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In mirror-symmetric systems, there is a possibility of the realization of extended gapless electronic states
characterized as nodal lines or rings. Strain induced modifications to these states lead to the emergence of
different classes of nodal rings with qualitatively different physical properties. Here we study optical
response and the electromagnetic wave propagation in type I nodal ring semimetals, in which the low-energy
quasiparticle dispersion is parabolic in momentum kx and ky and is linear in kz. This leads to a highly
anisotropic dielectric permittivity tensor in which the optical response is plasmonic in one spatial direction
and dielectric in the other two directions. The resulting normal modes (polaritons) in the bulk material
become hyperbolic over a broad frequency range, which is furthermore tunable by the doping level. The
propagation, reflection, and polarization properties of the hyperbolic polaritons not only provide valuable
information about the electronic structure of these fascinating materials in the most interesting region near
the nodal rings but also pave the way to tunable hyperbolic materials with applications ranging from
anomalous refraction and waveguiding to perfect absorption in ultrathin subwavelength films.
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Introduction.—The quantification of topological proper-
ties of condensed matter systems in the last decade has been
driven to a large extent by the studies of Dirac and Weyl
semimetals [1,2]. In these materials, the conduction and the
valence bands merge at isolated points in the Brilliouin zone
such that the low-energy quasiparticles mimic the physics of
Dirac and Weyl fermions with speed much lower than light.
Low-energy optical spectroscopy provides a unique oppor-
tunity for their energy-resolved studies near band crossings,
which is not always possible by other means. Perhaps the
most direct consequence of the Weyl fermion dispersion is a
linear in frequency conductivity [3–7], with modifications
due to the anisotropic dispersion [8] band with temperature
playing an important role due to the quadratic dependence
of density of states on quasiparticle energy [9,10]. A lot
of effort has been spent on extracting the topological
features of these materials from their optical properties;
see, e.g., [11–15] and references therein.
In a rather new class of topological semimetals known

as nodal line semimetals, the conduction and valence band
touch along a line or a ring (loop) [16]. Different classes of
nodal rings have been proposed, e.g., hybrid nodal rings
[17], spin gapless nodal rings [18], topological nodal rings
in carbon networks [19], antiperovskites [20], semime-
tallic carbon tetrarings [21], and orthorhombic C16 [22].
Table I in [23] contains a useful list of predicted or
identified nodal line semimetals. Among many interesting
features displayed by the nodal ring semimetals (NRSMs)
are unusual Landau level quantization [24], and drumhead
surface states [25,26]. Furthermore, the bulk energy

dispersion is highly anisotropic in momentum space as
shown in Figs. 1(a) and 1(b). Moreover, an abrupt change
in Fermi surface topology occurs when the quasiparticle
energy is tuned in the vicinity of the energy gap parameter
[Fig. 1(c)]. A direct consequence of this feature appears in
the density of states (DOS), Fig. 1(d).
One can fully expect that these unusual electronic proper-

ties of NRSMs result in a peculiar and even unique optical
response. Previous studies were mainly focused on the
derivation and characterization of the linear optical conduc-
tivity spectra [27–29] including the effect of tilt [30,31] as
well as the second-order conductivity in symmetry-broken
NRSMs [32]. However, the aspect of the optical response
which provides most insight into the physical properties,
and also the one most closely connected to experiment, is
the behavior of the normal electromagnetic (EM) modes
of the material, or the polaritons. In this Letter we focus on
the most prevalent type I NRSMs in which the connection
between the fascinating properties of the polaritons and the
underlying electronic structure is very intuitive. The salient
property of the polaritons in NRSMs stems from the fact
that the low-energy quasiparticle dispersion is parabolic in
momentum kx and ky but is linear in kz. This leads to
uniaxial anisotropy of the dielectric permittivity tensor in
which the optical response is plasmonic in one spatial
direction and dielectric in the other two directions. The
resulting polaritons in the bulk material split into so-called
ordinary and extraordinary modes, and the extraordinary
mode becomes hyperbolic over a broad frequency range,
which is furthermore tunable by the doping level.
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Note that in “conventional” nodal-point Weyl semimetals
the hyperbolic dispersion was only predicted in high
magnetic fields and with Fermi level tuned to the band
crossing points [11]. In the prototypical nodal line semimetal
ZrSiSe the hyperbolic dispersion has been recently observed
with tip-enhanced infrared spectroscopy [33]. In other kinds
of anisotropic crystals, such as hexagonal boron nitride,
the hyperbolic dispersion typically exists only in a narrow
midinfrared frequency range defined by the separation
between anisotropic phonon resonances [34]. Yet another
group of hyperbolic materials that received a lot of recent
interest is metamaterials where hyperbolicity is achieved at
certain wavelengths and propagation angles by periodic
combination of metallic and dielectric layers [35,36]. These
hyperbolic materials are highly sought after for numerous
applications as they exhibit a plethora of unique properties
such as negative refraction, propagation through subwave-
length apertures, and waveguiding by ultrathin films.
Thus, our study connects two rapidly growing areas of

physics research, namely, topological materials and hyper-
bolic optical materials, and therefore represents a useful
bridge between the condensed matter community and
hyperbolic optics community. Starting from the effective
but quite general Hamiltonian for topological nodal rings,
we derive explicit analytic expressions connecting topologi-
cal electron eigenstates and the properties of propagating
EM eigenmodes for the whole class of these fascinating
materials. Our results reveal that nodal ring semimetals
represent a nontrivial and perhaps even unique route to
hyperbolicity through the highly unusual electron properties
of the bulk crystal which hosts both relativistic (massless) as

well as nonrelativistic fermions, contributing to the optical
response within the same frequency range.
Electron states in NRSMs.—Our effective Hamiltonian,

which describes different types of NRSMs, is based on the
low-energy Hamiltonian from [19], but we included a finite
band curvature which makes all integrals over the Brillouin
zone finite while keeping the same low-energy electronic
structure in the vicinity of the nodal rings:

HðkÞ ¼
 

t1Gðkx; kyÞ it2 sinðkzaÞ
−it2 sinðkzaÞ Δþ γt1Gðkx; kyÞ

!
; ð1Þ

where Gðkx; kyÞ ¼ 2 − cosðkxaÞ − cosðkyaÞ, t1 and t2 are
the hopping parameters, a is the lattice spacing, Δ is the gap
at the Γ point and γ is the band tuning parameter which takes
the value −1 for type-I NRSMs and 0 < γ < 1 for type-II
NRSMs. A third class of topological NRSMs comprises of
merging type-I and type-II materials for which γ as well
as Gðkx; kyÞ changes. The nodal lines are protected by
the mirror symmetry Mz, M−1

z HðkÞMz ¼ Hðk̄Þ with k̄ ¼
ðkx; ky;−kzÞ andMz ¼ σz. One can visualize the nodal lines
as the Berry flux tubes in the momentum space. These Berry
flux tubes are robust objects due to quantization of the flux
to integer multiples of π.
In this Letter, we focus on type-I nodal rings with γ ¼ −1,

and we further take t1 ¼ t2 ¼ t to reduce the number of
material parameters. Since t1 and t2 enter the Hamiltonian
(1) as multiplicative factors, all derivation steps can be easily
repeated for t1 ≠ t2 if needed for specific compounds,
following the detailed derivation in the Supplemental
Material (SM) [37]. One should expect the lattice constant
a to be of the order of 0.1–0.3 nm, whereas the hopping
energy t is typically on the scale of several eV. To fix the
numerical value of the product at for the plots, we assume
that the “Fermi velocity” vF, i.e., the linear slope of the
electron dispersion in Fig. 1(b), satisfies ℏa−1vF ¼ t,
whereas its ratio to the speed of light is vF=c ¼ 1=300.
This is true by an order of magnitude for most Dirac
materials. The parameter Δ could vary in wide limits.
The most optimal situation for optical studies of topological
nodal ring states is when Δ is small as compared to t, so that
the nodal rings and characteristic optical transitions at
photon energies ∼Δ are near the center of the Brillouin
zone and well separated from higher-energy transitions
between any trivial remote bands. As we see below, this
will also maximize the optical anisotropy. We will set Δ ¼
0.2t for further discussion. The corresponding electron
energy dispersion is shown in Fig. 1.
The quasiparticle energy dispersion for the Hamiltonian

in Eq. (1) is given as

ελk ¼ Δ
2
þ λ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Δ − 2Gðkx; kyÞt�2 þ 4t2sin2ðkzaÞ

q
; ð2Þ

(a) (b)

(c) (d)

FIG. 1. Energy dispersion in (a) kz ¼ 0, and (b) ky ¼ 0
momentum planes for type-I NRSMs described by the Hamil-
tonian in Eq. (1). The vertical axis is normalized by t. (c) Constant
energy surfaces. For energies lower than Δ the momentum
distribution forms a toroidal shape. Increasing energy deforms
the toroid and it collapses into a drumlike structure for energies
greater than Δ. (d) The density of states, N ðεÞ, normalized by
a−3t−1 as a function of energy ε normalized by t for Δ ¼ 0.2t.
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where λ ¼ þ1ð−1Þ for the conduction (valence) band. In
the electric dipole approximation the interband optical
transitions are vertical. The transition energy for a quasi-
particle at momentum k is given by the difference between
the conduction and the valence band energies,

ℏωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Δ − 2Gðkx; kyÞt�2 þ 4t2sin2ðkzaÞ

q
: ð3Þ

The normalized eigenvectors are

jΨλki ¼
1

N λ

 
ið−Δþ 2tGðkx; kyÞ þ λℏωkÞ

2t sinðkzaÞ

!
; ð4Þ

withN λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½−Δþ 2tGðkx; kyÞ þ λℏωk�2 þ 4t2sin2ðkzaÞ

q
.

Optical permittivity.—In equilibrium at temperature T
and chemical potential μ, the linear response optical
conductivity is computed within the Kubo framework
[38]. We will take kBT ¼ t=200 for numerical plots to
include thermally excited carriers. In order to incorporate
scattering-related losses at the phenomenological level,
we have introduced a decay rate, ℏΓ ¼ 0.005t. For the
hopping energy t ∼ 3 eV this corresponds to significant
disorder, with scattering time ∼40 fs. The current operator
components are ĵα ¼ eℏ−1

∂kαĤ, where α ¼ fx; y; zg. For
the Hamiltonian (1) they become

ĵ ¼ eat
ℏ

fsinðkxaÞσ̂z; sinðkyaÞσ̂z;− cosðkzaÞσ̂yg: ð5Þ

We also add the background permittivity (ϵb) due to the
sum of contributions from remote bands not included in
the Hamiltonian (1), and assume it to be isotropic and with
negligible dispersion within the frequency range of interest
to us. Its exact value shifts the plots in Fig. 2 but does
not change the qualitative physical behavior; we will
use ϵb ¼ 15 as a reasonable number in the infrared. The
resulting dielectric tensor ϵ̂ is expressed in terms of the
conductivity (in SI units) as ϵ̂ðωÞ ¼ ϵbI3×3 þ iσ̂ðωÞ=ðωϵ0Þ.
Because of the symmetry of the system, only the diagonal
terms of the conductivity tensor survive. The details of the
conductivity derivation and analytic results are provided in
the SM. The general structure and scaling of the diagonal
permittivity components are given by ϵααðωÞ ¼ ϵb−
gαFcIαα=ð2π2aωÞ, where Iαα are dimensionless integrals
specified in the SM, αF ¼ e2ð4πϵ0ℏcÞ−1 is the fine structure
constant, and c is the speed of light.
To the leading order in the long wavelength limit,

cylindrical symmetry is preserved so that ϵyy ≈ ϵxx.
However, ϵzz behaves differently, as shown in Fig. 2.
First of all, the magnitude of the matrix elements of the
jz component of the current is higher than the ones for jx;y
components, as one can see from Eq. (5) and the SM.
Indeed, when Δ ≪ t the main contribution comes from the
states with jkαaj ≪ 1 in the vicinity of the nodal rings. In
this case the ratio of matrix elements jjz=jx;yj ∼ t=Δ ≫ 1,
yielding a higher magnitude of ϵzz as compared to ϵxx.
Second, while at the lowest frequencies all permittivity
components are dominated by an intraband plasmonic
response (even when the Fermi level is at the band crossing
energy, μ=t ¼ 0.1, because free carriers are still present at
finite temperature), with increasing frequency and doping
level the behavior of ϵxx becomes dielectric, whereas the ϵzz
component maintains plasmonic behavior over a signifi-
cantly broader frequency range. This extreme anisotropy
with opposite signs of the real parts of the dielectric tensor
components gives rise to the hyperbolic dispersion of the
polaritons. The exact bandwidth of the hyperbolic response
depends on the material parameters and the doping level.
For example, if we take t ∼ 3 eV and μ ¼ 0.2t, it is equal to
∼300 meV and the range of hyperbolic dispersion is located
between wavelengths of about 2.4 and 6 μm. This range
will increase for lower values of the background dielectric
permittivity. It will also be affected by the presence of a tilt
in the electron dispersion. Indeed, the broad region of
hyperbolicity originates from the large ratio of zz vs xx
components of the Drude weight. If there is a tilt in electron
dispersion along the z axis, this would further increase the
respective Drude weight and the region of hyperbolicity
would further broaden. Vice versa, a tilt in the x direction is
expected to reduce the spectral region where hyperbolicity
is observed.

(a) (b)

(c) (d)

FIG. 2. Top row: real and imaginary parts of (a) ϵxx and (b) ϵzz
as a function of photon energy, for two different values of the
chemical potential. The value of μ=t ¼ 0.1 corresponds to the
chemical potential exactly at the band crossing, as one can see
from Fig. 1(d). Bottom row: the spectra of (c) xx and (d) zz
components of the conductivity tensor normalized by ðe2=ℏaÞ.
Solid curves: the ratio of imaginary to real part of the conductivity
components.
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Figures 2(c) and 2(d) show the conductivity spectra. The
ratios fIm½σxx�=Re½σxx�g and fIm½σzz�=Re½σzz�g demon-
strate broad peaks in the spectral region of hyperbolic
dispersion, indicating the possibility of low-loss propaga-
tion of hyperbolic polaritons; compare with other hyper-
bolic materials in Fig. 4 of Ref. [33].
Properties of NRSM polaritons.—Maxwell’s equations

for the electric field vector E ∝ expðiqr − iωtÞ of mono-
chromatic EM waves propagating in a bulk crystal with
permittivity tensor ϵ̂ can be written as

nðn · EÞ − n2Eþ ϵ̂E ¼ 0; ð6Þ

where n ¼ qc=ω. For a diagonal permittivity tensor, the
solution of the corresponding dispersion equation consists
of two linearly polarized normal modes (polaritons) which
are often called an ordinary and extraordinary wave. Since
ϵyy ¼ ϵxx, we can consider without loss of generality the
propagation with the wave vector in the ðxzÞ plane, i.e.,
n ¼ ðnx; 0; nzÞ. Then the refractive indices of the ordinary
and extraordinary modes are given by

n2o ¼ ϵxx and n2e ¼
ϵxxϵzz

ϵxxsin2θ þ ϵzzcos2θ
; ð7Þ

where θ ¼ cos−1ðnz=jnjÞ. The electric field vector of the
extraordinary mode lies in the ðxzÞ plane, whereas the one
of the ordinary mode is along y.
Figure 3(a) shows an example of the constant-frequency

surface for the dispersion equation of the two modes.
The surfaces are plotted for μ ¼ 0.2t and the frequency
ℏω ∼ 0.13t for which the real parts of the dielectric tensor
components have a much greater magnitude than the
imaginary parts, so that ϵxx ∼ 13 and ϵzz ∼ −20. For the
ordinary waves, the surface is a sphere, which is a particular
case of the usual Fresnel ellipsoid. At the same time, for the
extraordinary modes, the surface is a hyperboloid. Its cross
section at ny ¼ 0 is

n2x
ϵzz

þ n2z
ϵxx

¼ 1: ð8Þ

In the range of frequencies where Re½ϵzz� < 0 and
Re½ϵxx� > 0 the EM waves are able to propagate in certain
directions with jnj ≫ 1, i.e., jqj ≫ ω=c, as one can also
see in Fig. 3(c). Note that we neglected the imaginary
parts of the dielectric tensor only in Fig. 3(a), whereas in
Figs. 3(b), 3(c), and 3(e) a full dielectric tensor with its
real and imaginary parts is used. That is why the
maximum refractive index is finite in Fig. 3(c), although
it is quite large, almost 20. Note also that the frequency at
which the high-q propagation regime with maximum
refractive index is reached depends on the propagation
angle θ and shifts to higher frequencies with decreasing θ
as indicated in Fig. 3(b).
The dominant feature in the spectra of hyperbolic polar-

itons is a characteristic peak in the extraordinary wave
dispersion and absorption near the frequency which mini-
mizes the denominator in the expression (7) for n2e, see the
spectra in Fig. 3(b). The resonance exists for any angle θ ≠ 0
or π=2. A similar phenomenon in classical anisotropic
plasmas would be a hybrid plasmon-polariton resonance,
corresponding to hybridization between longitudinal plas-
mons and transverse EM waves. Note also the existence of a
photonic band gap at frequencies above the resonance,
where the real part of the refractive index would have
dropped to zero in the absence of an imaginary part of the
permittivity tensor. The real part of the refractive index drops

(a)

(c)

(e) (f)

(b)

(d)

FIG. 3. (a) The solution of the dispersion equation (6) for the
extraordinary wave (yellow hyperboloid) and ordinary wave (red
sphere) at a constant photon energy ℏω ∼ 0.13t and μ ¼ 0.2t, so
that ϵxx ∼ 13 and ϵzz ∼ −20. (b) Re½ne� and Im½ne� as a function of
photon energy for μ ¼ 0.2t and four propagation angles θ.
(c) Real part of neðθÞ for μ ¼ 0.1t, ℏω ¼ 0.1t (solid green),
μ ¼ 0.1t, ℏω ¼ 0.15t (purple triangle), μ ¼ 0.2t, ℏω ¼ 0.1t (red
circles), and μ ¼ 0.2t, ℏω ¼ 0.15t (dashed blue). (d) Schematic
for the reflection of a normally incident EM wave from an
ultrathin NRSM film of thickness l placed on top of a substrate of
complex refractive index nd. (e) Ordinary (extraordinary) wave
reflectivity shown in red line (circles) for μ ¼ 0.1t, and in dashed
blue line (dot-dashed line) for μ ¼ 0.2t. The film thickness
l ¼ 300a. (f) Color plot of the ordinary wave reflectivity for
μ ¼ 0.1t as a function of the thickness of the film (y axis) and the
photon frequency (x axis). Here we assumed nd ¼ 1.4þ 4.0i.
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very steeply at the photonic band gap boundary, indicating a
small group velocity vgroup ≪ c in this region. This behavior
is similar to the dispersion of extraordinary magnetopolar-
itons in nodal-point Weyl semimetals [11].
Obviously, all of the above spectral and angular features

in polariton propagation and absorption can have important
practical applications in thin-film EM waveguides, modu-
lators, switches etc. We will mention just one more potential
application, which has been pointed out for strongly
absorbing materials: ultrathin-film perfect absorbers [39].
Consider an EM wave normally incident on an ultrathin
(strongly subwavelength) NRSM film, as in Fig. 3(d). In
this case destructive interference between reflections from
the front and back facets of the film can result in spectral
windows of zero reflectivity even for a film much thinner
than the incident wavelength. This is illustrated in Fig. 3(e)
for a fixed film thickness and in Fig. 3(f) for a range of
thicknesses of a few tens of nm, depending on the exact
value of the lattice period a. The zero reflectivity region is
tunable by doping, film thickness, and also depends on the
substrate. As was shown in [39], the best results are
obtained for metallic or highly doped semiconducting
substrates with mostly an imaginary refractive index, such
as the one chosen for Figs. 3(e) and 3(f).
In conclusion, topological nodal ring semimetals are

natural hyperbolic optical materials, with associated extreme
optical anisotropy, anomalous refraction, and strong plas-
mon-polariton resonances. Their unique combination of
optical properties is highly sensitive to the material param-
eters and can be used for optical spectroscopy of the nodal
rings. Ultrathin films of NRSMs can find a number of
applications as infrared waveguides, modulators, switches,
and antireflection coatings.
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