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We propose a simple family of valence-bond crystals as potential ground states of the S ¼ 1=2 and S ¼ 1

Heisenberg antiferromagnet on the pyrochlore lattice. Exponentially numerous in the linear size of the
system, these can be visualized as hard-hexagon coverings, with each hexagon representing a resonating
valence-bond ring. This ensemble spontaneously breaks rotation, inversion, and translation symmetries. A
simple, yet accurate, variational wave function allows a precise determination of the energy, confirmed by
the density matrix renormalization group and numerical linked cluster expansion, and extended by an
analysis of excited states. The identification of the origin of the stability indicates applicability to a broad
class of frustrated lattices, which we demonstrate for the checkerboard and ruby lattices. Our work suggests
a perspective on such quantum magnets, in which unfrustrated motifs are effectively uncoupled by the
frustration of their interactions.
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The propensity of frustrated quantum magnets to host
exotic ground states makes them a rewarding target for
study. For several of the most prominent models, however,
it has proved difficult to come to a consensus about the
exact nature of the ground state [1–40]. This is particularly
true for frustrated isotropic Heisenberg models with low
spin S ≤ 1 in dimension d > 1, for which approximate
analytical methods are generally uncontrolled and numeri-
cal studies are challenging. To improve the situation
requires simple yet reliable heuristics, by which we can
understand not just which state is the ground state but also
whence it derives its stability.
Amongst frustrated lattices, the pyrochlore lattice—a

network of corner-sharing tetrahedra [Fig. 1(a)]—is a
particularly tricky case. Several proposals have been made
for the ground state of the nearest neighbor pyrochlore
Heisenberg model for S ¼ 1=2 including various forms of
quantum spin liquid (QSL) [27–32], valence-bond solids
[33–39,41,42], or the possibility that it lies on a phase
boundary between different QSLs [40]. Two recent numeri-
cal studies found evidence of inversion symmetry breaking
[37,38], consistent with one of the earliest proposals [35].
In this Letter, we propose a family of valence-bond

crystal states generated from hard (nonoverlapping) hex-
agon coverings of the pyrochlore lattice [43] shown in
Fig. 1(a). A one-parameter variational wave function

describing these states achieves an energy equal to the
best-known proposals to date to within numerical uncer-
tainties. The hard-hexagon crystal states are exponentially
numerous in the linear system size, demonstrating the
abundance of competing low-energy states. The difficulty
in arriving at a consensus over the ground state is likely in
considerable part due to the presence of so many competing
states with barely distinguishable energies.

FIG. 1. Lattices composed of unfrustrated motifs coupled via a
quartet of frustrated bonds. (a) A hard-hexagon tiling [43] of the
pyrochlore showing 2 × 2 × 2 unit cells, each containing 48 sites.
The different colors represent the four different orientations of
hexagons. (b) The ruby lattice with additional frustrated cou-
plings exhibiting a unique hard-hexagon tiling. (c) The checker-
board lattice shows one of two possible tilings with unfrustrated
squares. (d) Illustration of doubly frustrated interactions between
motifs: two pairs of antiferromagnetically correlated spins are
symmetrically coupled, making the interaction effectively a
product of two small terms.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

PHYSICAL REVIEW LETTERS 131, 096702 (2023)

0031-9007=23=131(9)=096702(6) 096702-1 Published by the American Physical Society

https://orcid.org/0000-0001-9728-2371
https://orcid.org/0000-0002-9975-7120
https://orcid.org/0000-0001-9345-632X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.131.096702&domain=pdf&date_stamp=2023-10-03
https://doi.org/10.1103/PhysRevLett.131.096702
https://doi.org/10.1103/PhysRevLett.131.096702
https://doi.org/10.1103/PhysRevLett.131.096702
https://doi.org/10.1103/PhysRevLett.131.096702
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


The simplicity of the hard-hexagon states enables us to
understand their low energy and stability, which arises from
the following ingredients. The first is that the pyrochlore
lattice can be decomposed into nonoverlapping hexagonal
loops—the hard hexagons—which exhibit a robust finite-
size gap of ∼0.69J.
Second, the hexagons are connected by a quartet of

bonds linking two pairs of antiferromagnetically correlated
spins symmetrically, making the coupling doubly frustrated
[Fig. 1(d)] [44]. This latter point is perhaps conceptually
the most interesting one, as it shifts the perspective from the
frustration-induced degeneracy arising on a single tetrahe-
dron to the isolation of unfrustrated (nondegenerate)
geometrical motifs. Third, the kinetic energy of local
defects in this background pattern is similarly suppressed.
Fourth, there are no matrix elements between different
hard-hexagon coverings to any finite order in perturbation
theory.
From this point forward, we discuss in detail the S ¼ 1=2

hard-hexagon state on the pyrochlore lattice. Having
understood its essential ingredients, we are able to apply
similar constructions to the S ¼ 1 pyrochlore Heisenberg
model as well as Heisenberg models on the ruby [Fig. 1(b)]
and checkerboard [Fig. 1(c)] lattices. In these cases, we
verify that the variational energy of these states is com-
petitive with the ground-state energy obtained by density
matrix renormalization group (DMRG) methods [45–49]
[Table I].

We start by covering the pyrochlore lattice with hex-
agons such that each site participates in exactly one
hexagon. The number of ways to do this is exponentially
large in the linear system size, as we discuss in more
detail later. For a given covering, we then decompose the
nearest-neighbor Heisenberg model into links within the
hard hexagons, H0, and the connecting terms V:

H ¼ H0 þ V ¼ J
X

hi;ji∈⎔
Si · Sj þ J

X
hi;ji∉⎔

Si · Sj: ð1Þ

Ground-state energy.—Crucially, the decoupled hexa-
gon Hamiltonian H0 exhibits a large gap ∼0.69J, while the
coupling V is effectively suppressed since it symmetrically
couples pairs of neighboring—and hence antiferromagneti-
cally correlated—spins in two hexagons via the four bonds
[Fig. 1(d)] of their shared tetrahedron. Moreover, the
ground-state energy of H0, E0 ∼ −0.47J, is already not
far from the pre-existing estimates of the ground-state
energy of the full pyrochlore lattice. This motivates a
variational approach by which we establish a strict upper
bound on the ground-state energy of Eq. (1) in the
thermodynamic limit which, within error bars, competes
with previous extrapolations based on estimates for small
clusters [35,37,38,51].
The trial wave function is constructed by dressing the

ground state of H0, jΨ0i—a simple product state. To
introduce additional correlations between the hexagons
and minimize the energy further, we perform imaginary-
time evolution using the Hamiltonian of the tetrahedral
links V, connecting the hexagons:

jΨαi ¼ e−αV jΨ0i ð2Þ

⇒ Eα ¼
1

N
hΨαjHjΨαi
hΨαjΨαi

: ð3Þ

TABLE I. Ground-state energies in units of J for different
models and spin lengths. The ground-state energy is calculated
using second-order NLCE, DMRG, and the variational wave
function Eq. (2) with optimization of the parameter α. The
optimal values of α are given in Table S1 the Supplemental
Material [50]. The DMRG energies for the pyrochlore lattice are
from Hagymási et al. [37,51], while the DMRG results were
obtained using ITensor [52].

Model NLCE2 DMRG Eα0

Pyrochlore, S ¼ 1
2

−0.4917ð5Þ −0.490ð6Þ −0.489472ð8Þ
Ruby, S ¼ 1

2
−0.492ð1Þ −0.4865ð7Þ −0.48946ð5Þ

Checkerboard, S ¼ 1
2

−0.5138ð2Þ −0.5132ð2Þ −0.513442ð1Þ
Pyrochlore, S ¼ 1 −1.489ð5Þ −1.520ð6Þ* −1.490ð1Þ
Ruby, S ¼ 1 −1.489ð5Þ −1.4764ð5Þ −1.490ð1Þ
Checkerboard, S ¼ 1 −1.533ð2Þ −1.532ð1Þ −1.5339ð5Þ

*Note that the S ¼ 1 pyrochlore case was obtained for 48 sites,
and finite-size effects are likely to underestimate the ground-state
energy.

FIG. 2. (a) Energy per site at finite temperature for the
pyrochlore S ¼ 1=2 and J ¼ 1. The orange curves are showing
a tetrahedron-based NLCE expansion up to eighth order [59],
which defines an upper limit for the ground-state energy. The blue
curves show the NLCE expansion based on the hexagons. Euler
refers to a resummation algorithm extending the convergence
down to lower temperatures [59]. (b) Different estimates for the
ground-state energy per site: bare hard hexagons (ground state of
H0), upper bound obtained by the converged tetrahedron ex-
pansion [59], Astrakhantsev et al. [38], Harris et al. [35], dressed
hexagon state Eα (this Letter) [Eq. (2)], Hagymási et al.
[37], and the NLCE hexagon expansion at second order for
T ¼ 0 (this Letter). Estimates of the ground-state energy higher
than Eα, the variational energy, can be ruled out.
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The variational energy per site Eα, which we evaluate using
an expansion in powers of α [50,53–58], exhibits a well-
defined minimum at α ¼ α0. The expansion is fully
converged around the minimum, and the truncation error
of the variational energy is much smaller than the symbol
size in Fig. 2(b). Importantly, the resulting minimal energy
Eα0 (see Table I), due to its variational nature, rules out all
larger estimates from previous studies [35,38], as indicated
in Fig. 2(b).
We further support the stability of the hard-hexagon state

by a numerical linked cluster expansion (NLCE) [60,61].
This method has proven valuable in determining thermo-
dynamic quantities at finite temperature in three-dimen-
sional lattices, including the pyrochlore lattice [59,62,63].
The algorithm is in spirit similar to a high-temperature
expansion in the sense that it systematically includes larger
clusters to obtain an estimate at a finite temperature. While
most previous works on the pyrochlore exploit the tetra-
hedral structure (which is powerful at finite temperature),
we generalized the expansion based on nonoverlapping
hexagons [50]. Typically, the limit of convergence of a
finite order expansion is clearly identified by the fact that
successive orders rapidly diverge from each other to infinity
below some temperature. This is the case for the tetrahedral
expansion, as shown in Fig. 2 (orange lines). However, the
situation is remarkably different for the hexagon-based ex-
pansion (blue lines in the same figure). It is clearly not con-
verged for intermediate temperatures, 0.06J ≤ T ≤ 0.8J,
but converges again for T → 0 yielding a realistic ground-
state energy compatible with previous studies [35,37,38].
Strikingly, the low-temperature convergence is effectively
obtained in the second order. This lends further credence to a
particularly simple low-temperature state of weakly dressed
hexagons. The success of the NLCE at T ¼ 0 is reminiscent
of a study of a distorted kagomé lattice [64], where a similar
approach was used to support the conclusion of a dimerized
ground state.
Hard-hexagon coverings and symmetry breaking.—The

proposed states are nonmagnetic valence-bond crystals,
whose symmetry-breaking properties are determined by the
underlying coverings of the lattice by hard hexagons. The
pyrochlore lattice admits an exponentially large family of
hard-hexagon states, all of which take the form of long-
ranged ordered planes of hexagons stacked along one of the
three equivalent h001i directions. Taking for example the
covering shown in Fig. 1(a) we can obtain a new valid
covering by shifting the second plane from the bottom
(composed of yellow and red hexagons) one unit to the
right (i.e., along one of the h110i crystal directions).
Assuming that all hard-hexagon coverings of the pyro-
chlore lattice can be constructed from such shifts, this
yields a subextensive, yet exponentially large, number of
coverings Ncover ¼ 3 × 24L=3, where L is the linear system
size given as the number of cubic, 16-site unit cells. We
have verified numerically [50], for finite clusters up to

L ¼ 12, that these are the only coverings by using an
unbiased numerical optimization algorithm.
The fact that there is an infinite family of states on the

pyrochlore lattice, rather than a single hard-hexagon state,
is interesting for two main reasons. First, for a single such
state to be stable, it is important that a finite order of
perturbation theory connect no two members of the family.
This is clearly the case for the stacked-layer coverings
discussed above since going from one to the other requires
the translation of an entire plane of hexagons. Second, this
has implications for the symmetry breaking of a state
randomly selected from, or averaged over, this family.
Since in a valence bond solid state, two-point correlation
functions decay rapidly, we instead compute a four-point
correlation function which we call the dimer structure
factor, or bond correlator,

SdimerðqÞ ¼
X

hiji;hkli
exp

�
−iq ·

�
1

2
ðri þ rjÞ −

1

2
ðrk þ rlÞ

��

× hðSi · SjÞðSk · SlÞi; ð4Þ
for an ensemble of hard-hexagon states with [001] stacking
direction obtained by the numerical optimization algorithm
mentioned before. The result is shown in Fig. 3. In contrast
to the “usual” spin structure factor based on a two-point
correlation function, the dimer structure factor is based on a

FIG. 3. Symmetry breaking of a hard-hexagon state with
stacking direction [001]. We show the dimer-dimer correlation
function [Eq. (4)], which, in contrast to the usual two-point
correlation function, shows signatures of both the breaking of
translation and rotation symmetry [Bragg peaks in panels (a),(b)]
as well as of the disorder in the stacking direction [broad features
in panels (c),(d)].

PHYSICAL REVIEW LETTERS 131, 096702 (2023)

096702-3



four-point correlation function and carries signatures of the
translational and rotational symmetry breaking [Bragg
peaks in panels (a) and (b)] as well as the disorder in
the stacking direction [broad features in panels (c) and (d)]
and also the short-range correlations within the hexagons
(low-intensity broad features rendered visible by the
log scale).
We note that, given the nonmagnetic nature of the

symmetry breaking, probes such as Raman scattering or
ultrasound measurements may be useful experimentally
besides neutron scattering, which can best establish the
absence of long-range magnetic order.
Robustness of the gap.—Since the hard-hexagon states

break only discrete symmetries, they are—if stable—
generically gapped. We analyze the excitations above
our family of hexagon states to asses their (local) stability.
As the candidate ground states are weakly dressed product
states of single-hexagon ground states, the simplest ansatz
for the excited states is given analogously by weakly
dressed local triplet excitations on a single hexagon. The
lowest-lying excited state on a single hexagon is given by a
triplet, with a gap of ∼0.69J. A possibility to reduce and
finally destabilize the gap would be for the localized
excitations to gain kinetic energy. Numerically evaluating
the excitation dispersion in three dimensions is difficult,
and presently out of reach. Instead, we turn to an analytic
approximation: namely the multiboson expansion, which is
able to describe the hopping of local excitations above a
given ground state, at first order in perturbation theory
[50,65,66]. The results are shown in Fig. 4: remarkably,
the lowest-lying triplet bands, jt−mi (m ¼ −1, 0, 1) at
E ∼ 0.69J, remain completely flat, while the higher energy
triplets disperse (bands labeled by jk�n i in Fig. 4) and are
actually pushed below the excited singlet located at
E ∼ 1.3J, which also remains flat. The flatness of the
bands is due to a symmetry of the hopping matrix elements
V [see Eq. (1)], connecting two hexagons A and B. This is
illustrated in Fig. 4(b): mirroring each hexagon individually
across a plane running through the tetrahedron leaves the
operator matrix element VðA;BÞ invariant. This implies a
selection rule for the hopping matrix element hs0; tjVjt; s0i.
Classifying all eigenstates of H0 by the three mirror
symmetries of a hexagon, it turns out that the ground
state singlet js0i as well as the lowest-lying triplet
jt−mi are simultaneous eigenstates of all three, but with
eigenvalue þ1 and −1 respectively. This then guarantees
hs0; t−mjVjt−m; s0i ¼ 0 by symmetry, hence the flatness of the
lowest band. By contrast, the two triplet pairs at E ∼ 1.5J
and E ∼ 1.8J are not simultaneous eigenstates of all three
mirror operations and hence are not prevented from mixing
into dispersive modes. In Fig. 4(c), we show schematically
a process with several high-energy virtual intermediate
states, which would give the lowest-lying triplet kinetic
energy. However, since this only appears at the fourth order
in V, we do not expect this to lower the gap of the hard-

hexagon state significantly. Finally, we note that the
symmetry argument above does not depend on the choice
of a particular tiling, but the exact shape of the dispersion of
high-energy bands in Fig. 4(a) will.
To summarize our results for the pyrochlore S ¼ 1=2

model, we propose an exponentially large family of
valence-bond crystals based on hard-hexagon coverings
as candidate ground states. Avariational calculation of their
energy in the thermodynamic limit is within the error bars
of the best numerical estimates of the ground-state energy.
The stability of these states is further supported by NLCE
and by a multiboson expansion which shows that the
kinetic energy of excitations is suppressed. The hard-
hexagon coverings break rotation, translation, and inver-
sion symmetries of the lattice. It is important to note that the
recent numerical studies that found lattice symmetry
breaking [37,38] used clusters that are incompatible with
the hard-hexagon states, rendering them energetically
disfavorable there.
Note that the same ingredients rendering the stability of

the valance-bond state are found in other Heisenberg
models, such as the two-dimensional ruby and checker-
board lattice for S ¼ 1=2 and S ¼ 1, cf. Fig. 1. We obtain
analogous results, such as the flatness of the triplet band
and a finite-size gap, in these cases. A short discussion of
spin S ¼ 1 [67] and broken symmetries [68–73] is given in
the Supplemental Material [50].
Discussion.—Having identified a new family of ener-

getically competitive states based on effectively decoupled
close-packed motifs, we still cannot settle the question of
what is the actual ground state in the pyrochlore case. On a

FIG. 4. (a) Dispersion of excitations above the hard-hexagon
state in Fig. 1(a) up to linear order in V. (b) Coupling of hexagons
and resulting local symmetry of the hopping matrix element V.
Flat bands are colored in red for visibility (c) Schematic of the
fourth-order hopping process by which the lowest-lying triplet
jt−mi would gain kinetic energy.
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technical level, our study underlines the need to consider
possibly very large unit cells in finite-size studies. We note
that such a change in perspective was already proposed in
the context of the S ¼ 3=2 spinel compound ZnCr2O4 [43],
where hexagonal motifs had been identified in a study of its
magnetoelastic properties [74]. In this case, theoretical
modeling ultimately suggested that the system is not
described by independent hexagonal clusters but rather
that weak further neighbor exchange can account for the
salient observations [75,76]. In this work, we have dem-
onstrated that the formation of such clusters can indeed
occur, but via a different, quantum, mechanism.
The existence of potential material realizations of the

pyrochlore Heisenberg antiferromagnet [77,78], and the
growing capabilities of cold atom emulations [79–81],
gives hope that some of these questions may eventually
be settled by experiment. The presence of a significant gap
to spin excitations above the hard-hexagon states would be
an important signature for both thermodynamic and spec-
troscopy measurements if indeed the system can equilibrate
into such a state at low temperatures. The presence of sharp,
gapped, S ¼ 1 excitations, along with the presence of
lattice symmetry breaking would serve to distinguish the
hard-hexagon states from competing quantum spin liquids.
However, due to the presence of such a large family of

low-energy states, as well as potential additional states
beyond the ansatz considered here, it may be that the
physics at the temperatures reachable in the experiment is
controlled not by a single ground state but by many
competing ones. Further, the eventual ground-state selec-
tion in an actual material in the presence of any near
degeneracies will take place via any residual deviations
from an ideal Heisenberg Hamiltonian, and may require
exquisitely low temperatures. Finally, hexagonal motifs
have appeared in various pyrochlore settings [74–76], and
the mechanisms leading to their stabilization may reinforce
each other in a given material.

We are very grateful to Imre Hagymási, Christopher
Laumann, David J. Luitz, Frank Pollmann, Götz S. Uhrig,
and Alexander Wietek for many helpful discussions on this
topic. DMRG and TDVP calculations were performed
using the ITensor [52] package with the global subspace
expansion [82]. This work was in part supported by the
Deutsche Forschungsgemeinschaft under Grant SFB 1143
(Project-ID No. 247310070) and the cluster of excellence
ct.qmat (EXC 2147, Project-ID No. 390858490). R. S. was
further supported by AFOSR Grant No. FA9550-20-
1-0235.

R. S. and B. P. contributed equally to this work.

*schaefer@pks.mpg.de
†placke@pks.mpg.de
‡benton@pks.mpg.de
§moessner@pks.mpg.de

[1] J. B. Marston and C. Zeng, J. Appl. Phys. 69, 5962 (1991).
[2] R. R. P. Singh and D. A. Huse, Phys. Rev. Lett. 68, 1766

(1992).
[3] S. Sachdev, Phys. Rev. B 45, 12377 (1992).
[4] J. T. Chalker and J. F. G. Eastmond, Phys. Rev. B 46, 14201

(1992).
[5] K. Yang, L. K. Warman, and S. M. Girvin, Phys. Rev. Lett.

70, 2641 (1993).
[6] C. Waldtmann, H. U. Everts, B. Bernu, C. Lhuillier, P.

Sindzingre, P. Lecheminant, and L. Pierre, Eur. Phys. J. B 2,
501 (1998).

[7] B. H. Bernhard, B. Canals, and C. Lacroix, Phys. Rev. B 66,
104424 (2002).

[8] R. Budnik and A. Auerbach, Phys. Rev. Lett. 93, 187205
(2004).

[9] R. R. P. Singh and D. A. Huse, Phys. Rev. B 76, 180407(R)
(2007).

[10] M. Hermele, Y. Ran, P. A. Lee, and X.-G. Wen, Phys. Rev. B
77, 224413 (2008).

[11] H. C. Jiang, Z. Y. Weng, and D. N. Sheng, Phys. Rev. Lett.
101, 117203 (2008).

[12] D. Poilblanc, M. Mambrini, and D. Schwandt, Phys. Rev. B
81, 180402(R) (2010).

[13] S. Yan, D. A. Huse, and S. R. White, Science 332, 1173
(2011).

[14] S. Depenbrock, I. P. McCulloch, and U. Schollwöck, Phys.
Rev. Lett. 109, 067201 (2012).

[15] Y. Iqbal, F. Becca, S. Sorella, and D. Poilblanc, Phys. Rev. B
87, 060405(R) (2013).

[16] H. J. Liao, Z. Y. Xie, J. Chen, Z. Y. Liu, H. D. Xie, R. Z.
Huang, B. Normand, and T. Xiang, Phys. Rev. Lett. 118,
137202 (2017).

[17] Y.-C. He, M. P. Zaletel, M. Oshikawa, and F. Pollmann,
Phys. Rev. X 7, 031020 (2017).

[18] A. M. Läuchli, J. Sudan, and R. Moessner, Phys. Rev. B
100, 155142 (2019).

[19] M. J. Lawler, H.-Y. Kee, Y. B. Kim, and A. Vishwanath,
Phys. Rev. Lett. 100, 227201 (2008).

[20] M. J. Lawler, A. Paramekanti, Y. B. Kim, and L. Balents,
Phys. Rev. Lett. 101, 197202 (2008).

[21] E. J. Bergholtz, A. M. Läuchli, and R. Moessner, Phys. Rev.
Lett. 105, 237202 (2010).

[22] A. V. Chubukov and T. Jolicoeur, Phys. Rev. B 46, 11137
(1992).

[23] R. Deutscher and H. Everts, Z. Phys. B 93, 77 (1993).
[24] W.-J. Hu, S.-S. Gong, W. Zhu, and D. N. Sheng, Phys. Rev.

B 92, 140403(R) (2015).
[25] Z. Zhu and S. R. White, Phys. Rev. B 92, 041105(R) (2015).
[26] Y. Iqbal, W.-J. Hu, R. Thomale, D. Poilblanc, and F. Becca,

Phys. Rev. B 93, 144411 (2016).
[27] B. Canals and C. Lacroix, Phys. Rev. Lett. 80, 2933

(1998).
[28] B. Canals and C. Lacroix, Phys. Rev. B 61, 1149

(2000).
[29] J. H. Kim and J. H. Han, Phys. Rev. B 78, 180410(R)

(2008).
[30] F. J. Burnell, S. Chakravarty, and S. L. Sondhi, Phys. Rev. B

79, 144432 (2009).
[31] S.-B. Lee, S. Onoda, and L. Balents, Phys. Rev. B 86,

104412 (2012).

PHYSICAL REVIEW LETTERS 131, 096702 (2023)

096702-5

https://doi.org/10.1063/1.347830
https://doi.org/10.1103/PhysRevLett.68.1766
https://doi.org/10.1103/PhysRevLett.68.1766
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.46.14201
https://doi.org/10.1103/PhysRevB.46.14201
https://doi.org/10.1103/PhysRevLett.70.2641
https://doi.org/10.1103/PhysRevLett.70.2641
https://doi.org/10.1007/s100510050274
https://doi.org/10.1007/s100510050274
https://doi.org/10.1103/PhysRevB.66.104424
https://doi.org/10.1103/PhysRevB.66.104424
https://doi.org/10.1103/PhysRevLett.93.187205
https://doi.org/10.1103/PhysRevLett.93.187205
https://doi.org/10.1103/PhysRevB.76.180407
https://doi.org/10.1103/PhysRevB.76.180407
https://doi.org/10.1103/PhysRevB.77.224413
https://doi.org/10.1103/PhysRevB.77.224413
https://doi.org/10.1103/PhysRevLett.101.117203
https://doi.org/10.1103/PhysRevLett.101.117203
https://doi.org/10.1103/PhysRevB.81.180402
https://doi.org/10.1103/PhysRevB.81.180402
https://doi.org/10.1126/science.1201080
https://doi.org/10.1126/science.1201080
https://doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1103/PhysRevB.87.060405
https://doi.org/10.1103/PhysRevB.87.060405
https://doi.org/10.1103/PhysRevLett.118.137202
https://doi.org/10.1103/PhysRevLett.118.137202
https://doi.org/10.1103/PhysRevX.7.031020
https://doi.org/10.1103/PhysRevB.100.155142
https://doi.org/10.1103/PhysRevB.100.155142
https://doi.org/10.1103/PhysRevLett.100.227201
https://doi.org/10.1103/PhysRevLett.101.197202
https://doi.org/10.1103/PhysRevLett.105.237202
https://doi.org/10.1103/PhysRevLett.105.237202
https://doi.org/10.1103/PhysRevB.46.11137
https://doi.org/10.1103/PhysRevB.46.11137
https://doi.org/10.1007/BF01308811
https://doi.org/10.1103/PhysRevB.92.140403
https://doi.org/10.1103/PhysRevB.92.140403
https://doi.org/10.1103/PhysRevB.92.041105
https://doi.org/10.1103/PhysRevB.93.144411
https://doi.org/10.1103/PhysRevLett.80.2933
https://doi.org/10.1103/PhysRevLett.80.2933
https://doi.org/10.1103/PhysRevB.61.1149
https://doi.org/10.1103/PhysRevB.61.1149
https://doi.org/10.1103/PhysRevB.78.180410
https://doi.org/10.1103/PhysRevB.78.180410
https://doi.org/10.1103/PhysRevB.79.144432
https://doi.org/10.1103/PhysRevB.79.144432
https://doi.org/10.1103/PhysRevB.86.104412
https://doi.org/10.1103/PhysRevB.86.104412


[32] Y. Iqbal, T. Müller, P. Ghosh, M. J. P. Gingras, H. O.
Jeschke, S. Rachel, J. Reuther, and R. Thomale, Phys.
Rev. X 9, 011005 (2019).

[33] H. Tsunetsugu, J. Phys. Soc. Jpn. 70, 640 (2001).
[34] M. Isoda and S. Mori, J. Phys. Soc. Jpn. 67, 4022

(1998).
[35] A. B. Harris, A. J. Berlinsky, and C. Bruder, J. Appl. Phys.

69, 5200 (1991).
[36] E. Berg, E. Altman, and A. Auerbach, Phys. Rev. Lett. 90,

147204 (2003).
[37] I. Hagymási, R. Schäfer, R. Moessner, and D. J. Luitz, Phys.

Rev. Lett. 126, 117204 (2021).
[38] N. Astrakhantsev, T. Westerhout, A. Tiwari, K. Choo, A.

Chen, M. H. Fischer, G. Carleo, and T. Neupert, Phys. Rev.
X 11, 041021 (2021).

[39] M. Hering, V. Noculak, F. Ferrari, Y. Iqbal, and J. Reuther,
Phys. Rev. B 105, 054426 (2022).

[40] O. Benton, L. D. C. Jaubert, R. R. P. Singh, J. Oitmaa, and
N. Shannon, Phys. Rev. Lett. 121, 067201 (2018).

[41] I. Hagymási, R. Schäfer, R. Moessner, and D. J. Luitz, Phys.
Rev. B 106, L060411 (2022).

[42] J. Schnack, J. Schulenburg, and J. Richter, Phys. Rev. B 98,
094423 (2018).

[43] S.-H. Lee, C. Broholm, W. Ratcliff, G. Gasparovic, Q.
Huang, T. H. Kim, and S.-W. Cheong, Nature (London) 418,
856 (2002).

[44] A. A. Nersesyan and A. M. Tsvelik, Phys. Rev. B 67,
024422 (2003).

[45] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Phys. Rev.
Lett. 93, 207204 (2004).

[46] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[47] A. E. Feiguin and S. R. White, Phys. Rev. B 72, 220401(R)

(2005).
[48] U. Schollwöck, Ann. Phys. (Amsterdam) 326, 96 (2011).
[49] E. Stoudenmire and S. R. White, Annu. Rev. Condens.

Matter Phys. 3, 111 (2012).
[50] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.131.096702 for a de-
tailed description of all calculations and analysis performed
in this letter.

[51] I. Hagymási, V. Noculak, and J. Reuther, Phys. Rev. B 106,
235137 (2022).

[52] M. Fishman, S. R. White, and E. M. Stoudenmire, SciPost
Phys. Codebases 4 (2022).

[53] H. D. Ursell, Math. Proc. Cambridge Philos. Soc. 23, 685
(1927).

[54] K. A. Brueckner, Phys. Rev. 97, 1353 (1955).
[55] J. Goldstone, Proc. R. Soc. A 239, 267 (1957).
[56] J. K. Percus, Commun. Math. Phys. 40, 283 (1975).
[57] S. B. Shlosman, Commun. Math. Phys. 102, 679 (1986).
[58] R. Mattuck, A Guide to Feynman Diagrams in the Many-

Body Problem, Dover Books on Physics Series (Dover
Publications, New York, 1992).

[59] R. Schäfer, I. Hagymási, R. Moessner, and D. J. Luitz, Phys.
Rev. B 102, 054408 (2020).

[60] B. Tang, E. Khatami, and M. Rigol, Comput. Phys.
Commun. 184, 557 (2013).

[61] R. Schäfer, Magnetic frustration in three dimensions
(2022), https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-
829375.

[62] R. Applegate, N. R. Hayre, R. R. P. Singh, T. Lin, A. G. R.
Day, and M. J. P. Gingras, Phys. Rev. Lett. 109, 097205
(2012).

[63] R. R. P. Singh and J. Oitmaa, Phys. Rev. B 85, 144414
(2012).

[64] E. Khatami, R. R. P. Singh, and M. Rigol, Phys. Rev. B 84,
224411 (2011).

[65] S. Sachdev and R. N. Bhatt, Phys. Rev. B 41, 9323 (1990).
[66] J. Romhányi and K. Penc, Phys. Rev. B 86, 174428 (2012).
[67] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
[68] B. Sriram Shastry and B. Sutherland, Physica (Amsterdam)

108B+C, 1069 (1981).
[69] P. Sindzingre, J.-B. Fouet, and C. Lhuillier, Phys. Rev. B 66,

174424 (2002).
[70] J.-B. Fouet, M. Mambrini, P. Sindzingre, and C. Lhuillier,

Phys. Rev. B 67, 054411 (2003).
[71] W. Brenig and A. Honecker, Phys. Rev. B 65, 140407(R)

(2002).
[72] Y.-H. Chan, Y.-J. Han, and L.-M. Duan, Phys. Rev. B 84,

224407 (2011).
[73] R. F. Bishop, P. H. Y. Li, D. J. J. Farnell, J. Richter, and C. E.

Campbell, Phys. Rev. B 85, 205122 (2012).
[74] O. Tchernyshyov, R. Moessner, and S. L. Sondhi, Phys.

Rev. Lett. 88, 067203 (2002).
[75] P. H. Conlon and J. T. Chalker, Phys. Rev. B 81, 224413

(2010).
[76] T. Yavors’Kii, T. Fennell, M. J. P. Gingras, and S. T.

Bramwell, Phys. Rev. Lett. 101, 037204 (2008).
[77] L. Clark, G. J. Nilsen, E. Kermarrec, G. Ehlers, K. S.

Knight, A. Harrison, J. P. Attfield, and B. D. Gaulin, Phys.
Rev. Lett. 113, 117201 (2014).

[78] S. Zhang, H. J. Changlani, K. W. Plumb, O. Tchernyshyov,
and R. Moessner, Phys. Rev. Lett. 122, 167203 (2019).

[79] D.-W. Zhang, Y.-Q. Zhu, Y. X. Zhao, H. Yan, and S.-L. Zhu,
Adv. Phys. 67, 253 (2018).

[80] A. Browaeys and T. Lahaye, Nat. Phys. 16, 132 (2020).
[81] G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. T. Wang,

D. Bluvstein, R. Verresen, H. Pichler, M. Kalinowski, R.
Samajdar, A. Omran, S. Sachdev, A. Vishwanath, M. Greiner,
V. Vuletić, and M. D. Lukin, Science 374, 1242 (2021).

[82] M. Yang and S. R. White, Phys. Rev. B 102, 094315 (2020).

Correction: The colors given in the Fig. 2 caption to
describe the curves in panel (a) were interchanged and have
been fixed.

PHYSICAL REVIEW LETTERS 131, 096702 (2023)

096702-6

https://doi.org/10.1103/PhysRevX.9.011005
https://doi.org/10.1103/PhysRevX.9.011005
https://doi.org/10.1143/JPSJ.70.640
https://doi.org/10.1143/JPSJ.67.4022
https://doi.org/10.1143/JPSJ.67.4022
https://doi.org/10.1063/1.348098
https://doi.org/10.1063/1.348098
https://doi.org/10.1103/PhysRevLett.90.147204
https://doi.org/10.1103/PhysRevLett.90.147204
https://doi.org/10.1103/PhysRevLett.126.117204
https://doi.org/10.1103/PhysRevLett.126.117204
https://doi.org/10.1103/PhysRevX.11.041021
https://doi.org/10.1103/PhysRevX.11.041021
https://doi.org/10.1103/PhysRevB.105.054426
https://doi.org/10.1103/PhysRevLett.121.067201
https://doi.org/10.1103/PhysRevB.106.L060411
https://doi.org/10.1103/PhysRevB.106.L060411
https://doi.org/10.1103/PhysRevB.98.094423
https://doi.org/10.1103/PhysRevB.98.094423
https://doi.org/10.1038/nature00964
https://doi.org/10.1038/nature00964
https://doi.org/10.1103/PhysRevB.67.024422
https://doi.org/10.1103/PhysRevB.67.024422
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/PhysRevB.72.220401
https://doi.org/10.1103/PhysRevB.72.220401
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1146/annurev-conmatphys-020911-125018
https://doi.org/10.1146/annurev-conmatphys-020911-125018
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.096702
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.096702
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.096702
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.096702
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.096702
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.096702
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.096702
https://doi.org/10.1103/PhysRevB.106.235137
https://doi.org/10.1103/PhysRevB.106.235137
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.1017/S0305004100011191
https://doi.org/10.1017/S0305004100011191
https://doi.org/10.1103/PhysRev.97.1353
https://doi.org/10.1098/rspa.1957.0037
https://doi.org/10.1007/BF01610004
https://doi.org/10.1007/BF01221652
https://doi.org/10.1103/PhysRevB.102.054408
https://doi.org/10.1103/PhysRevB.102.054408
https://doi.org/10.1016/j.cpc.2012.10.008
https://doi.org/10.1016/j.cpc.2012.10.008
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-829375
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-829375
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-829375
https://doi.org/10.1103/PhysRevLett.109.097205
https://doi.org/10.1103/PhysRevLett.109.097205
https://doi.org/10.1103/PhysRevB.85.144414
https://doi.org/10.1103/PhysRevB.85.144414
https://doi.org/10.1103/PhysRevB.84.224411
https://doi.org/10.1103/PhysRevB.84.224411
https://doi.org/10.1103/PhysRevB.41.9323
https://doi.org/10.1103/PhysRevB.86.174428
https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1016/0378-4363(81)90838-X
https://doi.org/10.1016/0378-4363(81)90838-X
https://doi.org/10.1103/PhysRevB.66.174424
https://doi.org/10.1103/PhysRevB.66.174424
https://doi.org/10.1103/PhysRevB.67.054411
https://doi.org/10.1103/PhysRevB.65.140407
https://doi.org/10.1103/PhysRevB.65.140407
https://doi.org/10.1103/PhysRevB.84.224407
https://doi.org/10.1103/PhysRevB.84.224407
https://doi.org/10.1103/PhysRevB.85.205122
https://doi.org/10.1103/PhysRevLett.88.067203
https://doi.org/10.1103/PhysRevLett.88.067203
https://doi.org/10.1103/PhysRevB.81.224413
https://doi.org/10.1103/PhysRevB.81.224413
https://doi.org/10.1103/PhysRevLett.101.037204
https://doi.org/10.1103/PhysRevLett.113.117201
https://doi.org/10.1103/PhysRevLett.113.117201
https://doi.org/10.1103/PhysRevLett.122.167203
https://doi.org/10.1080/00018732.2019.1594094
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1126/science.abi8794
https://doi.org/10.1103/PhysRevB.102.094315

