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Growing a flat lamina such as a leaf is almost impossible without some feedback to stabilize long
wavelength modes that are easy to trigger since they are energetically cheap. Here we combine the physics
of thin elastic plates with feedback control theory to explore how a leaf can remain flat while growing. We
investigate both in-plane (metric) and out-of-plane (curvature) growth variation and account for both local
and nonlocal feedback laws. We show that a linearized feedback theory that accounts for both spatially
nonlocal and temporally delayed effects suffices to suppress long wavelength fluctuations effectively and
explains recently observed statistical features of growth in tobacco leaves. Our work provides a framework
for understanding the regulation of the shape of leaves and other leaflike laminar objects.
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Shape is an emergent property of matter enabling
function at every level in biology, from the molecular to
the organismal. To ensure the robust generation of shape [1]
in the (unavoidable) presence of noise, feedback mecha-
nisms must couple sensing and growth [2–5]. This can be
seen in the garden in plant leaves that are often flat [6,7],
a configuration that is hard to achieve in thin growing
laminae without feedback as they are susceptible to bend-
ing. In fact, recent studies in N. tabacum (tobacco) leaves
show spatially correlated fluctuations of areal growth
rate [8], consistent with an important role for feedback
in maintaining this shape [9–13].
Motivated by these observations, here we propose a

framework within which to study the control of thin
surfaces, modeled as thin elastic plates that grow and
change over time. We focus on small deviations from the
flat state and study in-plane and across thickness growth
(Fig. 1) and show that strain [14] and curvature [15,16]
sensing together stabilize the flat state.
Mechanics of a growing lamina.—Motivated by the

adaxial-abaxial polarity in leaves [17], we consider a thin
plate with constant thickness h, where Young’s modulus is
allowed to vary across the thickness (with average value E),
and derive the corresponding reduced 2D elastic energy
(see the Supplemental Material [18] Sec. S.1A and
Refs. [19–21]). We assume that the plate (see the
Supplemental Material [18], Sec. S.5 for results regarding
shallow shells) is expanding exponentially with growth rate
g, and its neutral surface (which may not coincide with the
midsurface) is parametrized with Lagrangian coordinates
taken to be the Cartesian coordinates r ¼ ðx1; x2Þ at time
t ¼ 0. The deviation from the flat state is described by the
deflectionWðr; tÞ of the neutral surface above the reference
ðx1; x2Þ plane (Fig. 1). For an isotropic material, there are

two elastic constants, E, ν in terms of which we can write a
stretching stiffness S ¼ Eh that links the strain measures to
the stress resultant Sijðr; tÞ. The scaled Airy stress function
Φðr; tÞ is related to the stress tensor through S11 ¼ S∂2∂2Φ,

FIG. 1. Schematic of a growing, nearly flat, thin elastic plate. The
shape of the leaf results from the inhomogeneous growth both in
the in-plane [encoded by Ωgðr; tÞ] and out-of-plane [encoded by
Λgðr; tÞ] directions. The shell is described by the out-of-plane
deflectionWðr; tÞ and the scaledAiry stress function (see text). The
unit vector x̂3 points in the vertical direction, and N̂ðr; tÞ is the
normal to the surface.The angle between them isθðr; tÞ.R is the size
of a region over which we coarse grain measurement of growth.
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S22 ¼ S∂1∂1Φ, and S12 ¼ −S∂1∂2Φ. The Laplacian of the
scaled Airy stress function satisfies SΔΦðr; tÞ ¼ S11 þ S22
and is proportional to the areal strain.
Since growth-induced elastic frustration leads to rapid

equilibration (at the speed of sound) while feedback from
strains that modulate growth is generally slow (due to the
timescales over which these signals are transduced bio-
chemically), the in-plane and out-of-plane growth are
treated quasistatically. Then, at linear order we can describe
an elastic plate using the depth-averaged compatibility and
transverse force balance equations [22] as

Δ2ϕðr; tÞ ¼ Ωgðr; tÞ ð1Þ

hΔ2wðr; tÞ ¼ Λgðr; tÞ; ð2Þ

where Ωgðr; tÞ reflects the incompatibility due to in-plane
growth, and Λgðr; tÞ is due to curvature growth (see Fig. 1
and Ref. [22]). We defined wðr; tÞ≡ e−gtWðr; tÞ, and
ϕðr; tÞ≡ e−gtΦðr; tÞ to facilitate calculations in Fourier
space on a growing background, and dimensional analysis
demands that the coefficient of Δ2wðr; tÞ be a factor OðhÞ
smaller than the corresponding coefficient of Δ2ϕðr; tÞ.
Local and instantaneous feedback.—Our goal is to study

the stability of the flat, stress-free state. At linear order, the
most general form of the feedback law that we can write to
account for the slow feedback from shape to growth leads
to (see the Supplemental Material [18], Secs. S.2A and
S.2B for details of other equivalent forms written in terms
of geometric quantities such as the first and second
fundamental forms [23])

∂tΩg ¼
Z

t

−∞
dt0d2r0½G11Δ2ϕþG12hΔ2wðr0; t0Þ�; ð3Þ

∂tΛg ¼
Z

t

−∞
dt0d2r0½G21Δ2ϕþ G22hΔ2wðr0; t0Þ�; ð4Þ

where Gijðr − r0; t − t0Þ are the feedback kernels that
represent the (possibly nonlocal and delayed) coupling of
growth to the state of the system described in terms of the
inhomogeneous in-plane growth Δ2ϕðr0; t0Þ (analogous to
the Gauss curvature or the Ricci scalar) and Δ2wðr0; t0Þ
(analogous to a transverse pressure). As for Eq. (2), dimen-
sional analysis requires the coefficients of Δ2wðr; tÞ be a
factor OðhÞ smaller than the corresponding coefficients
of Δ2ϕðr; tÞ.
The terms proportional to G12ðρ; τÞ and G21ðρ; τÞ—

which couple in-plane and out-of-plane growth—are only
allowed for systems that violate the symmetry N̂ → −N̂,
where N̂ðr; tÞ is the normal to the midsurface. This is the
case for leaves possessing adaxial-abaxial polarity, which is
important for the proper growth of a flat leaf blade [24]. In
such cases, different proliferation rates on the abaxial and
adaxial sides [25,26] lead to curved leaf phenotypes.

The simplest choice of kernel corresponds to the case of
local feedback—where the instantaneous rate of expansion
and shear due to growth is a function of local variables such
as curvature and strain (see the Supplemental Material [18],
Sec. S.2A)—and is described using the Dirac delta
function by

Gijðρ; τÞ ¼ −αijδðτÞδðρÞ; ð5Þ

where the feedback matrix αij, with units of time−1, is not
required to be symmetric. To understand the stability of a
nominally flat plate to perturbations of growth, we substitute
the ansatz ϕðr; tÞ ¼ ϕ0eiq·rþλt and wðr; tÞ ¼ w0eiq·rþλt into
Eqs. (1)–(5), which gives two eigenvalue solutions for the
growth, given by

λ�ðqÞ ¼ − 1

2

�
tr½α� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½α�2 − 4 det½α�

q �
; ð6Þ

where tr½α� and det½α� are the trace and determinant of the
feedback matrix αij. Note that the growth rates are inde-
pendent of wave number q, and therefore independent of
system size L, consistent with the local nature of the
growth law.
The system will be stable when Reλ�ðqÞ < 0, which

happens when det½α� < 0, tr½α� > 0. When 4 det½α� > tr½α�2
the system will be oscillatory but still stable. We note that
stability requires both curvature and strain sensing,
which ensures that det½α� ≠ 0, and the lamina needs to
be able to measure or sense deviations from the target flat,
stress-free state driven by both curvature and in-plane
growth.
However, while local and instantaneous feedback can

lead to asymptotic stability of the flat state, we now show
that this form of feedback is not efficient at suppressing
stochastic fluctuations at the scale of the system size L.
To see this, we extend Eqs. (3) and (4) and add stochastic
terms to represent the effects of fluctuations in in-plane
and curvature growth rate. Motivated by the variability of
growth rate in developing leaves between cells at nearby
positions and for the same cell at different times [27], we
assume that fluctuations in in-plane areal growth, written as
Δχϕðr; tÞ, and curvature growth, written as Δχwðr; tÞ that
appear through the variations in the metric and curvature
tensor (and scaled by a factor e−gt as described in the
Supplemental Material [18], Sec. S.2A) have a white noise
spectrum so that

hΔχϕðr; tÞΔχϕðr0; t0Þi ¼ Dϕδðr − r0Þδðt − t0Þ ð7Þ

hΔχwðr; tÞΔχwðr0; t0Þi ¼ Dwδðr − r0Þδðt − t0Þ ð8Þ
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withDϕ,Dw being the noise strengths. For the case of local
and instantaneous feedback given by Eq. (5), the stochastic
version of Eqs. (3) and (4) can then be written as

∂tΔ2ϕðr; tÞ ¼ −αΔ2ϕðr; tÞ þ Δ2χϕðr; tÞ; ð9Þ
∂tΔ2wðr; tÞ ¼ −αΔ2wðr; tÞ þ Δ2χwðr; tÞ; ð10Þ

where we substituted Eqs. (1) and (2) to rewrite the left-
hand side and assumed, for simplicity, that αij ¼ αδij with
δij being the Kronecker delta (see the Supplemental
Material [18], Sec. S.4A for the general case).
To understand deviations from planarity of the growing

lamina, it is natural to consider the fluctuations of the angle
between the surface normal [N̂ðr; tÞ] and the vertical (x̂3),
which is given by jθðr;tÞj≡ jcos−1½N̂ðr;tÞ · x̂3�j≈ j∇wðr;tÞj.
In Fourier space, the linear Eqs. (8) and (9) lead to

iωŵðq;ωÞ ¼ −αŵðq;ωÞ þ χ̂wðq;ωÞ; ð11Þ

hχ̂wðq;ωÞχ̂†wðq0;ω0Þi ¼ ð2πÞ3Dw

q4
δðq−q0Þδðω−ω0Þ; ð12Þ

where χ̂†w denotes complex conjugation, and the Fourier
transform of a function Fðr; tÞ is given by F̂ðq;ωÞ ¼R
d2r dte−iq·r−iωtFðr; tÞ. This allows us to calculate the

strength of the angle fluctuations as

hθðr; tÞ2i ≈ h∇wðr; tÞ2i
¼
Z

d2q0dω0

ð2πÞ3
d2qdω
ð2πÞ3 ðq · q0Þhŵðq;ωÞŵ†ðq0;ω0Þi:

ð13Þ
Assuming fluctuations are cut off for physical wavelengths
smaller than thickness h and larger than system size LðtÞ,
we solve Eq. (11) for wðq;ωÞ, substitute it into Eq. (13),
and use Eq. (12) to get

hθðr; tÞ2i ¼
Z

h−1

L−1

d2qdω
ð2πÞ3 Pθðq;ωÞ; ð14Þ

where Pθðq;ωÞ is the power spectral density given by

Pθðq;ωÞ ¼
Dw

q2ðα2 þ ω2Þ : ð15Þ

The integral in Eq. (14) yields hθ2ðr; tÞi ∼ logðL=hÞ, i.e.,
the ordered flat state is unstable to growth fluctuations
for large aspect-ratio laminae. This result does not change
when we relax the diagonal assumption on αij (see the
Supplemental Material [18], Sec. S.4A). In general the
cutoffs in Eq. (14) are time dependent, and care must be
taken when calculating the effect of short wavelength
fluctuations as they get expanded to larger scales due to
growth. In the Supplemental Material [18], Secs. S.4B

and S.4C, we show how to address this issue and show that
using the temporal Fourier transform approach is valid for
strong enough feedback (α > g).
To further understand the local feedback regime, we next

considered correlations in spatially distinct regions. In the
planar growth case, recent work [13] has shown that the
equal time correlation function for density perturbations,
which are proportional to Δϕðr; tÞ decays as a power law
at large distances. This happens due to the effect of small
scale (leaf thickness or cell size) correlations that get
inflated to large distances during growth and leads to
hΔϕðr; tÞΔϕðr0; tÞi ∼ jr − r0j−2ðαþgÞ=g (see the Supple-
mental Material [18], Sec. S.4B). Because of the similarity
between Eqs. (7) and (9) and Eqs. (8) and (10), the
curvature fluctuations decay at a large distance with
the same exponent, jr − r0j−2ðαþgÞ=g. On the other hand,
angle fluctuations behave as hθðr; tÞθðr0; tÞi ∼ jr − r0j−2α=g
(see the Supplemental Material [18], Sec. S.4B).
Nonlocal and delayed feedback.—Next, we ask whether

alternative modes of feedback, e.g., those that allow for
nonlocal coupling in space and time, can alleviate the
problem of stabilizing the flat state (at linear order).
Perturbations from the flat reference state cause cells to

produce long-range signaling molecules with a delay time
scale assumed to be Γ−1; these propagate diffusively
throughout the leaf. Then, a natural model for signal
propagation associated with feedback is given by the
diffusion equation, whose Green’s function satisfies

∂tGDðρ; τÞ −DΔGDðρ; τÞ ¼ DδðρÞe−Γτ; ð16Þ

where D is a diffusion constant (see the Supplemental
Material [18], Sec. S.2B for effects of signal degradation).
The signal described by GDðρ; τÞ is thought to be
propagated in plants by the hormone auxin, which helps
regulate growth and biomechanical patterns during mor-
phogenesis [28–32]. These long-range signals [33,34]
propagate faster than growth speeds [35] but much slower
than the speed elastic equilibration, so that their effect may
be integrated over developmental time [36] and play a role
in leaf size control [37].
Using the spreading rate of the hormone auxin,weestimate

D ≈ 10 mm2=hour [38], which, along with L ∼ 1 cm and
g ∼ 0.01=hour [8], gives gL2=D ∼ 0.1 ≪ 1. SolvingEq. (16)
in this quasistatic limit and using Green’s function which
satisfies ΔGΔðr − r0Þ ¼ −δðr − r0Þ replaces the local feed-
back law in Eq. (5) with

Gijðρ; τÞ ¼ −αijδðτÞδðρÞ −
ge−Γτ

h2
βijGΔðρÞ; ð17Þ

where g−1 is the timescale of growth, αij is a feedback
matrix corresponding to the local contribution, βij gives the
nonlocal contribution, and both have units of time−1.
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Choosing αij ¼ αδij, βij ¼ βδij for simplicity and plug-
ging Eq. (17) into Eqs. (3) and (4) we get the modified
system accounting for nonlocal, delayed feedback as

∂tΔ2ϕðr; tÞ ¼ Δ2χϕðr; tÞ − αΔ2ϕðr; tÞ

þ gβ
h2

Z
t

−∞
e−Γðt−t0ÞΔϕðr; t0Þdt0; ð18Þ

∂tΔ2wðr; tÞ ¼ Δ2χwðr; tÞ − αΔ2wðr; tÞ

þ gβ
h2

Z
t

−∞
e−Γðt−t0ÞΔwðr; t0Þdt0; ð19Þ

where we used Eqs. (1) and (2) and integrated by parts to
obtain the Laplacian feedback appearing on the right-hand
sides. Here the stochastic terms Δ2χwðr; tÞ and Δ2χϕðr; tÞ
are assumed to satisfy Eqs. (7) and (8) as in the local
feedback case.
To understand the stability of the flat state to variations in

the growth rates, we use the ansatz ϕðr; tÞ ¼ ϕ0eiq·rþλt and
wðr; tÞ ¼ w0eiq·rþλt and substitute into Eqs. (18) and (19).
We then find that the deterministic part of the equation
gives

λ ¼ −α −
gβ
h2q2

1

Γþ λ
: ð20Þ

When the nonlocal feedback contribution β ¼ 0 we get
λ ¼ −α, as expected from Eq. (6) with αij ¼ αδij. When
β ≠ 0, we have two solutions given by

λ�ðqÞ ¼ −
1

2

 
αþ Γ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα − ΓÞ2 − 4βg

h2q2

s !
; ð21Þ

where the contribution of the nonlocal term β dominates for
long wavelengths (q2 ≪ 4βg=h2α2), but is negligible for
short wavelengths (q2 ≫ 4βg=h2α2). We see that the flat
configuration is stable only when α > 0 (in the limit
q2 → ∞, λþ ¼ −α and λ− ¼ −Γ) and β > 0 (otherwise
when q2 → 0 one can get a positive growth rate). In Fig. 2,
we show the boundary of the stable parameter region
indicated by whether the unstable mode has a large
(jqj ∼ L−1) or small wavelength (jqj ∼ h−1), which may
correspond to different phenotypes of mutant leaves [25,39].
For long wavelengths, Eq. (21) leads to oscillations on the
way to the flat state, which may be related to the observed
fluttering behavior in leaves during development [40].
To understand how fluctuations modify the deterministic

feedback dynamics considered above, we start by writing
the out-of-plane response of the plate Eq. (19) in Fourier
space as

iωŵ ¼ χ̂wðq;ωÞ −
�
αþ gβ

h2q2

1

Γþ iω

�
ŵðq;ωÞ: ð22Þ

Solving Eq. (22) for ŵðq;ωÞ and using Eq. (12), we get an
expression for the power spectral density of the normal
angle fluctuations given by Eq. (14) modified to account
for nonlocal feedback that reads as

Pθ ¼
ðω2 þ Γ2Þq2Dw�

ðω2 − αΓÞq2 − gβ
h2

�
2 þ q4ðαþ ΓÞ2ω2

: ð23Þ

Unlike the case of local feedback (when β ¼ 0) corre-
sponding to Eq. (15), when β ≠ 0, the spectral density
Pθðq;ωÞ in Eq. (23) is well behaved in the long-wave-
length limit and vanishes when q2 ¼ 0. As a result, angle
fluctuations remain finite, hθðr; tÞ2i ∼OðL0Þ, as L → ∞.
However, in contrast to the case of local feedback, the
fluctuations described by Eq. (23) are not scale invariant
[Pθðq;ωÞ is not a power law in q2].
To quantitatively compare our model to recent experi-

ments [8], we look at the fluctuations in areal strain rate,
Aðr; tÞ ≈ ∂tϵiiðr; tÞ=2, where ϵii is the sum of elastic and
growth strain tensors, (see the Supplemental Material,
Sec. S.4D, and Ref. [22]). The average areal strain rate
is defined as Āðr; tÞ≡ ð1=πR2Þ RRr

Aðr0; t0Þd2r0, and its

variance is defined as ΣAðRÞ2 ≡ hðĀðr; tÞ − hĀðr; tÞiÞ2i,
coarse grained over discs of size R centered at the point
r (Fig. 1).
To calculate ΣAðRÞ using our model, we note that

Aðr; tÞ ∼ ∂tΔϕðr; tÞ, since EΔϕðr; tÞ is the trace of the

FIG. 2. Stability phase diagram. The phase diagram corre-
sponding to Eq. (21). The thick lines represent the boundary of
the stable region which are in turn divided according to whether
the first unstable modes are large (jqj ∼ L−1) or small (jqj ∼ h−1)
deformations. The blue points where the two boundaries meet
correspond to no feedback α ¼ β ¼ 0. The two types of unstable
modes (α ∼ 0 or β ∼ 0) are illustrated by the surfaces shown, and
may explain phenotypes of mutant leaves [25,39].
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elastic stress tensor. As Eq. (19) has a similar form to
Eq. (18), we can repeat the steps leading to Eq. (23) (see the
Supplemental Material, Secs. S.4C and S.4D, for subtleties
associated with growth) to obtain the result

Σ2
A ∝ h∂tΔϕðr; tÞ2i ∝

Z
R−1;T−1 d2qdω

ð2πÞ3 PAðq;ωÞ; ð24Þ

PA ∝
ω2ðω2 þ Γ2Þq4Dϕ�

ðω2 − αΓÞq2 − gβ
h2

�
2 þ q4ðαþ ΓÞ2ω2

; ð25Þ

where the q integral is cutoff by R−1 due to spatial
averaging over the disk of size R, T−1 is the high frequency
cutoff (see the Supplemental Material, Sec. S.4D), and the
additional factor of q2ω2 compared with Eq. (23) is due
to the different number of derivatives in ∂tΔϕðr; tÞ and
j∇wðr; tÞj.
For purely local feedback (β ¼ 0), PAðq;ωÞ ¼ PAðωÞ

is independent of q, and we obtain the power law ΣA ∝ R−1

[as can be seen by changing coordinates q → Rq in the
integral Eq. (24)]. This is consistent with prior results
addressing stochastic growth in purely two-dimensional
elastic tissues subject to local mechanical feedback [13]
which showed that area changes in adjacent growing clones
are uncorrelated. However, experiments on leaf growth [8]
suggest that ΣA ∝ R−p, p ≈ 0.61 (Fig. 3), and differs from
the R−1 behavior expected if growth (rate) fluctuations

were not correlated spatially. This indicates the need for a
nonlocal feedback law embodied in Eqs. (3), (4), and (17)
that would lead to long-range correlations in the fluctuation
spectrum, similar to those predicted in models of mecha-
noresponsive viscous tissue [41].
In contrast, for purely nonlocal feedback (α ¼ 0) ΣA

does not follow a power-law behavior in general [because
the power spectral density is not scale invariant unless
Γ ¼ 0, whence we have to consider the range of the
integral in Eq. (24) to ensure nondivergent behavior]. In
Fig. 3, we show that results obtained by directly integrat-
ing Eq. (24) numerically with specific choices for the
parameters (see figure caption and the Supplemental
Material, Sec. S.4E, for details) are able to capture
experimental observations [8].
Conclusion.—Our mathematical framework formalizes

the intuition that growing a flat lamina stably is difficult
because small fluctuations in metric and curvature growth
are both destabilizing on long length scales. By coupling
elasticity and strain-induced feedback in a linear setting we
show that spatially nonlocal, temporally delayed feedback
suppresses long wavelength fluctuations and furthermore
captures experimentally observed scaling behavior for
area fluctuations. Our analysis is a first step toward
understanding the stable growth of flat lamina, and future
work will explore the role of geometric nonlinearities
combined with the subtleties that arise from the growing
number of modes in growing systems.
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