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We address Coulomb drag and near-field heat transfer in a double-layer system of incoherent metals.
Each layer is modeled by an array of tunnel-coupled SYK dots with random interlayer interactions.
Depending on the strength of intradot interactions and interdot tunneling, this model captures the crossover
from the Fermi liquid to a strange metal phase. The absence of quasiparticles in the strange metal leads to
temperature-independent drag resistivity, which is in strong contrast with the quadratic temperature
dependence in the Fermi liquid regime. We show that all the parameters can be independently measured in
near-field heat transfer experiments, performed in Fermi liquid and strange metal regimes.
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The electronic double layers—spatially separated and
interactively coupled conducting circuits—provide a ver-
satile array of low-dimensional quantum systems designed
to directly probe electronic correlations via nonlocal trans-
port measurements such as Coulomb drag [1]. Such double
layers can be formed out of 0D quantum dots and point
contacts [2–4], 1D nanowires [5–8], and topological edge
states [9], and bilayers of 2DEG [10–12] or graphene [13–
15]. These devices enable the exploration of various
electron transport regimes and the identification of corre-
lated electronic phases from the distinct temperature
dependence of the drag resistance.
In the Fermi liquid (FL) regime the drag resistance is

expected to scale quadratically with the temperature at the
lowest temperatures. This result follows from the simple
argument of the phase space available for the quasiparticle
scattering that can be accurately established in the micro-
scopic kinetic theory [16–18]. The interplay of screening
and diffusion leads to the enhancement of drag resistance in
the disordered systems [19–21]. At intermediate temper-
atures, dragging is dominated by the collective modes and
resistance peaks at the energies of plasmons in 2D bilayers.
The further fall-off of drag resistance at higher temperatures
can be described by hydrodynamic effects and is governed
by the electron liquid viscosity in clean systems [22,23].
All these features are well understood and rigorously
described within the framework of the Fermi liquid theory.
There are known examples of essentially non-Fermi

liquid behavior in systems where the quasiparticle concept
breaks down. For instance, in Luttinger liquids kinematics
of 1D collisions of electrons with linear spectrum dictates
that drag is dominated by the interwire backscattering
[24,25]. This translates into the signature power-law
temperature dependence of drag resistance with the power

exponent dependent on the strength of electron interaction.
At the lowest temperatures, however, the transresistivity
diverges, due to the formation of locked charge density
waves. The enhancement of resistance occurs also in 2D
layers provided that interactions are sufficiently strong and
the electron system is on one of the possible microemulsion
phases at the onset of Wigner crystallization [26]. Another
notable example is the regime of drag between fractional
quantum Hall liquids, where the transresistance is deter-
mined by the scattering and Coulomb screening effects of
composite fermions [27–30]. Ultimately, the strong cou-
pling limit may lead to pairing and interlayer (indirect
excitonic) superfluidity [31,32] that can be detected in the
Coulomb drag counterflow setup.
In recent years much of the attention in the context of

electronic transport is devoted to understanding the strange
metal (SM) behavior in strongly correlated materials with
and without quasiparticles, revealing the microscopic
origin of the Planckian dissipation [33–38]. This broad
interest facilitates the development of the corresponding
transport theory for strange metal bilayers that may provide
additional insights into the intricate physical properties of
these systems. For that purpose, we use the paradigmatic
Sachdev-Ye-Kitaev (SYK) model [39–41], which describes
a strongly interacting quantum many-body system without
quasiparticle excitations that is maximally chaotic, nearly
conformally invariant, and exactly solvable in the limit of a
large number of interacting particles. We derive analytical
results for the drag resistance and near-field thermal
conductance in bilayers of SYK arrays. Our analysis leads
us to drastically different conclusions concerning the
temperature dependence of the drag resistance in the SM
phase as compared to the FL, and different from the earlier
study based on the hydrodynamiclike holographic model of
the strange metal [42].
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To reveal the main qualitative features of the Coulomb
drag in incoherent metals, we consider a theoretical model,
which consists of two layers, dubbed by u and d, coupled
by interactions. Each layer consists of an array of SYK
dots, coupled by direct particle tunneling, see Fig. 1. The
Hamiltonian of the adopted model reads

H ¼
X

ν¼u;d

X

r

Hνr
SYK þ

X

ν¼u;d

Hν
t þ V int: ð1Þ

Here the first term describes the set of isolated SYK dots

Hνr
SYK ¼

XN

ij;kl

Jνrij;klc
þ
νric

þ
νrjcνrkcνrl; ð2Þ

where Jνrij;kl are random couplings drawn from the Gaussian

distribution with zero mean and the variances jJνrij;klj2 ¼
ð2J2=N3Þ. The interactions in different dots are statistically
independent of each other. The second term in Eq. (1)
describes the interdot tunneling of electrons in each layer

Hν
t ¼

X

hr;r0i

XN

i

tνi ðcþνricνr0i þ H:c:Þ; ð3Þ

where tνi denotes random tunneling amplitudes derived
from the Gaussian distribution with zero mean and the

variance jtνi j2 ¼ t20, and the sum hr; r0i runs over the nearest
neighbors. The tunneling couplings in different layers are
statistically independent. We associate the site index i, j, k,
l within the SYK dot with a quantum number character-
izing some quantum mechanical state (orbital), which is
conserved by the tunneling. The last term in Eq. (1)
describes interlayer interactions. Being guided by the
random interactions within the SYK dot, we adopt the
random interdot interaction between the on-site charge
densities

V int ¼
XN

i;j

Vij

X

r

cþuricuric
þ
drjcdrj: ð4Þ

The random interaction constants Vij have zero mean and
are characterized by the variance hV2

iji ¼ ðV2=NÞ.
Each isolated SYK dot provides a model of an incoherent

metal that completely lacks electron or hole quasiparticles
[39,40]. However, a weak electron hopping within an array
of SYK dots changes the low-energy spectrum, restoring
coherent quasiparticles. This, in turn, induces a crossover
between the high-temperature incoherent SYK metal and
low-temperature FL metal at a temperature of T0 ∼ t20=J,
which is determined by the electron escape rate from the
SYK-grain [35,41,43–46]. The model adopted here exhib-
its the same crossover. As we will show, the crossover
between the SYK and FL regimes results in a qualitative
change in the Coulomb drag resistance.
Because of the intrinsic incoherence in an SYK dot, the

temperature dependence of the transconductance is a local
feature of two neighboring dots in each layer, which we
assign with the numbers r ¼ 1, r0 ¼ 2, as shown in Fig. 1.
The global resistance is given by electric circuitry rules of
connecting such local elements in a larger circuit. Thus,
though the total drag resistance does depend on the
geometry and the dimensionality of the array, its temper-
ature dependence is independent of those (contrary to the
coherent metal case [20,24]).
The drag conductance is calculated according to theKubo

formula approach developed in Refs. [20,21]. The basic
diagram describing the drag response between the layers u
and d is shown in Fig. 2(a). Solid lines in Fig. 2 denote the
one-particle Green’s functions of the SYK model. Since
Coulomb drag is possible only if the particle-hole symmetry
is violated, we assume that the SYK grains in both layers are
away from half-filling. The charge asymmetry is para-
metrized by the parameters, introduced for SYK model in

FIG. 1. Schematic representation of the SYK double layer
setup. The four depicted dots is the minimal set needed to
evaluate the drag transconductance.

(a)

(b) (c)

FIG. 2. (a) Diagrams for the drag transconductance. Full lines
represent interacting SYK Green’s functions, wavy lines—inter-
layer interactions, and crossed circles—intralayer tunneling.
(b) Diagram for the interdot conductance within a single layer.
(c) Diagram describing the heat current between the SYK dots in
the up (u) and down (d) layers. Factors of N are indicated
explicitly.
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Ref. [47], Eu;d ∝ −dμu;d=dT, that are proportional to the
temperature derivative of the corresponding chemical poten-
tials. Detailed calculations outlined in the Supplemental
Material [48] result in the following expression for the drag
conductance in the strange metal (SM) regime

σSMDrag ≈ 58.6N
V2

J2
T2
0

T2
EuEd: ð5Þ

The drag conductance diminishes with temperature as T−2.
At the same time, the dc conductance within the layer
behaves as 1=T, [43], σSM ≈ 0.886Nðe2=hÞðT0=TÞ (for
details see Supplemental Material [48]). As a result the
drag trans-resistance between the two strange metals is
temperature independent:

ρSMDrag ¼
σSMDrag
ðσSMÞ2 ≈

CSM

N
h
e2

V2

J2
EuEd; ð6Þ

where the numerical factor is estimated as CSM ≈ 74.7, and
the SM regime is realized for T > T0. Furthermore, we find
that in this regime drag resistance remains independent of
the tunneling strength t0. This universality leads us to
conclude that the validity of Eq. (6) extends beyond the
specific microscopic model used in this Letter. Besides the
evident proportionality to the charge asymmetries in both
layers, the only physical parameter governing the drag
conductance is the ratio of the inter- and intralayer inter-
actions, V=J. Remarkably, this parameter can be independ-
ently determined through the measurement of the near-field
heat transport [49–52], as we demonstrate below.
The temperature-independent drag resistance of the

strange metal stands in stark contrast to the drag resistance
in the Fermi liquid, which is proportional to T2. In the
Fermi liquid regime at T < T0 < t0, tunneling is the most
relevant term in the Hamiltonian. It smears the low-energy
SYK singularity in the single-particle density of states,
substituting it with a semicircular energy band with a width
of 4t0 (at larger energy, 2t0 < ϵ < J, the SYK-like tails
remain). Assuming that the two chemical potentials fall
within this central band, jμu;dj < 2t0, the calculations of the
drag conductance that are outlined in the Supplemental
Material [48] result in

σFLDrag ∝ N
V2

J2
T2

T2
0

EuEd: ð7Þ

Meanwhile, the intralayer conductance in the FL regime is
independent of temperature, σFL ¼ ðe2=πhÞN. Therefore,
the resulting drag resistance is given by

ρFLDrag ≈
CFL

N
h
e2

V2

J2
T2

T2
0

EuEd; ð8Þ

where CFL ≈ 429.2 (for a detailed derivation of these
results, see the Supplemental Material [48]).
We conclude that the overall temperature dependence of

the drag resistance rises as ∼T2 at low temperatures in the
Fermi liquid regime and saturates to a temperature inde-
pendent value at high temperatures in the SM regime. The
drag resistances given by Eqs. (6), (8) become comparable
in the range of temperature T ∼ T0 ¼ t20=J that marks the
crossover between the Fermi-liquid and SM regimes. Since
the numerical coefficient by the drag resistance in the Fermi
liquid regime Eq. (8) is larger than the one in the SM
regime Eq. (6), the estimation of the drag resistance in the
two regimes at T ¼ T0 gives ρFLDragðT0Þ > ρSMDrag, which
suggests that the overall temperature dependence may
exhibit a maximum at temperatures about T0.
One may derive a phenomenological expression for the

overall temperature dependence of the drag resistance based
on the following physical picture. The energy spectrum in
the tunnel-coupled SYK dots can be roughly separated into
two regions. The states within the energy window of the
order of the tunneling escape rate T0 ¼ t20=J form a quasi-
Fermi liquid, contributing to the drag resistance according to
Eq. (8). On the other hand, the energy states beyond the
energy window of T0 form the strange metal, leading to the
drag resistance as given by Eq. (6). Both parts of the
spectrum constitute the two liquids, contributing in parallel
to the overall resistance. Since the high-energy states’
population necessitates their thermal activation, the two
liquids’ contributions should be weighted by their corre-
sponding thermal activation probabilities, resulting in the
following expression for the inverse resistance:

1

ρDrag
¼ 1 − e−T0=T

ρFLDrag
þ e−T0=T

ρSMDrag
: ð9Þ

Qualitative temperature dependence of the drag resistance is
shown in Fig. 3. It is important to note that the drag

FIG. 3. Temperature dependence of the drag resistance (in units
of the drag resistance at high temperature ρ∞): the T2 increase of
resistance in the low temperature FL regime changes to saturation
in the high temperature SM regime.
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resistance calculation in the crossover regime necessitates
exact form of the one-particle Green’s functions of the
tunnel-coupled SYK grains at the crossover temperature,
which is currently unavailable to the best of our knowledge.
Therefore, the question of whether the overall temperature
dependence of the drag resistance exhibits a maximum
remains open.
Consider now the near-field heat transfer conductance in

the model described by Eqs. (1)–(4). In the lowest order of
interaction, the near-field heat transfer flux Jh is given by
the diagram shown in Fig. 2(c), leading to the following
result for the heat conductance in the SM regime:

ϰSM ¼ Jh
ΔT

¼ 0.015N
V2

J2
T; ð10Þ

where T ¼ ðTu þ TdÞ=2, ΔT ¼ Tu − Td, and we assume a
small temperature difference ΔT ≪ T. Equation (10)
shows that the near-field heat conductance ϰSM ¼
Jh=ΔT is a linear function of temperature. The slope of
the temperature dependence of the heat conductance is then
directly related to the ratio V2=J2 characterizing the
interaction strength in the SM regime. Therefore, one
can relate the drag resistance and the heat conductance
as follows

ρSMDrag ¼
ASM

N2

h
e2

EuEd
dϰSM

dT
; ð11Þ

where the constant ASM ≈ 4980. Equation (11) provides a
universal relation between the results of two different
experiments in the incoherent metal.
Remarkably, the same functional relation (11) between

the drag resistance and the heat conductance holds in the
Fermi liquid regime with a somewhat different numerical
coefficient AFL ≈ 180. Indeed, the corresponding heat
conductance is known to be [48–51]

ϰFL ¼ 0.8N
V2T3

t40
¼ 0.8N

V2

J2
T3

T2
0

: ð12Þ

Along with Eq. (8) this leads to Eq. (11) with the
aforementioned AFL.
In summary, we studied the nonlocal electrical and thermal

transport in the interactively coupled double layers of two
strange metals. Each layer is modeled by the Hamiltonian of
tunnel-coupled SYK quantum dots. This model is known to
capture the physics of strange metal phases in the proper
regime of parameters. If the temperature is smaller than the
characteristic scale set by intergrain tunneling and intragrain
interaction, we recover the FL regime with the quadratic
temperature dependence of drag resistivity [Eq. (8)]. In the
temperature range above that scale, we find transresistance
approaching the limiting value, Eq. (6), fromabove. The latter
fact reflects the interplay of Planckian intralayer dissi-
pation and interaction-mediated interlayer dragging.

Results obtained for our microscopic model differ from the
recent study of the drag between two strange metal layers
using the Einstein-Maxwell-dilaton model from holography,
which claims ρDrag ∝ T4 [42]. Finally, we calculated near-
field interlayer thermal conductance. The established rela-
tionship, Eq. (11), between drag resistance and the near-field
heat conductance that is free of parameters of the considered
model suggests the universality of this result.
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