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Entanglement is a key resource for quantum information technologies ranging from quantum sensing to
quantum computing. Conventionally, the entanglement between two coupled qubits is established at the
timescale of the inverse of the coupling strength. In this Letter, we study two weakly coupled non-
Hermitian qubits and observe entanglement generation at a significantly shorter timescale by proximity to a
higher-order exceptional point. We establish a non-Hermitian perturbation theory based on constructing a
biorthogonal complete basis and further identify the optimal condition to obtain the maximally entangled
state. Our study of speeding up entanglement generation in non-Hermitian quantum systems opens new
avenues for harnessing coherent nonunitary dissipation for quantum technologies.
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Introduction.—Since the discovery of their real spectra,
parity-time (PT ) symmetric Hamiltonians [1,2] a special
class of non-Hermitian Hamiltonians have been intensively
studied in the past two decades [3–5]. One intriguing
feature of such PT -symmetric non-Hermitian systems is
the nontrivial degeneracy known as the exceptional point
(EP) where both eigenenergies and eigenstates coalesce.
This unique feature has been experimentally demonstrated
in many classical systems [6–8] with applications such as
wave transport control [9–12], laser emission management
[13–15], and enhanced sensing [16–18]. Recently, various
approaches such as dissipation engineering [19] and
Hamiltonian dilation [20] have been utilized to study
non-Hermitian physics in quantum systems [21,22]. EPs
have been observed in various quantum platforms such as
the nitrogen-vacancy color center [20], trapped ions
[23,24], ultracold atoms [25], and superconducting circuits
[19], and offer new possibilities in quantum applications
such as sensing [26] and state control [27,28]. Although the
majority of detailed studies focus on single spin or spin
ensembles described in Hilbert space with dimension
N ¼ 2, there are several pioneering works studying the
coherence and entanglement in a larger Hilbert space
[29,30]. A very recent work demonstrates entanglement
between one effective non-Hermitian qubit and one
Hermitian qubit that achieves the maximum allowed value
at the EP [31].
In this Letter, we study the entanglement generation

between two driven non-Hermitian qubits that are weakly
coupled. In the absence of coupling, the two-qubit system
exhibits a fourth-order EP. The weak coupling is a
perturbation, lifting the degeneracy and altering the two-
qubit dynamics. We observe a characteristic pattern of
phase accumulation among the basis states, which lead to a

maximally entangled state at a timescale much shorter than
the inverse of the coupling strength. We further observe that
by approaching the EP, a weaker coupling strength is
needed to establish the maximally entangled state, at the
cost of longer buildup time. In addition, we develop a non-
Hermitian perturbation theory and use this to obtain
analytical solutions of the concurrence evolution, which
agrees well with the numerical simulations.
The model.—The system under consideration consists of

two coupled driven non-Hermitian qubits, where the lower
energy level has energy dissipation out of the qubit
manifold, fjei; jfig, as shown in Fig. 1(a). Such a non-
Hermitian qubit has been realized in a transmon super-
conducting circuit [19]. The Hamiltonian (setting ℏ ¼ 1)
for a single non-Hermitian qubit is given by

Hj¼1;2 ¼
�
Δj −

iγj
2

�
σ−j σ

þ
j þ Ωjσ

x
j ; ð1Þ

where Δj represents frequency detuning of the applied
drive from the qubit transition frequency, γj denotes the
energy decay rate of jeij, andΩj is the drive amplitude. The
Pauli operators are defined in terms of energy levels jeij
and jfij as σþj ¼ jfijhej, σ−j ¼ jeijhfj, and σxj ¼ jfijhej þ
jeijhfj (j ¼ 1, 2). The eigenvalues ofHjðΔj ¼ 0Þ are given
by λj;� ¼ ð−iγj � ηjÞ=4, with ηj ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16Ω2

j − γ2j

q
, and there

exists a second-order EP when Ωj ¼ γj=4.
The coupled non-Hermitian qubits are then described by

the Hamiltonian

H ¼
X
j¼1;2

Hj þ Jðσþ1 σ−2 þ σ−1 σ
þ
2 Þ; ð2Þ
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where J denotes the effective coupling strength between the
two qubits. When the drives are resonant with both
qubits, i.e., Δj ¼ 0, Eq. (2) reduces to a so-called passive
PT -symmetric Hamiltonian [32] that can be further
written as HðΔj ¼ 0Þ ¼ HPT − ðiγ1=4Þ − ðiγ2=4Þ, where
the Hamiltonian HPT respects PT -symmetry, i.e.,
PT HPT ðPT Þ−1 ¼ HPT with parity operator P ¼ σx1σ

x
2

and T the time reversal operator (equivalent to complex
conjugation).
We restrict our attention to the resonant case and assume

the Hamiltonians for the two qubits are identical, i.e.,
Δ1 ¼ Δ2 ¼ 0, γ1 ¼ γ2 ¼ γ, and Ω1 ¼ Ω2 ¼ Ω. In the
absence of qubit coupling (i.e., J ¼ 0), each qubit in its
Hilbert space with dimension N ¼ 2 exhibits a second-
order EP, while the two-qubit system described by the
Hamiltonian in Eq. (2) with a Hilbert space with dimension
N ¼ 4 exhibits a fourth-order EP at Ω ¼ ΩEP ≡ ðγ=4Þ [see
Figs. 1(b) and 1(c) and Fig. S1(a) in [33] ]. The weak
coupling J between the two qubits acts as a perturbation,
lifting the degeneracy and lowering the order of the EP

[e.g., to a second-order EP at a shifted position in Figs. 1(b)
and 1(c)] [33].
The two-qubit evolution can be solved from the

Hamiltonian in Eq. (2), and the normalized quantum state
has a general form jψ̃i ¼ ðjψi=jjψijÞ ¼ αjffi þ βjfeiþ
ζjefi þ δjeei, where the state jψi is normalized conven-
tionally. We use the concurrence C [41] to quantify the
entanglement between the two qubits, which is given by
C ¼ 2jαδ − βζj. Conventionally, two qubits with dipolar
coupling as in Eq. (2) and initialized in the state jfei (or
jefi) will generate Bell states on a timescale of 1=J. Here,
we find that by ensuring proximity to the fourth-order EP,
weakly coupled non-Hermitian qubits (J ≪ γ) with initial
state jffi can have entanglement generation on a timescale
much shorter than 1=J. Figure 1(d) shows an example of
this EP-enhanced entanglement generation, together with a
comparison to the Hermitian case.
Non-Hermitian perturbation theory.—We construct a

biorthogonal complete basis from the states in both the
Hilbert and corresponding dual spaces of the two qubits
and extend the standard perturbation theory of Hermitian
quantum mechanics to develop a time-independent pertur-
bation theory for non-Hermitian systems [33]. In addition,
we also generalize standard degenerate perturbation theory
to deal with the existence of non-Hermitian degenera-
cies [33].
With perturbative eigenstates jΨji and eigenvalues Λj

for Ω > ΩEP [33], we can obtain the state evolution
jψ̃ðtÞi ¼ ðjψðtÞi=jjψðtÞijÞ, where jψðtÞi ¼ P

j¼þþ;−−;1;2

hΨ̄jjψð0Þi · e−itΛj jΨji, with hΨ̄þþj; hΨ̄−−j; hΨ̄1j; hΨ̄2j the
corresponding left eigenstates in the biorthogonal basis.
The use of a biorthogonal basis is crucial here since the
Hamiltonian Eq. (2) is not in general PT -symmetric, so the
usual CPT norm for PT -symmetric Hamiltonians [42,43]
does not apply. For the initial state jψð0Þi ¼ jffi, the time
evolution of concurrence is then given by [33]

C ¼
���� 16η

2Ω2ðeitχ2 − 1Þ
B

����; ð3Þ

where B¼ 16Ω2ðγ2 þ 32Ω2Þþ γfγðγ2 − η2ÞcosðtηÞ−
2γ2η sinðtηÞ− 64Ω2 cosðtχ2=2Þ½γ cos ðtη=2Þ− η sin ðtη=2Þ�g
and χ2 ¼ J½ðη2 þ 3γ2Þ=η2�. The analytical result from
Eq. (3) agrees well with the numerical simulation results
in Fig. 1(d) (except for the region close to t ¼ 0 [33]). In the
following sections we discuss the mechanism of entangle-
ment generation in detail and show how the entanglement
generation is enhanced by approaching the fourth-order EP.
Entanglement generation near the EP.—We first exam-

ine the complex amplitudes of jψ̃ðtÞi at each basis state in
the absence of the qubit coupling, i.e., J ¼ 0 [Figs. 2(a) and
2(b)]. The qubit drive is chosen as Ω ¼ 1.6 rad=μs, which
places the system in the regime of PT -symmetry preserv-
ing phase. The two qubits evolve independently; there-
fore the two-qubit state evolves successively through states

FIG. 1. (a) Schematic of two coupled non-Hermitian qubits
with coupling J. The lower level of each qubit has energy
dissipation γj¼1;2 and the two levels of each qubit are coupled by
a drive Ωj¼1;2. (b),(c) Real (b) and imaginary (c) parts of the
eigenvalues for J ¼ 0 (dashed curves with empty circles) and for
J ¼ 0.001 rad=μs (solid curves with full circles). The two qubits
are assumed to have the same drive amplitude Ω and the same
decay rates γ1;2 ¼ 6 μs−1. The circles are visual aids to distin-
guish the solid and dashed lines. (d) Concurrence evolution of the
coupled non-Hermitian qubits near the fourth-order EP (solid
blue curve). The yellow dashed curve shows the perturba-
tive analytical result calculated with Eq. (3) [33]. The initial
state is jffi and other parameters used are γ1;2 ¼ 6 μs−1,
Ω1;2 ¼ 1.6 rad=μs, Δ1;2 ¼ 0, and J ¼ 0.001 rad=μs. The dashed
green curve shows the concurrence evolution for two coupled
Hermitian qubits with the same coupling J, also with the initial
state jffi.
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jffi, ðjfi − ijeiÞ ⊗ ðjfi − ijeiÞ, jeei, and ðjfi þ ijeiÞ ⊗
ðjfi þ ijeiÞ, returning to jffi after one period (i.e.,
t ¼ 4π=η ∼ 5.64 μs). An interesting feature is the distorted
Rabi-like oscillation of the population of jeei and jffi
states, shown as the blue and red curves in Fig. 2(a).
Inspection of the behavior shortly before 5.64 μs reveals
that at the time t ¼ T�

0 ¼ 5.325 μs all basis states have equal
amplitude. Figure 2(b) shows that the phases of the jefi and
jfei states experience sudden jumps of π, corresponding
to the state of one of the two qubits passing through a
pole of the corresponding qubit Bloch sphere. When all
basis amplitudes are equal, the concurrence, C¼2jαδ−βζj,
can be shown to be equal to j sinðδφ=2Þj with δφ≡
ArgðαÞ þ ArgðδÞ − ArgðβÞ − ArgðζÞ. Evaluating the phase
δφ atT�

0 it is evident that concurrence C is identically equal to
zero. This is consistentwith evaluation of Eq. (3)with J ¼ 0.
Figures 2(c) and 2(d) now summarize the state evolution

with a finite but weak coupling strength (J ¼ 10−3 rad=μs).
The populations of the basis states in Fig. 2(c) exhibit a
similar distorted oscillatory behavior, but with reduced
visibility relative to that for J ¼ 0. Here, the two-qubit state
does not return to the product states jffi and jeei because
of the qubit coupling. Also, while at the time T�

0 we still
observe that jαj ∼ jβj ∼ jζj ∼ jδj, Fig. 2(d) shows that the

phase evolution of each basis state is now significantly
altered near T�

0. In particular, the π phase jumps of ArgðβÞ
and ArgðζÞ that are seen for J ¼ 0 in Fig. 2(b), now
become Gaussian-shape profiles with significantly reduced
phase contrast. Physically speaking, we can intuitively
understand this effect as a result of the weak qubit-qubit
coupling J pulling the qubit dynamics away from the
poles of the Bloch sphere, so that no discrete π phase
jumps occur.
The time evolution of the relative phases with respect to

that of basis state jffi, i.e., φj;α ≡ ArgðjÞ − ArgðαÞ (j ¼ β,
ζ, δ), is shown for coupling strength J ¼ 10−3 rad=μs in
Fig. 2(e), together with the phase δφ (solid blue line). At T�

0

where the populations at each basis state are still approx-
imately equal, the relative phase φδ;α is still equal to π, as in
Fig. 2(b) for J ¼ 0, but the values of φβ;α and φζ;α are now
no longer equal to π=2. In fact, the state is very close to
jψ̃i ¼ eiðπ=4Þðjffi þ jfei þ jefi þ eþiπjeeiÞ=2, which has
δφ ¼ π and C ¼ 1.
Figure 2(f) now shows the change in phase of ArgðβÞ

relative to its value at J ¼ 0, i.e., the differential phase
π=2 − ArgðβÞ, as a function of the coupling strength J. The
analytical results [Eq. (S77) in [33] ] agree well with the full
numerical results. At a given drive amplitudeΩ, there exists

FIG. 2. (a)–(d) Time evolution of the modulus jjj and the angle ArgðjÞ (j ¼ α, β, ζ, δ) for each of the four complex amplitudes of the
two-qubit state jψ̃i ¼ αjffi þ βjfei þ ζjefi þ δjeei for J ¼ 0 (a),(b) and J ¼ 10−3 rad=μs (c),(d). (e) Time evolution of the phase
relative to basis state jffi, i.e., φj;α ≡ ArgðjÞ − ArgðαÞ for (j ¼ β, ζ, δ) and of δφ≡ ArgðαÞ þ ArgðδÞ − ArgðβÞ − ArgðζÞ for
J ¼ 10−3 rad=μs. The value δφ ¼ π at t ¼ T�

0 ¼ 5.325 μs signifies maximal entanglement. (f) Dependence on J of ArgðβÞ relative to its
value for J ¼ 0 [panel (b)], i.e., the differential phase π=2 − ArgðβÞ, at time t ¼ 5.325 μs. (g) Examples of concurrence for J ¼ 10−3,
3 × 10−3, 5 × 10−3 rad=μs. Maximal concurrence generation (C ¼ 1) is observed at t ¼ 5.325 μs for J ¼ 10−3 rad=μs, with the values
from Eq. (3) (orange dotted curve) in good agreement with the full numerical calculation (blue solid curve). (h) Trajectories of reduced
single qubit dynamics on the reduced qubit Bloch sphere for J ¼ 0 (blue), 5 × 10−4 (red), 10−3 (green), 5 × 10−3 rad=μs (orange) with
evolution time between 0 and t ¼ 4π=η ¼ 5.64 μs (i.e., a single period for decoupled qubits with J ¼ 0). Arrows point to the reduced
qubit states at time t ¼ 5.325 μs, with the blue arrow pointing to j þ yi, the green arrow pointing to the origin (indicating a maximally
entangled state), and the red and orange arrows aligning with the �y axis. Unless otherwise specified, all plots are made for
jψð0Þi ¼ jffi, Ω ¼ 1.6 rad=μs, and γ ¼ 6 μs−1.
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an optimal coupling strength J to satisfy the condition δφ ¼
π that realizes the maximally entangled state on a timescale
1=η ð≪ 1=JÞ. This change in differential phase of jfei and
jefi can be understood as a consequence of the degeneracy
lifting by a finite J value (with J ≪ Ω). Figure 2(g) shows
that further increase of J does not benefit the entanglement
generation. The analytical expression from Eq. (3) for J ¼
10−3 rad=μs shows good agreement with the numerical
simulations.
To get more physical intuition into this enhancement of

entanglement, we also calculate the reduced single qubit
dynamics, i.e., after tracing out one of the two qubits.
Figure 2(h) shows the trajectories of the reduced qubit
dynamics on the corresponding Bloch sphere during one
period 4π=η ¼ 5.64 μs. For J ¼ 0, the reduced qubit
evolves on the surface of the Bloch sphere, while for
nonzero J, the reduced qubit dynamics lie inside the Bloch
sphere, suggesting possible entanglement generation. Only
at a specific value of J will the qubit trajectory pass through
the origin where the reduced qubit is in a fully mixed state,
implying that two qubits are in a maximally entangled state.
It is then evident that for a given value of Ω, maximum
entanglement will occur at a specific time T� and for a
specific coupling strength J�.
EP enhanced entanglement generation.—Next, we study

the differential phase of the jefi and jfei states relative to
their J ¼ 0 values, i.e., π=2 − ArgðβÞ at T�, for different
values of the drive amplitudeΩ [Fig. 3(a)]. On approaching
the EP, the slope of the phase change gets sharper, and
therefore a smaller coupling strength is needed to achieve
the maximally entangled state. The increasingly sharp
change in differential phase on approaching the EP
[Fig. 3(a)] suggests that the entanglement generation near
the EP can provide a sensitive measure of the magnitude of
the qubit coupling J [44]. The density plot of concurrence
versus Ω and t in Fig. 3(b) shows how the optimal
parameters fΩ�; T�g ¼ f1.6 rad=μs; 5.325 μsg can be
identified for a given qubit coupling J. For this example
with J ¼ 10−3 rad=μs, the maximal concurrence C ¼ 1

corresponds to the peak of the blue curve in Fig. 2(g).
Figure 3(c) shows the entanglement enhancement for non-
Hermitian qubits relative to their corresponding Hermitian
qubits. It is evident that non-Hermitian qubits can be
entangled significantly faster than Hermitian qubits, with
the relative speedup increasing significantly as the pertur-
bation J is decreased and the fourth-order EP at J ¼ 0 is
approached. The mixed power-law dependence, i.e., a
combination of inverse cube root and fourth root, reflects
the changing order of the EP as J decreases.
Discussion.—Throughout this Letter, we have focused

on the case of two non-Hermitian qubits with identical
Hamiltonian parameters, which may be challenging to
realize in experiments. However, our mechanism is robust

with respect to the parameter values and still holds when
the qubit parameters differ within a small range. In Fig. 4,
we compare the concurrence evolution for fixed γ1 ¼
6 μs−1 and variable γ2 ¼ 5; 7 μs−1. The concurrence
degrades significantly if both Ω1 and Ω2 are maintained
at 1.6 rad=μs, as chosen in Fig. 2. However, if Ω2 is
adjusted to ensure the two qubits have the same period, i.e.,
16Ω2

1 − γ21 ¼ 16Ω2
2 − γ22, an entangled state with concur-

rence C ≈ 1 is regained. We further note that our method
still provides an advantage for relatively large J values. For
example, for J ¼ 0.1 rad=μs, the maximally entangled state
can be obtained in less than 2 μs, while it takes about 8 μs
for Hermitian qubits to reach this state (see Fig. S4 in [33]).

FIG. 3. (a) Phase of β relative to the corresponding value for
J ¼ 0, i.e., π=2 − ArgðβÞ, at different Ω values. The increased
slope on approaching the EP at ΩEP ¼ 1.5 rad=μs indicates the
enhancement due to proximity to the EP. (b) Density plot of
concurrence as a function of drive amplitude Ω and time t,
with J fixed at 10−3 rad=μs. Identification of the maximal
concurrence C ¼ 1 yields the optimal parameters ðΩ�; T�Þ ¼
ð1.6 rad=μs; 5.325 μsÞ. (c) Entanglement enhancement factor
defined as the ratio of the first time to achieve maximal
entanglement for the Hermitian case (∼1=J) to the corresponding
time T� for the non-Hermitian case (see also Fig. S2 in [33]).
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More detailed discussion on the effects of a nonresonant
qubit drive, of decoherence, and of the entanglement
generation in the Hermitian limit is given in [33].
Conclusions.—We have studied the entanglement

between two weakly coupled non-Hermitian qubits that
can be generated at a speed much faster than the inverse of
the interqubit interaction, by forcing proximity to a higher-
order exceptional point. This demonstrates a fundamentally
new and advantageous entanglement generation method,
which offers considerable potential for applications in
quantum information science and technology, including
the sensing of weak coupling between qubits and common
two-level system impurities or defects.
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