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Moiré systems have emerged in recent years as a rich platform to study strong correlations. Here, we will
propose a simple, experimentally feasible setup based on periodically strained graphene that reproduces
several key aspects of twisted moiré heterostructures—but without introducing a twist. We consider a
monolayer graphene sheet subject to a C2-breaking periodic strain-induced pseudomagnetic field with
period LM ≫ a, along with a scalar potential of the same period. This system has almost ideal flat bands
with valley-resolved Chern number �1, where the deviation from ideal band geometry is analytically
controlled and exponentially small in the dimensionless ratio ðLM=lBÞ2, where lB is the magnetic length
corresponding to the maximum value of the pseudomagnetic field. Moreover, the scalar potential can tune
the bandwidth far below the Coulomb scale, making this a very promising platform for strongly interacting
topological phases. Using a combination of strong-coupling theory and self-consistent Hartree-Fock, we
find quantum anomalous Hall states at integer fillings. At fractional filling, exact diagonaliztion reveals a
fractional Chern insulator at parameters in the experimentally feasible range. Overall, we find that this
system has larger interaction-induced gaps, smaller quasiparticle dispersion, and enhanced tunability
compared to twisted graphene systems, even in their ideal limit.
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Introduction.—The discovery of correlated states in
moiré materials has transformed the study of strongly
correlated phases [1–6]. Moiré materials provide a platform
where the bandwidth can be tuned by adjusting the twist
angle, enabling the realization of topologically trivial and
nontrivial strongly interacting bands. Beyond bandwidth
and topology, recent works have identified the quantum
geometry of wave functions [7–12] as a central ingredient
in understanding interacting physics, including the effec-
tive quasiparticle dispersion [12–15], the stability of
correlated topological phases [8,9,16–19], and the proper-
ties of collective excitations [7,10,14,20–22]. However,
compared to bandwidth, quantum geometry is significantly
more difficult to tune since it is mostly fixed by the form of
the moiré potential.
A prominent example is twisted bilayer graphene (TBG),

where an ideal limit [23] can be theoretically achieved by
tuning intrasublattice moiré tunneling to zero. The resulting
model exhibits flat C ¼ �1 bands satisfying the trace
condition [8,9,11,24], which relates the Fubini-study metric
to the Berry curvature. These are called “ideal bands,” and
are equivalent to those of the lowest Landau level in a
nonuniform magnetic field [8,9,25], making them a prom-
ising platform to realize [26] exotic phases such as frac-
tional Chern insulators (FCIs) [8,9,16–19] and skyrmion
superconductivity [27,28]. However, known experimental
knobs cannot tune TBG to its ideal limit (although lattice

relaxation moves couplings toward this limit [29–31]).
Alternating-twist multilayer generalizations [32–36] may
improve the situation, particularly at higher magic angles
[31], but still do not offer sufficient tunability. Other moiré
systems employing Bernal-stacked bilayer graphene such
as twisted monobilayer [37–43] or double bilayer [44–51]
admit idealized models [52–55] but in practice involve
additional terms such as trigonal warping [56] that move
them even further from ideal conditions [57].
Strain engineering provides another route to realize

narrow bands with strong correlations [60–64]. Strain acts
on graphene as a pseudomagnetic field (PMF) with equal
and opposite strength in each valley [65–74]. Early
theoretical works focused on strain profiles that realize a
uniform PMF to emulate Landau level physics [69,75,76].
However, these realizations require the atomic displace-
ment u to grow quadratically with distance [77], which is
only possible experimentally within a limited length scale
(∼10–100 nm) [78,79]. A more controllable setup is that of
periodic strain, which yields a periodic PMF with a
vanishing average over the unit cell. This is realized
experimentally by suspending graphene on a network of
nanorods [80], or through the spontaneous buckling of
graphene on substrates such as NbSe2 where a C2-breaking
PMF was recently observed [81]. This PMF gives rise to
narrow bands [82–86], whose quantum geometry and the
resulting interaction physics remain to be explored.
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Reference [23] has shown that a fully flat ideal band is
realized in a Dirac system if the sublattice-polarized wave
functions at the Dirac point have zeros in real space [23,87].
However, in contrast to moiré potentials that give rise to a
non-Abelian gauge field [23,88], strain only leads to an
Abelian field. This poses a challenge for realizing ideal
bands in strained graphene, since the wave functions of a
Dirac particle in an Abelian field are exponential functions
that can never have zeros.
In this Letter, we will show that by combining slowly

varying periodic C2-breaking PMF with a scalar potential
of the same periodicity in monolayer graphene, we can
realize an isolated almost ideal flat band with valley
resolved Chern number C ¼ �1. By almost ideal, we
means that deviations from ideality, i.e., trace condition
violation, are analytically controlled and exponentially
small in α ∼ ðLM=lBÞ2. Here, LM ≫ agraphene is the period
of the PMF and lB is the magnetic length corresponding to
the maximal PMF. This deviation is≪ 1 for experimentally
realistic parameters. We note a similar setup proposed
earlier combining C2-symmetric PMF with periodic scalar
field to gap out the graphene Dirac cone [71].
We show that the bandwidth is tunable via a scalar field,

and can be made significantly smaller than the Coulomb
scale. We study this limit of small bandwidth using
analytical strong coupling theory, Hartree-Fock (HF) and
exact diagonalization (ED). We provide evidence for
quantum anomalous Hall (QAH) states and fractional
Chern insulators (FCIs) at integer and fractional fillings,
respectively. Our results suggest that this system is more
tunable and has favorable parameters to realize QAH and
FCI states compared to twisted graphene systems, even in
their ideal limit.
Flat bands and topology.—Our starting point is the

continuum model of strained graphene with a triangular
C2-breaking PMF [81] given by

Bðz; z̄Þ ¼ B0

X5
l¼0

eiGl·r ¼ B0

X5
l¼0

e
i
2
ðGlz̄þḠlzÞ; ð1Þ

where Gl ¼ Rπl=3G0, G0 ¼ ð4π= ffiffiffi
3

p
LMÞð1; 0Þ, and Gl≡

Glx þ iGly.
The Hamiltonian in a single valley has the form H ¼

vFσ · ð−iℏ∇þ eÃÞwhere ∇ × Ã ¼ B. The other valley is
generated by time-reversal symmetry T [89].H is invariant
under threefold rotations C3 and MxT , the combination of
mirror x ↦ −x and time reversal. Strain corresponding to
Eq. (1) breaks both C2T and My symmetries of graphene
[82,83]. Furthermore, H has the chiral symmetry σzHσz ¼
−H, which protects a single Dirac cone per valley against
gapping out even though C2T symmetry is broken. A
sublattice potential ∝ σz can be used to open a gap at the
Dirac cone, but such a potential cannot be tuned in practice.
Nevertheless, by noting that the sublattice polarized wave

functions at the Dirac point are given by simple exponen-
tials ψA=B ∝ e�ϕ [−∇2ϕ ∝ B, see Eq. (4)], we see that a
scalar potential ∝ ϕ acts effectively as a tunable sublattice
potential that gaps out the Dirac point. The explicit form of
the potential is σ0V0

P
l e

iGl·r, which matches the height
buckling pattern [81] and thus is generated by applying a
vertical electric field [85,90].
Let us express the Hamiltonian in dimensionless units by

measuring momentum in units of jG0j ¼ ð4π= ffiffiffi
3

p
LMÞ and

introducing the magnetic length for the PMF B0 ¼ ðℏ=el2BÞ,
leading to

H ¼ E0f½kþ αA� · σ þ βVðrÞg: ð2Þ

Here, E0 ¼ ℏvFjG0j, α ¼ 1=l2BjG0j2 ¼ 3ðLM=4πlBÞ2, and
β ¼ V0=E0. A and V are dimensionless gauge and scalar
potentials given by

A ¼
X5
l¼0

ei
πl
3e

i
2
ðGlz̄þḠlzÞ; V ¼

X5
l¼0

e
i
2
ðGlz̄þḠlzÞ; ð3Þ

where A≡Ax þ iAy. Using the experimental parameters
of Ref. [81], LM ≈ 15 nm and lB ≈ 3.2 nm, we find α ≈ 0.4
and E0 ≈ 0.3 eV [98]. Figures 1(b) and 1(c) show band
structures for α ¼ 0.4 without (β ¼ 0) and with (β ≠ 0)
scalar potentials. For β ¼ 0, we find a pair of isolated bands

FIG. 1. (a) The PMFas described byEq. (1). The band structures
of the Hamiltonian [Eq. (2)] without (b) and with (c),(d) scalar
potential. (e) The minimal bandwidth of theC ¼ þ1 flat band and
its band gapΔwith respect to the lower band for different α for the
value of β that minimizes the bandwidth as shown in the inset. All
energy scales are measured in units ofE0 ¼ ℏvFjG0j. The setup of
Ref. [81] corresponds to α ≈ 0.4 and E0 ≈ 0.3 eV.
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connected by a single Dirac cone at Γ (which corresponds
to graphene K), protected by chiral symmetry.
To highlight the role of topology, we adopt a sub-

lattice basis [9,92]. At β ¼ 0, chiral symmetry implies
½σz;H2� ¼ 0. Thus, we can label the doubly degenerate
eigenfunctions of H2 by a sublattice index A=B. The
sublattice wave functions mix the energy eigenfunctions of
H; ψA=B;k ¼ ð1= ffiffiffi

2
p Þðψϵ;k � σzψϵ;kÞ, where σzψϵ;k ∝ ψ−ϵ;k.

Importantly, while the band wave functions around neutral-
ity are singular at the Dirac point and cannot be assigned a
Chern number, the sublattice wave functions are well-
defined everywhere [9,92,93]. In the Supplemental
Material (SM) [91] we show that the sum of these two
Chern numbers is always odd, implying that these two
bands are nontrivial within a single valley [82]. By direct
computation, the sublattice A (B) wave function has Chern
number þ1 (0) in the K valley.
Adding a scalar potential with β > 0 gaps out the Dirac

point and leads to an isolated C ¼ 1 band polarized on
sublattice A [see Fig. 1(c)]. Remarkably, the scalar poten-
tial can be tuned to obtain an almost perfectly flat band,
shown in Fig. 1(d). At α ¼ 0.4, β ¼ 0.068 gives the
minimal bandwidth. Using a height modulation of
0.2 nm [81], this is generated by a vertical electric field
of 100 mV=nm.
Figure 1(e) shows the minimal bandwidth as a function

of α (see inset for the corresponding β value) together with
the gap to the closest band. We note that all energy scales
decrease exponentially with α. On top of this exponential
squeezing, the scalar potential further flattens the topo-
logical band, leading to a minimum bandwidth that is
almost 2 orders of magnitude smaller than the typical
energy scale at a given α. For interacting physics, we
introduce the Coulomb scale: VC ¼ e2=ð4πϵϵ0LMÞ. In
dimensionless units, vC ¼ VC=E0 ¼

ffiffiffi
3

p
e2=8π2ϵϵ0vFℏ≈

0.63=ϵ, which is independent of LM. In Fig. 1(e), we show
the energy hierarchy of the bandwidth and the band gap
compared to the Coulomb energy scale. The bandwidth is
significantly smaller than the Coulomb scale, placing the
system in the strongly interacting regime.
Wave functions and quantum geometry.—For β ¼ 0, the

sublattice-polarized Bloch wave functions at Γ satisfy

DψΓ;B ¼ 0; D†ψΓ;A ¼ 0; ð4Þ

with D ¼ −2i∂þ αĀ and D† ¼ −2i∂þ αA. Noting that
A ¼ −2i∂V, we can solve Eq. (4) as ψΓ;A=BðrÞ ¼ e∓αVðrÞ.
These wave functions are plotted in Figs. 2(a) and 2(b),
showing that the A sublattice wave function is strongly
suppressed at r ¼ 0 and peaked at the two other C3

invariant points related by MxT , while the B sublattice
wave function is strongly peaked at r ¼ 0.
To understand the quantum geometry of the bands, let us

review the construction of Ref. [23]. An ideal perfectly flat
Chern band can be constructed for a Dirac operator if the
zero mode wave function at the Dirac point ψ0 has a real-
space zero [99]. The ideal band wave functions take the
form

ψkðrÞ ¼
σðzþ iB̃−1kÞ

σðzÞ e
i
2
zk̄ψ0ðrÞ; ð5Þ

where k ¼ kx þ iky and B̃ ¼ ð2π=AUCÞ with AUC the area
of the unit cell. ψk satisfiesDð∂Þψk ¼ 0 ifDð∂Þψ0 ¼ 0 and
transforms as a Bloch state under translations ψkðrþ RÞ ¼
eik·RψkðrÞ for any lattice vector R. The latter property
follows from the properties of the modified Weierstrass
sigma function [11,100].
A crucial property of the wave function [Eq. (5)] is that

its cell-periodic part uk ¼ e−ik·rψk is holomorphic in k.
This property is equivalent [24,101,102] to the trace
condition, trgðkÞ ¼ jΩðkÞj, where gμνðkÞ is the Fubini-
study metric, defined as the symmetric part of the quantum
metric tensor ημνðkÞ ¼ h∂kμukjð1 − jukihukjÞj∂kνuki, and
ΩðkÞ is the Berry curvature. Equivalently, this property
has been recently interpreted as a vortex attachment
condition, which enables the construction of trial FCI
states that are exact ground states for repulsive short-range
interactions [24,52,54]. These three equivalent properties
define an ideal band.
Since the wave function ψΓ;A is given by a simple

exponential, it cannot have any zeros. However, for α
sufficiently large [103], this wave function is exponentially
small at r ¼ 0. As a result, we can multiply it by a regulator

FIG. 2. (a),(b) Sublattice-polarized zero mode wave functions at the Γ point. (c) The Brillouin-zone-averaged square root deviation
ð1 − jhψk;Ajψη

k;AijÞ1=2 between the real wave function and the ansatz in Eq. (6) for β ¼ 0. (d),(e) The Berry curvature Ω and the trace
condition violation ðTrg − jΩjÞ=jΩj) of the C ¼ þ1 band for α ¼ 0.4, β ¼ 0. The dotted hexagons indicate the Brillouin zone.
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fηðrÞ that vanishes at 0 but is close to 1 everywhere else in
the unit cell; such a replacement will only change the wave
function by an exponentially small term. One possible
choice of regulator is fηðrÞ ¼ 1 − eη½VðrÞ−6� for some
k-independent η > 0. Consider the (unnormalized) varia-
tional state

ψη
k;AðrÞ ¼

σðzþ iB̃kÞ
σðzÞ e

i
2
zk̄fηðrÞe−αVðrÞ; ð6Þ

whose Bloch periodic part uηk;A ¼ e−ik·rψη
k;A is a holomor-

phic function of k, meaning that this ansatz satisfies the
ideal band condition. Thus, the deviation of the real wave
function from the ansatz provides a measure for the
violation of the ideal band condition. This deviation, mea-

sured by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jhψk;Ajψη

k;Aij
q

[104] is plotted in Fig. 2(c) for

different values of η. The deviation decreases with α, as
expected, and is of order ∼1%, indicating very small
violation of the trace condition Trg − jΩj [see Figs. 2(d)
and 2(e)]. The trace violation is further reduced when β is
tuned to give the minimal bandwidth (see SM [91]). We
note that the wave function [Eq. (6)], up to a k-independent
phase, corresponds to the lowest Landau level of a Dirac
particle in an inhomogeneous magnetic field BðrÞ ¼
−∇2 log jfηðrÞe−αVðrÞ=σðzÞj that has a nonzero average
flux of 2π per unit cell [8].
The wave function of the B sublattice is topologically

trivial and Wannierizable. It is strongly peaked at r ¼ 0 and
thus admits the ansatz [105] ψk;BðrÞ ¼

P
R e

ik·ReαVðr−RÞ.
Combined with the ansatz for the sublattice A wave
function, Eq. (6), we see that projecting the β ¼ 0
Hamiltonian onto the two flat bands yields exponentially
small dispersion; the Hamiltonian only contains sublattice
off-diagonal terms with the overlaps hψAjψBi ∼ e−α. This
also explains why the value of the scalar potential β needed
to flatten the band decreases exponentially with α [cf. the

inset in Fig. 1(e)]. A detailed analysis of the band energetics
is provided in the SM [91].
Interacting phases for the partially filled Chern band.—

Next we consider the effect of interactions on the partially
filled flat Chern band. Because of valley and spin, we
consider the filling ν∈ ½−4; 0�. Using a screened Coulomb
interaction Vq ¼ ðe2=2ϵϵ0jqjÞ tanh jqjd, we consider the
Hamiltonian HþHint with [9,92]

Hint ¼
1

2A

X
q

Vqδρqδρ−q; ρq ¼
X
α;k

λα;qðkÞc†α;kcα;kþq;

ð7Þ

where δρq ¼ ρq −
P

α;G;k δq;Gλα;GðkÞ, α ¼ ðs; τÞ is a com-
bined index for spin s and valley τ, G are reciprocal lattice
vectors, and λα;qðkÞ ¼ huα;kjuα;kþqi.
In the limit of small bandwidth, we can employ strong

coupling analysis similar to TBG [9,92,93,106] to find that
the ground states at integer fillings are generalized spin-
valley ferromagnets. The argument is explained in detail in
SM [91] and summarized here. Our setup is simpler than
TBG, where there are two flat bands per flavor, and simpler
than other moiré systems like twisted double bilayer
graphene, where dispersion is non-negligible [56]. At
ν ¼ −1 and ν ¼ −3, the ground state is a QAH spin and
valley polarized insulator with Chern number �1 that
spontaneously breaks both SU(2) spin and time-reversal
T . At ν ¼ −2, we have two degenerate ground state
manifolds: (i) a QAH valley ferromagnet with C ¼ �2
and (ii) a family of spin-polarized states with C ¼ 0
consisting of a spin ferromagnet in each valley. The two
manifolds (i) and (ii) are degenerate in our model, but
adding an intervalley Hund’s coupling lifts the degeneracy
and select states in (ii) [56,91,94].
In contrast to TBG, there are no further anisotropies. In

addition, intervalley coherent orders are disfavored since
they involve coherent superposition of states from opposite
Chern bands, leading to nodal order parameters [56,95].

FIG. 3. (a)–(d) Self-consistent HF spectra of the strongly correlated insulators discussed in the text. System size 24 × 24. (e) ED
spectrum at ν ¼ −2=3 on 24 k points of the QAH band at ν ¼ −1, as discussed in the text. The ground state is approximately threefold
degenerate (colored in blue). The inset shows the spectral flow of the three ground states under flux insertion, indicating a Laughlin state.
Parameters: α ¼ 0.4, β ¼ 0.068, and E0 ¼ 0.325 eV [108].
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Furthermore, the interaction-generated dispersion due to
Hartree-Fock corrections [13–15,106] is smaller compared
to TBG with similar interaction parameters [91]. This
follows from the delocalization of the A-sublattice wave
functions across two different points, related by MxT [see
Fig. 2(a)], which leads to a much milder Hartree potential
than that of the AA-site-localized TBG electrons. This
makes the QAH more energetically favored against com-
peting states compared to TBG [107]. The ground states at
different fillings are confirmed through self-consistent HF,
shown in Fig. 3. We notice here the relatively large gaps
and small quasiparticle dispersion (see SM [91] for
comparison with TBG).
We expect the flat ideal Chern bands to host FCIs when

fractionally filled. We verify this in the simplest case where
we electron-dope the ν ¼ −1 spin and valley polarized
QAH state, such that the doped charge enters in a single
flavor. Performing single-flavor ED at ν ¼ −2=3 shown in
Fig. 3, we see clear signatures of a Laughlin state with
threefold ground state degeneracy and spectral flow indi-
cating topological order (results for a large parameter space
can be found in SM [91]). Here, we have not included the
interaction-generated dispersion that makes ED extremely
sensitive to grid choice. However, we note the results of
Ref. [19], which showed that FCIs in chiral TBG are stable
up to relatively large values of dispersion. Given the smaller
interaction-generated dispersion in our system [91], we
expect the FCIs to survive its addition. We leave a detailed
analysis of this effect to future works.
Discussion.—We studied a system of monolayer gra-

phene with periodic, C2-breaking PMF combined with a
periodic scalar field with the same period LM ≫ a. This
can be realized experimentally by placing graphene on top
of a C2-breaking substrate such as NbSe2, which causes
both a strain-induced C2-breaking PMF and height modu-
lation, giving a periodic potential in perpendicular electric
field. Other realizations involve a network of nanorods [80]
arranged in a C2-breaking pattern [82], combined with a
periodic scalar potential generated by a patterned dielectric
[109,110] or a separate moiré hBN potential [111]. We
have shown that this system hosts almost ideal topological
bands whose bandwidth can be made very small by tuning
the scalar potential. This establishes this system as a
promising platform to study correlated topological phases
such as QAH states and FCIs, which we have numerically
verified. One further advantage of this system is the ability
to access both a topological band and a trivial band within
the same system by switching the sign of the scalar field or
the gate voltage. From an experimental viewpoint, the main
technical challenge in the setup based on NbSe2 substrate
lies in the difficulty of gating the sample since the substrate
is metallic. By overcoming this technical difficulty or using
a different C2-breaking but insulating substrate, we predict
this system to be an ideal platform to study strong
correlation effects in topological bands with several

advantages over twisted multilayer graphene-based moiré
systems.
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lattices, Phys. Rev. B 99, 075127 (2019).

[48] Jong Yeon Lee, Eslam Khalaf, Shang Liu, Xiaomeng Liu,
Zeyu Hao, Philip Kim, and Ashvin Vishwanath, Theory of
correlated insulating behaviour and spin-triplet super-
conductivity in twisted double bilayer graphene, Nat.
Commun. 10, 5333 (2019).

[49] Minhao He, Yuhao Li, Jiaqi Cai, Yang Liu, K. Watanabe,
T. Taniguchi, Xiaodong Xu, and Matthew Yankowitz,
Symmetry breaking in twisted double bilayer graphene,
Nat. Phys. 17, 26 (2020).

[50] Minhao He, Jiaqi Cai, Ya-Hui Zhang, Yang Liu, Yuhao Li,
Takashi Taniguchi, Kenji Watanabe, David H. Cobden,
Matthew Yankowitz, and Xiaodong Xu, Chirality-depen-
dent topological states in twisted double bilayer graphene,
arXiv:2109.08255.

[51] Le Liu, Shihao Zhang, Yanbang Chu, Cheng Shen, Yuan
Huang, Yalong Yuan, Jinpeng Tian, Jian Tang, Yiru Ji,
Rong Yang, Kenji Watanabe, Takashi Taniguchi, Dongxia
Shi, Jianpeng Liu, Wei Yang, and Guangyu Zhang, Isospin

competitions and valley polarized correlated insulators in
twisted double bilayer graphene, Nat. Commun. 13, 3292
(2022).

[52] Patrick J. Ledwith, Ashvin Vishwanath, and Eslam Khalaf,
Family of Ideal Chern Flatbands with Arbitrary Chern
Number in Chiral Twisted Graphene Multilayers, Phys.
Rev. Lett. 128, 176404 (2022).

[53] Jie Wang and Zhao Liu, Hierarchy of Ideal Flatbands in
Chiral Twisted Multilayer Graphene Models, Phys. Rev.
Lett. 128, 176403 (2022).

[54] Junkai Dong, Patrick J. Ledwith, Eslam Khalaf, Jong Yeon
Lee, and Ashvin Vishwanath, Exact many-body ground
states from decomposition of ideal higher chern bands:
Applications to chirally twisted graphene multilayers,
arXiv:2210.13477.

[55] Jie Wang, Semyon Klevtsov, and Zhao Liu, Origin of
model fractional chern insulators in all topological ideal
flatbands: Explicit color-entangled wavefunction and exact
density algebra, Phys. Rev. Res. 5, 023167 2023.

[56] Jong Yeon Lee, Eslam Khalaf, Shang Liu, Xiaomeng Liu,
Zeyu Hao, Philip Kim, and Ashvin Vishwanath, Theory of
correlated insulating behaviour and spin-triplet super-
conductivity in twisted double bilayer graphene, Nat.
Commun. 10, 5333 (2019).

[57] We note also other non-moiré alternatives to TBG [58,59],
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