec-
tively. Changes in the Chern-Simons number ΔNCS are predomi-
nantly due to nonequilibrium sphaleron transitions, as shown by
the solid line, which contains the topological contribution
obtained by cooling the non-Abelian gauge field configurations.
(bottom) Change in the Chern-Simons number ΔNtop

CSðtÞ over a
short time interval Δt=as ¼ 7.5 due to topological transitions.
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time interval Δt. In contrast to thermal ensembles where
individual sphaleron transitions are observed to be uncor-
related and the Chern-Simons number ΔNCSðtÞ exhibits an
integer random walk behavior (see, e.g., [70]), individual
sphaleron transitions are highly correlated as all of them
tend to erase the net axial charge in the fermion sector.
By inspecting the solid lines in the top panel,

which represent the time integrated contribution to the
Chern-Simons number from topological transitionsP

t0<tΔN
top
CSðt0Þ, we find that topological sphaleron tran-

sitions essentially account for the entire change in the
Chern-Simons number. We therefore conclude from this
analysis that on sufficiently large timescales, the initial
axial charge imbalance is completely erased and absorbed
by the topology of the non-Abelian gauge fields.
Conclusions and outlook.—In this Letter we report on

the microscopic mechanism of the transfer of net chirality
from the matter sector to the gauge field sector in a chirally
imbalanced non-Abelian plasma. Based on classical-
statistical lattice simulations close to the continuum limit,
we can establish that the chirality transfer in non-Abelian
plasmas occurs predominantly via topological transitions.
Specifically, for the cold plasmas investigated in this study,
the process is initiated by the onset of chiral plasma
instabilities in the gauge field sector, which ultimately
triggers very frequent sphaleron transitions, leading to a
rapid transfer of chirality from the fermions to the gauge
sector. Since the axial charge is absorbed by the topology of
the gauge field, the gauge field occupancies do not exceed
the scale 1=g2, and no coherent long-range magnetic fields
are generated throughout the process. Strikingly, this is in
sharp contrast to Abelian gauge theories, where as reported
previously [23] a chirality imbalance in the fermion sector
ultimately leads to the generation of large scale helical
magnetic fields via an inverse turbulent cascade of the
magnetic helicity. Conversely, in non-Abelian gauge the-
ories the initial chirality imbalance is completely erased,
and as the topologically distinct gauge field configurations
are physically indistinguishable there is no physical effect
on the evolution of the plasma on large timescales.
Our study provides the first explicit microscopic dem-

onstration of the washout of an initial chiral charge
imbalance due to topological transitions in a cold SU(2)
plasma and has important implications for the study of
anomalous transport phenomena which are driven by a net
chirality imbalance in the fermion sector. Since the net
chirality imbalance is ultimately erased, effects like the
CME should be understood as transient nonequilibrium
phenomena that persist only over a limited timescale.
Since unlike in the present study the QGP created in

heavy-ion collisions is initially in a hot state with T ≫ μh,
thus frequent changes of the topology of the gauge fields
occur, even in the absence of an axial charge imbalance due
to thermal sphaleron transitions [38]. In the presence of an
axial charge imbalance in the fermion sector, sphaleron

transitions exhibit a bias, which just like in the present
study, tends to erase the axial charge imbalance in the
fermion sector, such that an initial charge imbalance decays
on a timescale τsph ¼ χAT=Γsph, where χA is the axial
charge susceptibility and Γsph is the sphaleron transition
rate [38]. Based on recent lattice estimates of Γsph ∼ 0.1T4

[71,72] and the axial charge susceptibility of the pure gauge
theory χA ¼ NcT2=3, this timescale is of the order of
∼10=T and we therefore anticipate that in heavy-ion
collisions local pockets of nonzero net chirality created
during the early nonequilibrium stages will slowly dis-
appear, while at the same time more local regions of net
chirality imbalance will be created due to finite temperature
sphaleron transitions.
Evidently, a more detailed microscopic study of these

competing phenomena in a QCD plasma will require the
extension of our study to hot plasma, which requires us to
disentangle the dynamics of the infrared modes jpj≲ g2T
that are primarily responsible for chirality transfer from that
of the (noisy) ultraviolet modes which reside at the scale
∼T [50,51]. Since the ultimate fate of a chiral charge
imbalance is quite different in Abelian and non-Abelian
gauge theories, it would also be interesting to study these
competing effects in theories like the standard model of
particle physics, where matter fields are simultaneously
coupled to both Abelian and non-Abelian gauge fields.
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Appendix: Topological contribution to Cherns-Simons
number.—We explain the extraction of the topological
contribution to the change in the Chern-Simons number
ΔNtop

CSðtÞ. We follow [34] and employ gradient flow coo-
ling of the three-dimensional gauge link configurations
Ux;iðt − Δt=2; τc ¼ 0Þ and Ux;iðtþ Δt=2; τc ¼ 0Þ up to a
cooling time τc ¼ 512a2s by performing 4096 cooling
steps with step size δτc=a2s ¼ 1=8. Since each cooling
step reduces the average field strength, this effectively
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results in three-dimensional pure gauge configurations at
the end of the cooling. Next, in order to compare the
topology of the cooled configurations at times t − Δ=2
and tþ Δt=2 with Δt=as ¼ 7.5, we connect the two
independently cooled gauge configurations Ux;iðt−Δt=2;
τc¼0Þ and Ux;iðtþ Δt=2; τc ¼ 0Þ via a geodesic inter-
polation on the SU(2) group manifold; i.e., we express

Ux;i

�
tþ Δt

2
; τc

�
¼ eiga

2
sEaxtaΔtUx;i

�
t −

Δt
2
; τc

�
ðA1Þ

and construct interpolating links

Ux;iðtþ θΔt; τcÞ ¼ eiga
2
sEaxtaðθþ1

2
ÞΔtUx;i

�
t −

Δt
2
; τc

�
ðA2Þ

for −1=2 < θ < 1=2 to calculate the difference in the
Chern-Simons number as

ΔNtop
CSðtÞ ¼ Ncooled

CS

�
t −

Δt
2

�
− Ncooled

CS

�
tþ Δt

2

�

¼ 1

8π2
Δt
as

Z
1=2

−1=2
dθ

X
x

ga2sEa
xga2SB

a
xðtþ θΔtÞjτc ;

ðA3Þ

where Ea
x denote the fields in Eq. (A1), Ba

xðtþ θΔtÞ is
the magnetic field strength associated with the inter-
polating gauge links in Eq. (A2). We employ an Oða2sÞ
improved discretization of E and B [34,73], and calcu-
late the integral over θ using Simpsons rule with Nθ¼16
integration points.
Since Eq. (A3) provides the topological contribution to

the change in Chern-Simons number ΔNCS over the time
interval ½t − Δt=2; tþ Δt=2� shown in the bottom panel of
Fig. 3, the topological contribution to the change in Chern-
Simons number over the time interval ½0; t�, shown in the
top panel of Fig. 3, can then be computed as the sum over
the configurations from each interval, i.e.,

ΔNCSðtÞjtopologicalcontribution ¼
X
t0<t

ΔNtop
CSðt0Þ: ðA4Þ
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