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Maldacena and Susskind conjectured that two entangled particles, which can be thought of as forming an
Einstein-Podolsky-Rosen (EPR) pair, are connected by a nontraversable wormhole or Einstein-Rosen (ER)
bridge. They named their conjecture ER ¼ EPR. We present a concrete quantitative model for ER ¼ EPR,
in which two spin-1=2 particles in a singlet state are connected by a nontraversable wormhole in
asymptotically flat general relativity. In our model, the fermions are described by the charged Dirac
equation minimally coupled to gravity. This system has static wormhole solutions. We use these solutions
as initial data and numerically evolve them forward in time. Our simulations show that black holes
form, which are connected by the wormhole and which render the wormhole nontraversable. We also
find that the wormhole throat shrinks, which places the particles in close proximity to one another and
suggests an explanation for how the wormhole facilitates the nonlocal communication required by
entanglement.
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Introduction.—Maldacena and Susskind conjectured that
entanglement, a cornerstone of quantum mechanics, has a
gravitational explanation [1]. They conjectured that two
entangled objects, be it two entangled black holes or two
entangled particles, which can be thought of as forming an
Einstein-Podolsky-Rosen (EPR) pair, are connected by a
wormhole or Einstein-Rosen (ER) bridge. They named
their conjecture ER ¼ EPR.
Entanglement requires some form of nonlocal commu-

nication, although this nonlocality cannot be used to send
messages faster than the speed of light. ER ¼ EPR posits
that the nonlocal communication occurs through the worm-
hole. The wormhole is therefore expected to be non-
traversable, otherwise messages could be sent through
the wormhole, and hence via entanglement, faster than
light, violating the properties of entanglement.
If ER ¼ EPR is true, it revolutionizes our understanding

of quantum mechanics and makes an extraordinary
connection between quantum mechanics and gravity.
Much of the work on ER ¼ EPR has been on black holes
in AdS, where AdS=CFT [2] can be used (for a sampling of
references on ER ¼ EPR, see Refs. [3–15]). Entanglement,
of course, is ubiquitous in quantummechanics, occurring in
a wide variety of systems. Arguably the simplest example
of entanglement is two spin-1=2 particles in a singlet state.
We present a concrete quantitative model for ER ¼ EPR

in asymptotically flat general relativity. In our model, two
charged spin-1=2 particles in a singlet state are described by
the charged Dirac equation minimally coupled to gravity.
This system has static wormhole solutions [16,17]. The
asymmetric solutions are smooth, regular everywhere, and

violate the null energy condition, which suggests that they
are traversable. We use the asymmetric solutions as initial
data and numerically evolve them forward in time. Our
dynamical solutions show that black holes form, which are
connected by the wormhole and which render the worm-
hole nontraversable. Our model is therefore a system in
which two spin-1=2 particles in a singlet state are con-
nected by a nontraversable wormhole in asymptotically flat
general relativity.
Maldacena and Susskind conjectured that a wormhole

connecting two entangled particles would be “very quan-
tum” [1]. Remarkably, the wormhole geometry in our
model has a completely classical description. The particles
are described at the level of quantum wave functions, where
we impose the one particle condition, consistent with the
Pauli exclusion principle [16,18–20]. Under this condition,
we show results for particles with a mass a few orders of
magnitude smaller than the Planck mass and a wormhole
throat radius a few orders of magnitude larger than the
Planck length.
Alice and Bob could each be sitting just outside a mouth

of the wormhole. Alice and Bob cannot send messages to
one another through the wormhole, as long as they stay
outside, since the wormhole is nontraversable. The worm-
hole is too small for human travelers, but, figuratively, it is
possible for Alice and Bob to jump into the wormhole from
opposite ends and meet each other inside. We confirm these
conclusions in our model by computing null geodesics.
Geodesics that travel through the wormhole become
trapped inside a black hole, consistent with Alice and
Bob being unable to send messages to one another while
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staying outside. There exist geodesics that travel into the
wormhole from opposite sides and cross, analogous to
Alice and Bob meeting each other inside.
Our simulations show that a portion of the wormhole

throat shrinks. This shrinking places the two particles,
which are on opposite ends of the wormhole, right next to
each other. It is tempting to think that this close proximity
of the particles is how the wormhole facilitates the nonlocal
communication required by entanglement.
Model.—We consider two particles, both with mass μ

and charge e, in a singlet state

Ψ ¼ ψþ ∧ ψ− ¼ ψþ ⊗ ψ− − ψ− ⊗ ψþ; ð1Þ

where ψ� are single-particle Dirac spinors. The ansatz we
use for ψ� will be given shortly and leads to the following
Lagrangian for our matter sector [21],

L ¼
X

x¼�
Lx
ψ þ LA; ð2Þ

where

Lx
ψ ¼ 1

2
½ψ̄xγ

μDμψx − ðDμψ̄xÞγμψx� − μψ̄xψx;

LA ¼ −
1

4
FμνFμν;

Fμν ¼ ∂μAν − ∂νAμ; ð3Þ

with Aμ the Uð1Þ gauge field. As shown in [16,17], static
wormhole solutions cannot be found without the presence
of the gauge field. We minimally couple the Lagrangian in
Eq. (2) to gravity via L →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

p
L, where gμν is the

metric. We ignore second quantization effects and treat
both the gauge field and gravity classically. This has
obvious drawbacks, but it also has some important advan-
tages. In particular, it allows us to straightforwardly take
into account the back reaction of gravity on spinors.
We assume a standard form for the spherically sym-

metric metric,

ds2 ¼ −α2dt2 þ Adr2 þ Cðdθ2 þ sin2 θdϕ2Þ; ð4Þ

where αðt; rÞ, Aðt; rÞ, and Cðt; rÞ are functions of t and r
and, for a wormhole geometry, −∞ < r < ∞. The areal
radius is given by R ¼ ffiffiffiffi

C
p

and we take Rðt; 0Þ, which
gives the minimum value of R on a time slice, to be the
wormhole throat radius.
The Dirac spinor ansatz we use for ψ� is

ψ� ¼ e�iϕ=2

2
ffiffiffi
π

p
A1=4ðt; rÞC1=2ðt; rÞ

0
BBB@

Fðt; rÞy�ðθÞ
�iFðt; rÞy∓ðθÞ
Gðt; rÞy�ðθÞ

∓ iGðt; rÞy∓ðθÞ

1
CCCA; ð5Þ

where yþ ≡ sinðθ=2Þ and y− ≡ cosðθ=2Þ. The derivation of
this ansatz is lengthy and we do not present it here. We
present it in Appendix B of [22], where we list the precise
set of assumptions we make, including our specific choice
of spin-weighted spherical harmonics. Fermions are para-
metrized in terms of the complex functions

Fðt; rÞ ¼ F1ðt; rÞ þ iF2ðt; rÞ;
Gðt; rÞ ¼ G1ðt; rÞ þ iG2ðt; rÞ; ð6Þ

where F1;2 and G1;2 are real.
We simulate this system by solving the equations of

motion for the Lagrangian in (2) and the Einstein field
equations for the metric in (4). The field equations depend
on the energy-momentum tensor, which is computed from
the Lagrangian in (2). This constitutes a lengthy set of
equations which are given in [22], both for the general
spherically symmetric metric and for the specific form
in (4).
We use the following dimensionless variables,

r̄≡ r
R0

; t̄≡ t
R0

; ē≡ R0ffiffiffiffi
G

p e; μ̄≡R0μ; R̄≡ R
R0

;

ð7Þ

along with F̄1;2 ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
G=R0

p
F1;2 and Ḡ1;2 ≡

ffiffiffiffiffiffiffiffiffiffiffiffi
G=R0

p
G1;2,

where R0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð0; 0Þp

is the initial wormhole throat radius,
G ¼ l2

P is the gravitational constant, and lP is the Planck
length.
As mentioned, we describe fermions using quantum

wave functions [16,18–20]. Specifically, we require there to
be one fermion of each type, N� ¼ 1, consistent with the
Pauli exclusion principle. Our scaling in (7) leads to
N̄� ¼ ðlP=R0Þ2N�, where

N̄� ¼
Z

∞

−∞
dr̄ N̄ ; N̄ ¼ F̄2

1 þ F̄2
2 þ Ḡ2

1 þ Ḡ2
2 ð8Þ

is straightforward to compute from a numerical solution.
Setting N� ¼ 1 gives

R0 ¼
lPffiffiffiffiffiffiffi
N̄�

p : ð9Þ

This equation allows us to compute the physical radius of
the initial wormhole throat, R0, by computing N̄�.
We use asymptotically flat static wormhole solutions

as initial data for our simulations. To solve for static
solutions, we take the static limit of our equations. We
then make the coordinate choice AðrÞ ¼ 1, so that our static
metric is

ds2 ¼ −α2ðrÞdt2 þ dr2 þ CðrÞðdθ2 þ sin2 θdϕ2Þ: ð10Þ
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We present the general set of static equations as well as the
set for our particular coordinate choice in [22]. As
expected, the null energy condition can be shown to be
violated for these static solutions [16,22]. Our static
solutions are parameterized in terms of the three constants
μ̄, ē, and f0 ≡ F̄1ð0; 0Þ.
The code we use to simulate our model is based on the

code used in [23]. Additional aspects of our model and
code, including boundary conditions, our choice for time
slicing, and numerical methods are given in [22,23].
Simulation.—We show results for a typical simulation in

Fig. 1. Figure 1(a) displays a static wormhole solution
defined by μ̄ ¼ 0.2, ē ¼ 0.1, and f0 ¼ 0.001. This solution
has R0 ¼ 375.3lP for the wormhole throat radius and
μ ¼ 0.00053mP for the particle mass, where mP is the
Planck mass.
The black curve in Fig. 1 plots the (scaled) number

density, N̄ . The number density can be interpreted as a
particle distribution which means that we can interpret the
two peaks in the black curve as representing two quasi-
localized particles. As time increases, the two particles
separate with respect to their radial coordinates.
The blue curve in Fig. 1 plots the areal radius, R̄. The

areal radius gives a simple illustration of the wormhole on
each time slice. The horizontal portion of R̄ depicts the
length of the wormhole and the value of R̄ at r̄ ¼ 0 gives
the wormhole throat radius. Caution should be taken with
these interpretations, since they depend on the choice for
time slicing. We can see that the length of the wormhole
increases, with respect to its radial coordinates, while the
radius of the throat stays constant. Our scaling convention
sets R̄ð0; 0Þ ¼ 1. If a null geodesic crosses r̄ ¼ 0, our
convention will be to say that it has traveled through the
wormhole.
The green curve in Fig. 1 plots the metric field A. Here

we find particularly interesting behavior. A drops to zero
along the wormhole and forms spikes at the mouths of the
wormhole. Since A gives a measure of the physical distance
between radial coordinates, this indicates that the physical
length of a portion of the wormhole shrinks. In fact, it
appears that the physical distance between the two particles

is the distance that is shrinking. It is tempting to think that
this shrinking distance, which puts the two particles in
close proximity, is how the wormhole facilitates the non-
local communication required by entanglement.
The wormhole is nontraversable, which requires the

physical length of the wormhole to also increase [1]. We
can see this occurring with the spikes forming in A. Such
spikes are known as grid or slice stretching [24] and they
are a standard indicator for the formation of a black hole.
The spikes in A contribute to insurmountable physical
distances, so that anything that travels through the worm-
hole is trapped inside a black hole and cannot escape.
Although the spikes in A are a standard indicator for the

presence of a black hole, we can make a conclusive
determination for the presence or absence of a black hole.
In a numerical simulation, such a determination can be
obtained by computing null geodesics backwards in time
from the stored results of the simulation [24]. If a black hole
is present, these null geodesics will map out the event
horizon. We show such null geodesics in Fig. 2(a) as the
blue lines, which clearly indicate the presence of black
holes with event horizons on both sides of the wormhole.
We also include in Fig. 2(a) the location of the peaks of the
number density in Fig. 1 as the dashed purple curves, which
can be thought of as plotting the rough position of the
particles.
In Figs. 2(b)–2(d), the dashed purple curves are again the

location of the peaks of the number density in Fig. 1 and the
gray lines are null geodesics we have computed in this
geometry that travel through the wormhole. In Fig. 2(b), we
can see null geodesics originating on both sides of the
wormhole and traveling inward. The geodesics are seen to
travel through the wormhole and cross each other. This
result shows that Alice and Bob can (figuratively) jump into
their respective mouths of the wormhole and meet each
other inside. Figure 2(c) is the same as Fig. 2(b), but plotted
over a larger range. We can see that the null geodesics are
unable to travel arbitrarily far because they are trapped
inside black holes. This result illustrates how Alice and Bob
cannot send messages to one another through the wormhole
if they stay outside.

FIG. 1. This figure displays a few quantities for a typical simulation. The black curve plots the number density N̄ . The blue curve plots
the areal radius R̄. The green curve plots the metric field A.
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The (scaled) physical distance from the origin to radial
coordinate r̄ on a time slice is given by

L̄ðt̄; r̄Þ ¼
Z

r̄

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðt̄; xÞ

p
: ð11Þ

Figure 2(d) is the same as Fig. 2(b), but displays the curves
in terms of their physical distance from the origin, L̄. We
can see how the shrinking length of the wormhole affects
the paths of the particles and geodesics. Computing the
physical distance L̄ for the blue null geodesics in Fig. 2(a)
is technically challenging and for this reason we do not
include them in Fig. 2(d).
Discussion.—Maldacena and Susskind’s ER ¼ EPR

conjecture offers a radical rethinking of entanglement in
quantum mechanics. In ER ¼ EPR, entangled systems are
connected by a wormhole and the nonlocal communication
required by entanglement occurs through the wormhole.
This conjecture, as presented in [1], was motivated in part
by the fact that such a system offers explanations for
various issues and paradoxes in quantum mechanics. In this
Letter, we presented a concrete model for ER ¼ EPR, in
which two spin-1=2 particles in a singlet state are con-
nected by a nontraversable wormhole in asymptotically flat
general relativity. In particular, the wormhole solutions
followed directly from the Einstein field equations.
In our model, the two particles sit at opposite ends of the

wormhole. As the system evolves in time, the physical
length of a portion of the wormhole throat shrinks such that
the two particles are in close proximity to one other. It is
tempting to think that this is how the wormhole facilitates
the nonlocal communication required by entanglement.
We computed null geodesics and showed that geodesics

that travel across the wormhole are trapped inside a black
hole. This is analogous to Alice and Bob being unable to
send messages to one another through the wormhole as
long as they stay outside. On the other hand, we found null
geodesics that travel through the wormhole from opposite
sides and which cross one another. This is analogous to

Alice and Bob jumping into the wormhole from opposite
sides and meeting each other inside.
Our model for ER ¼ EPR has obvious inadequacies. In

particular, we treat gravity classically and ignore second
quantization effects. It would be both interesting and
valuable to know the effect quantization has on these
results [25]. Unfortunately, quantization with a time de-
pendent metric used in a numerical simulation is challeng-
ing. At the same time, it is surprising that there exists a
classical description of a nontraversable wormhole con-
necting two particles in a singlet state. We have also not
studied the passage of matter through the wormhole. Null
geodesics are relatively simple to compute, which is the
reason we considered them, but they do not take into
account the effect a message sent through the wormhole
would have on the wormhole itself.
An interesting goal for this model is to give additional

insight into how the wormhole allows for the nonlocal
communication required by entanglement. Presumably this
requires a continuous and smooth mechanism for meas-
urement and wave function collapse that can be imple-
mented in a numerical evolution. Such a mechanism is
beyond the scope of this Letter. Nonetheless, we expect our
model can act as a starting point for studying such
phenomena.
We end this Letter with a comment about determining if

a wormhole is traversable. Our results show that violation
of the null energy condition is insufficient for such a
determination. Black holes may form sufficiently quickly
such that null geodesics are unable to travel through the
wormhole without being caught inside a black hole, as they
do in our system. A time dependent analysis may be
necessary to fully determine if a wormhole is traversable.
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