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Crack fronts deform due to heterogeneities, and inspecting these deformations can reveal local variations
of material properties, and help predict out-of-plane damage. Current models neglect the influence of a
finite dissipation length scale behind the crack tip, called the process zone size. The latter introduces scale
effects in the deformation of the crack front, that are mitigated by the dynamics of the crack. We provide
and numerically validate a theoretical framework for dynamic crack-front deformations in heterogeneous
cohesive materials, a key step toward identifying the effective properties of a microstructure.
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The propagation of fronts, defining the border between
two distinct phases, occurs in numerous physical contexts
such as paper wetting [1], combustion [2], polymerization
[3], contact mechanics [4], fracture mechanics [5], com-
pressive failure [6], and aseismic slip [7]. Fronts usually
roughen due to interaction with heterogeneities. In fracture
mechanics, a front marks the spatial separation between
intact material and crack, and is thereby called a crack
front. It deforms as a consequence of the heterogeneous
landscape of toughness, the material resistance to crack
propagation. Understanding how these deformations occur
allows rationalizing the properties of composite materials
[8,9]. In addition, the transition between faceting and
microbranching for fast crack propagation is thought to
be related to high in-plane curvature of the front [10].
Studying the dynamics of front deformations is thus key to
unraveling the complex dynamics of heterogeneous
dynamic rupture. Coplanar crack propagation is usually
studied using perturbative approaches, such as the first-
order model derived by Rice [11] based on the weight
functions theory of Bueckner [12]. This approach has then
been extended to dynamic rupture [13,14] and also to
higher orders [10,15,16]. This framework has been suc-
cessfully applied to the deformation of crack front for
various shapes of defects [16–18] as well as predicting the
effective toughness of heterogeneous materials [19–21] and
rationalizing the intermittent dynamics of crack-front
propagation in disordered media [22]. These models are,
however, built on the linear elastic fracture mechanics
(LEFM) framework and thereby assume that the dissipation
at the crack tip occurs in a finite region, the process zone, of
negligible size. As a consequence, LEFM-based models are
bound to treat each asperity scale indifferently. Yet,
elasticity is expected to break down along a finite region
at the tip of the crack, and heterogeneities smaller or larger

than this length scale are expected to affect the crack
dynamics differently [23,24]. Cohesive zone models of
fracture [25,26] allow considering a finite dissipation
length scale through the introduction of stresses resisting
the crack opening near the tip over a finite length, the
process zone size. Regarding crack distortion, a recent
theoretical study [27] shed light on the importance of
considering the process zone size for quasistatic cracks.
The presence of a finite dissipation length scale (i) controls
the stability of crack fronts and (ii) introduces scale effects
in the pinning of crack fronts by heterogeneities of fracture
energy, and these effects are strongly dependent on how the
toughness variations are achieved. For dynamic rupture, the
process zone size is known to shrink with increasing
propagation velocity, thus increasing the importance of
this length scale relative to the size of the heterogeneities
[28–30]. In this Letter, we investigate for the first time the
influence of a finite process zone on the deformations of a
dynamic crack front. We simulate numerically co-planar
cracks loaded under normal tensile stress (mode-I) con-
ditions that propagate through a heterogeneous toughness
field. We solve this problem using our open-source
implementation [31] of the spectral boundary integral
formulation of the elastodynamic equations [32,33] and
study the influence of toughness heterogeneities arising
from heterogeneities of (i) peak strength and (ii) process
zone size. We show that contrarily to LEFM, a finite
process zone size introduces scale effects in crack-front
deformations, related to the nature of the heterogeneities.
We also show that dynamic cracks become more and more
oblivious to the nature of heterogeneities and their intensity
as their speed approaches the Rayleigh wave speed. The
behavior of dynamic crack fronts is comprehensively
understood with an analytical model that rationalizes the
numerical front deformations.
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We consider two semi-infinite elastic bodies of section
Lx, Lz that are in contact along a planar interface at y ¼ 0
[see Fig. 1(a)]. Periodic boundary conditions are imposed
in the x and z directions. The bodies are loaded under
mode-I condition that drives a cohesive crack through a
planar interface [crack in brown, process zone in orange in
Fig. 1(b)] in the positive x direction at a constant velocity
vc. The propagation in the −x direction is prevented. The
crack initially propagates inside a homogeneous field of
reference toughness G0

c . The interface properties are then
gradually changed along a distance lt towards an x invariant
field composed of a stripe of larger toughness Gs

c (dark
green) of width d embedded in a weaker toughness fieldGw

c
(light green). The average toughness in the z direction is
kept equal to the reference one, ðGs

c þ Gw
c Þ=2 ¼ G0

c ,
resulting in an effective toughness in the weak pinning
regime (the crack front maintains a stationary shape while
propagating) that is equal to G0

c [27]. The gradual transition
of properties allows reducing the oscillations of the crack-
front deformations, see [34]. In this Letter, we use
d ¼ Lz=2, Lx ¼ 8Lz. We study the propagation for only
x < 0.75Lx to neglect the effect of periodicity. We employ
a linear cohesive law [see Fig. 1(c)] to describe the behavior
of the interface, for which the stress decays linearly from
a peak value σc to 0 with the opening δ up to a critical
value δc,

σstrðx; z; tÞ ¼ σcðx; zÞmax½1 − δðx; z; tÞ=δcðx; zÞ; 0�: ð1Þ

For the linear slip weakening law, the process zone size
at rest ω0 can be estimated as ω0 ≃ 0.731ð1 − νÞμδc=σc
[36], with ν and μ the Poisson’s ratio and the shear modulus
of the bulk. The opening is defined as the difference
between the displacement fields of the top and bottom
solids. In this work, we investigate two types of hetero-
geneities: (i) heterogeneities of peak strength σc with equal
process zone size [see Fig. 1(d)] or (ii) heterogeneities of
quasistatic process zone size ω0 with constant peak strength
[see Fig. 1(e)]. The toughness contrast is defined as
ΔGc ¼ Gs

c − Gw
c . The problem is solved by conducting

full-field dynamic calculations, using an in-house open-
source implementation of the spectral boundary integral
method [32,33,37] called cRacklet [31]. The details of the
method are available in [34]. The crack front is initially
perfectly straight and starts deforming when it reaches the
heterogeneous field of toughness. The dynamic deforma-
tion of the crack front is mediated by the propagation of
crack-front waves [29,38,39], resulting in the front oscil-
lating over an equilibrium configuration, see [34]. We
measure the amplitude A of the front deformations as the
distance between the most advanced point in the process
zone at the axis of the strong band and at the axis of the
weak band, see Fig. 2(b). We started by validating the
ability of our numerical model to capture the linear increase
of front deformations amplitude with the toughness con-
trast, see [34].
First, we investigate the effect of the propagation velocity

on the dynamic crack-front deformations. The process zone
size at rest ω0 is kept relatively small compared to the
heterogeneities size, and the contrast in toughness is

(a)

(b)

(c)

(d)

(e)

FIG. 1. (a) Two identical semi-infinite elastic bodies are in
contact at a planar interface located at y ¼ 0, and are loaded
under normal tensile stress that drives a crack at a constant
velocity vc. (b) The layout of the interface with the crack (brown),
the process zone (orange), and the toughness field (shades of
green). The crack front (dashed black line) marks the separation
between the process zone and the intact material. (c) Traction-
separation law for the reference material. Toughness hetero-
geneities are achieved by (d) changing the peak strength σc or
(e) changing the quasistatic process zone size ω0 but keeping the
peak strength constant.

(a)

(b) (c) (d)

FIG. 2. (a) Normalized amplitude A=d of the front deformations
as a function of the normalized propagation velocity vc=cR, with
the prediction of the classical dynamic line tension model
DIðvcÞAlefm=d (dashed black), see details in the text. (b)–(d) Snap-
shots of the interface (with the crack in brown, the process zone in
orange, and the intact interface in shades of green corresponding to
the toughness) for, respectively, vc=cR ¼ 0.3, 0.6, 0.9, and
ΔGc=G0

c ¼ 0.4. Note that the x scale and z scale are different.
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achieved by varying the peak strength while keeping the
process zone size at rest constant across the interface.
According to [40], a front dynamically stiffens with increas-
ing propagation velocity and thus diminishes its deforma-
tions. For fast cracks,more energy is stored as kinetic energy
resulting in comparatively lower stored elastic energy and
consequently less front deformations. We show in Fig. 2(a)
the amplitude A of front deformations as a function of the
propagation velocity with vc=cR ∈ ½0.3–0.9� (black dia-
monds), with cR the Rayleigh wave speed. The amplitude
indeed decreases for faster cracks. The effect of dynamic
stiffening on front deformations can be quantified by the
function DIðvcÞ which only depends on the propagation
velocity and whose derivation is given in [34]. The dashed
black line in Fig. 2(a) is DIðvcÞAlefm=d, with Alefm the
predicted amplitude of front deformations based on the
classical line tension model which is valid for small process
zone size, and this function matches the amplitude observed
in the simulations. Figures 2(b)–2(d) are snapshots of the
crack-front configuration for vc=cR ¼ 0.3, 0.6, 0.9. The
crack is shown in brown, the process zone size in orange, and
the shades of green stand for the toughness of the intact
part of the interface. In these snapshots, two effects of an
increasing crack velocity are visible: (i) a decrease in the
deformations and (ii) a decrease in the process zone size. The
latter is known as the Lorentz contraction [28] of the process
zone and is highly relevant for the followingwhenwe assess
the effect of this length scale on front deformation. The
instantaneous process zone size for a mode I crack is given
byωv ¼ ω0=AIðvcÞwithAI a universal function of the crack
velocity [41].
The influence of the process zone size is investigated. We

consider two cases: heterogeneities of peak strength σc [with
constant process zone, see Fig 1(d)], and heterogeneities of
process zone size at rest ω0 with constant peak strength, see
Fig. 1(e). We vary in both cases the average value ω0 of the
quasistatic process zone size while keeping the toughness
contrast and the propagation velocity constant. The ampli-
tude of front deformations is shown in Fig. 3(a), for
vc ¼ 0.5cR, ΔGc ¼ 0.4G0

c and ωv=d∈ ½0.05–1.5� for both
heterogeneities of peak strength (diamonds) and process
zone size (circles). For small relative process zone sizeωv=d
the amplitude is similar for both types of heterogeneities.
However, they get significantly farther apart with increasing
process zone size: it increases with the dissipation length
scale for heterogeneities of peak strength, while it dimin-
ishes for heterogeneities of process zone size. Note that this
behavior is qualitatively generic and does not depend on the
propagation velocity vc. Changes in process zone size are
accommodated more easily by a crack front than changes in
peak strength. These observations are striking: the defor-
mations of a cohesive crack propagating through a hetero-
geneousmicrostructure are strongly dominated by the nature
of the heterogeneities. For two interfaces sharing the same
fracture toughness contrast, the difference between the two

types of heterogeneities investigated in this work reaches up
to a factor 4 when the process zone and the heterogeneities
have the same size ωv=d ∼ 1. The deformations are not tied
directly to the toughness contrast, but rather to the variations
of the cohesive parameters. For the slip-weakening law used
in this Letter and heterogeneities achieved by varying both
the peak strength and the process zone size (not presented
here), we expect the behavior to be bounded by the two
limiting cases that were investigated. This difference van-
ishes for negligibly small relative process zone size, which
can occur either with brittle materials or when cracks
propagate at a velocity close to the limiting wave speed
due to the Lorentz contraction.
In order to understand these surprising observations, we

go back to the quasistatic cohesive line tension model that
has been recently derived in [27]. Two competing mech-
anisms arise from the presence of a cohesive zone: (i) the
front is looser at scales comparable to that of the spatially
localized microdamage, (ii) the fluctuations of strength δσc
and process zone δω at that scale are also smoothed out.
These competing effects can have two different outcomes
in the quasistatic regime [27] that can be understood with
the fluctuations of cohesive stress that give rise to a stress
intensity factor. The influence of their spatial distribution
is controlled by the length scales of the front deformation
(d and A). Disorder of strength results in fluctuations
concentrated near the tip, so that the front has to distort more
to conform to the disordered landscape (increase of A).

(a)

(b) (c) (d)

(e) (f) (g)

FIG. 3. (a) Scaling of the amplitude A of the front deforma-
tions with the process zone size ωv for heterogeneities of
constant process zone size [diamonds, snapshots in (b)–(d)
for ωv=d ∼ 0.2, 0.6, 1.25] and constant peak strength [circles,
snapshots in (e)–(g) for ωv=d ∼ 0.2, 0.6, 1.25]. For the latter, ωv
is the average of ωvðzÞ over the crack front. For these
simulations vc ¼ 0.5cR and ΔGc=G0

c ¼ 0.4.
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For heterogeneities of process zone, the fluctuations occur
throughout the entire process zone and especially in its
wake, such that the front does not distort much (decrease of
A). The overall size of the process zone size ωv impact the
intensity of the cohesive stress fluctuations, thus ruling the
potency of these effects on A. This is in qualitative agree-
ment with the results reported in Fig. 3(a). However, our
simulations correspond to fully dynamic rupture while the
model in [27] is limited to quasistatic cracks. Two additional
effects are expected to emergewhen extending this model to
dynamics: (iii) the process zone size changes dynamically
and shrinks when a crack accelerates due to the Lorentz
contraction [28] and (iv) the front stiffens with increasing
crack velocity [40]. For the same interface, a faster crack is
expected to deform less, and the differences between the
type of heterogeneities should be reduced. In order to
validate our observations, we extend the model of [27] to
dynamics in steady state (i.e., constant propagation velocity,
see details in [34]) and obtain for the front deformations δa

cδaðkÞ ¼ −DIðvcÞ
�

ωv
Σ̂ðjkjωvÞ
ÂðjkjωvÞ

cδσcðkÞ
σ0c

þ ωv
Ω̂ðjkjωvÞ
ÂðjkjωvÞ

cδωðkÞ
2ωv

�

; ð2Þ

with k the wave number, :̂ indicating a Fourier transform,ωv
the instantaneous process zone size [related to (iii) above],
and DIðvcÞ a function of the velocity that represents the
dynamic stiffening of the front [point (iv) above]. Â, Σ̂, and
Ω̂ are functions of the nature of the weakening, the wave
number, and the process zone size (see [34] for their
formulation). Â acts as (i) the loss of stiffness of the front
due to the introduction of a finite-size region of dissipation,
while Σ̂ and Ω̂ (ii) smooth out the fluctuations of material
properties. In the limit of small ωv=d, the classical line
tension model is recovered.
Crack-front deformation simulations have been con-

ducted for a broad range of parameters, including variations
of process zone size at rest ω0, toughness contrast,
heterogeneity type, and front velocity vc. In Fig. 4(a) the
amplitudes measured from the simulations are compared to
the predictions from the classical line tension model (i.e.,
not considering the influence of the process zone size), with
the dynamic stiffening term (from Eq. S8 in [34]). This
prediction fails, as we have established previously that a
finite process zone size strongly impacts the front defor-
mations. For a given prediction based on LEFM (take, for
example, Alefm=d ¼ 0.25) there is a large spread of mea-
sured amplitude, being either larger or lower than the
predicted one (the dashed-gray line has a slope of 1)
depending on the heterogeneity type. It is expected from
the observations of Fig. 3 that simulations with a small
process zone (e.g., for fast ruptures) will result in a

significantly smaller difference between the two types of
heterogeneities. This is apparent with the data points
corresponding to fast cracks [yellow-green in Fig. 4(a)]
that are significantly closer than the ones for slower cracks
(in blue). The effect of the front stiffening is also visible
from Fig. 4(a), with large velocities resulting in small
amplitudes. In Fig. 4(b), the prediction of Eq. (2), the newly
derived dynamic cohesive line tension model, is tested: all
the data fall close to a linear master curve, strongly
supporting the validity of our model for rationalizing the
effect of a finite process zone. While the predictions of
Eq. (2) are based on the assumption of a semi-infinite crack,
finite-size cracks have been considered in the simulations.
Plus, the simulated ruptures are not in a steady state as
assumed in the model. Second-order effects might also be
required to accurately describe the deformations of cohesive
fronts, as the latter can display larger curvatures than the
classical line tension fronts. This could potentially explain
the small deviations from the predictions. Nonetheless, the
proposed model successfully predicts the numerical obser-
vations and thereby the nontrivial influence of a finite
dissipation length scale for crack-front deformations at
constant propagation velocity: not only does the process
zone influence front deformations, but also its outcome
varies strongly depending on heterogeneity type.
The deformations of a dynamic cohesive crack propa-

gating through a heterogeneous field of toughness have
been investigated numerically using the spectral boundary
integral method coupled with a cohesive zone model. We
show that contrarily to LEFM, a finite process zone size
introduces scale effects in the deformation of the crack
front that are nontrivial and depend on the nature of the
heterogeneities. Fast cracks become more and more oblivi-
ous to (i) the nature of the disorder due to the Lorentz
contraction of the process zone, and (ii) its intensity due to

(a) (b)

FIG. 4. The front deformations amplitude measured in simu-
lations versus (a) the LEFM prediction not accounting for a finite
process zone, (b) the prediction from our newly derived dynamic
cohesive line tension model. vc, ω0, ΔGc, and the type of
heterogeneities have been systematically varied.
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the dynamic stiffening of the front. To rationalize these
observations, we extended the cohesive line tension model
recently proposed in [27] to dynamic rupture. This model
allows considering heterogeneities at multiple scales, from
the nanoscale up to the mesoscale, and predicts accurately
the amplitude of the observed deformations, taking into
account the instantaneous average process zone size and the
propagation velocity. All in all, our model reveals the
nontrivial effect of a finite dissipation length scale on
the front deformations and particularly the importance of
the nature of the heterogeneities. Building a complete
cohesive model including changes in velocity and varia-
tions of properties along the front propagation direction
remains a challenge. For the latter, the process zone size is
expected to be also the relevant length scale, as the
properties are averaged over the process zone size [23].
We focused here on steady-state crack propagation when

material disorder is invariant in the propagation direction.
In this limit case, called the weak pinning regime, the
energy dissipated in fracture is proportional to the average
fracture energy G0

c. As soon as the translational invariance
breaks, crack propagation articulates as the succession of
depinning instabilities, and an additional toughening arises
from the disorder [42]. The instability threshold is con-
trolled by the energy landscape experienced by the rough
crack front. While we do not quantify here the energy
balance of dynamic cohesive ruptures, our model provides
the necessary ingredients to characterize the impact of the
process zone size and heterogeneities on the front rough-
ness, and so on the effective toughness. However, one can
already foresee that nearly Rayleigh-wave-speed co-planar
cracks with dynamically straightened fronts should propa-
gate in the weak pinning regime. Finally, this work might
help understand the occurrence of out-of-plane damage as a
consequence of high in-plane curvature of the front [10],
and more generally the deformations of a three-dimensional
crack front for which the process zone size changes with the
orientation from the crack tip.

The scripts used to run the numerical simulations
(including the version of the software) and the associated
results are available in Ref. [43].

M. Lebihain acknowledges funding provided by the
Swiss National Science Foundation (Grant No. CRSK-
2_190805).

*jean-francois.molinari@epfl.ch
[1] A. S. Balankin, R. G. Paredes, O. Susarrey, D. Morales, and

F. C. Vacio, Phys. Rev. Lett. 96, 056101 (2006).
[2] J. Maunuksela, M. Myllys, O.-P. Kähkönen, J. Timonen, N.

Provatas, M. J. Alava, and T. Ala-Nissila, Phys. Rev. Lett.
79, 1515 (1997).

[3] E. M. Lloyd, E. C. Feinberg, Y. Gao, S. R. Peterson, B.
Soman, J. Hemmer, L. M. Dean, Q. Wu, P. H. Geubelle,
N. R. Sottos, and J. S. Moore, ACS Cent. Sci. 7, 603
(2021).

[4] A. Sanner and L. Pastewka, J. Mech. Phys. Solids 160,
104781 (2022).

[5] J. Schmittbuhl and K. J. Maloy, Phys. Rev. Lett. 78, 3888
(1997).

[6] E. Berthier, A. Mayya, and L. Ponson, J. Mech. Phys. Solids
162, 104826 (2022).

[7] A. Sáez, B. Lecampion, P. Bhattacharya, and R. C. Viesca,
J. Mech. Phys. Solids 160, 104754 (2022).

[8] V. Lazarus, J. Mech. Phys. Solids 59, 121 (2011).
[9] D. Bonamy and E. Bouchaud, Phys. Rep. 498, 1 (2011).

[10] I. Kolvin, J. Fineberg, and M. Adda-Bedia, Phys. Rev. Lett.
119, 215505 (2017).

[11] J. Rice, J. Appl. Mech. 52, 571 (1985).
[12] H. Bueckner, Int. J. Solids Struct. 23, 57 (1987).
[13] J. R. Willis and A. B. Movchan, J. Mech. Phys. Solids 43,

319 (1995).
[14] A. B. Movchan and J. R. Willis, J. Mech. Phys. Solids 43,

1369 (1995).
[15] J.-B. Leblond, S. Patinet, J. Frelat, and V. Lazarus, Eng.

Fract. Mech. 90, 129 (2012).
[16] M. Vasoya, J.-B. Leblond, and L. Ponson, Int. J. Solids

Struct. 50, 371 (2013).
[17] J. Chopin, A. Prevost, A. Boudaoud, and M. Adda-Bedia,

Phys. Rev. Lett. 107, 144301 (2011).
[18] S. Xia, L. Ponson, G. Ravichandran, and K. Bhattacharya,

Phys. Rev. Lett. 108, 196101 (2012).
[19] S. Patinet, D. Vandembroucq, and S. Roux, Phys. Rev. Lett.

110, 165507 (2013).
[20] S. M. Xia, L. Ponson, G. Ravichandran, and K.

Bhattacharya, J. Mech. Phys. Solids 83, 88 (2015).
[21] M. Lebihain, Int. J. Fract. 230, 99 (2021).
[22] J. Barés, A. Dubois, L. Hattali, D. Dalmas, and D. Bonamy,

Nat. Commun. 9, 1253 (2018).
[23] F. Barras, P. H. Geubelle, and J.-F. Molinari, Phys. Rev. Lett.

119, 144101 (2017).
[24] D. S. Kammer, D. Pino Muñoz, and J. F. Molinari, J. Mech.

Phys. Solids 88, 23 (2016).
[25] D. S. Dugdale, J. Mech. Phys. Solids 8, 100 (1960).
[26] G. I. Barenblatt, in Advances in Applied Mechanics, edited

by H. L. Dryden, T. von Kármán, G. Kuerti, F. H. van den
Dungen, and L. Howarth (Elsevier, New York, 1962), Vol. 7,
pp. 55–129.

[27] M. Lebihain, T. Roch, and J.-F. Molinari, J. Mech. Phys.
Solids 168, 105025 (2022).

[28] J. R. Rice, in Physics of the Earth’s Interior, edited by
A.M. Dziewonski and E. Boschi (North Holland, 1980),
pp. 555–649.

[29] J. W. Morrissey and J. R. Rice, J. Mech. Phys. Solids 46,
467 (1998).

[30] I. Svetlizky and J. Fineberg, Nature (London) 509, 205
(2014).

[31] T. Roch, F. Barras, P. H. Geubelle, and J.-F. Molinari,
J. Open Source Software 7, 3724 (2022).

[32] P. H. Geubelle and J. R. Rice, J. Mech. Phys. Solids 43,
1791 (1995).

PHYSICAL REVIEW LETTERS 131, 096101 (2023)

096101-5

https://doi.org/10.1103/PhysRevLett.96.056101
https://doi.org/10.1103/PhysRevLett.79.1515
https://doi.org/10.1103/PhysRevLett.79.1515
https://doi.org/10.1021/acscentsci.1c00110
https://doi.org/10.1021/acscentsci.1c00110
https://doi.org/10.1016/j.jmps.2022.104781
https://doi.org/10.1016/j.jmps.2022.104781
https://doi.org/10.1103/PhysRevLett.78.3888
https://doi.org/10.1103/PhysRevLett.78.3888
https://doi.org/10.1016/j.jmps.2022.104826
https://doi.org/10.1016/j.jmps.2022.104826
https://doi.org/10.1016/j.jmps.2021.104754
https://doi.org/10.1016/j.jmps.2010.12.006
https://doi.org/10.1016/j.physrep.2010.07.006
https://doi.org/10.1103/PhysRevLett.119.215505
https://doi.org/10.1103/PhysRevLett.119.215505
https://doi.org/10.1115/1.3169103
https://doi.org/10.1016/0020-7683(87)90032-1
https://doi.org/10.1016/0022-5096(94)00075-G
https://doi.org/10.1016/0022-5096(94)00075-G
https://doi.org/10.1016/0022-5096(95)00041-G
https://doi.org/10.1016/0022-5096(95)00041-G
https://doi.org/10.1016/j.engfracmech.2012.03.002
https://doi.org/10.1016/j.engfracmech.2012.03.002
https://doi.org/10.1016/j.ijsolstr.2012.10.001
https://doi.org/10.1016/j.ijsolstr.2012.10.001
https://doi.org/10.1103/PhysRevLett.107.144301
https://doi.org/10.1103/PhysRevLett.108.196101
https://doi.org/10.1103/PhysRevLett.110.165507
https://doi.org/10.1103/PhysRevLett.110.165507
https://doi.org/10.1016/j.jmps.2015.06.010
https://doi.org/10.1007/s10704-021-00538-7
https://doi.org/10.1038/s41467-018-03559-4
https://doi.org/10.1103/PhysRevLett.119.144101
https://doi.org/10.1103/PhysRevLett.119.144101
https://doi.org/10.1016/j.jmps.2015.12.014
https://doi.org/10.1016/j.jmps.2015.12.014
https://doi.org/10.1016/0022-5096(60)90013-2
https://doi.org/10.1016/j.jmps.2022.105025
https://doi.org/10.1016/j.jmps.2022.105025
https://doi.org/10.1016/S0022-5096(97)00072-0
https://doi.org/10.1016/S0022-5096(97)00072-0
https://doi.org/10.1038/nature13202
https://doi.org/10.1038/nature13202
https://doi.org/10.21105/joss.03724
https://doi.org/10.1016/0022-5096(95)00043-I
https://doi.org/10.1016/0022-5096(95)00043-I


[33] M. S. Breitenfeld and P. H. Geubelle, Int. J. Fract. 93, 13
(1998).

[34] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.131.096101 for addi-
tional details on the material properties, the numerical
scheme, the identification of the equilibrium amplitude in
the simulations and the derivation of the dynamic cohesive
line tension model, which includes Ref. [35].

[35] S. Ramanathan and D. S. Fisher, Phys. Rev. Lett. 79, 877
(1997).

[36] R. C. Viesca and D. I. Garagash, J. Mech. Phys. Solids 113,
13 (2018).

[37] J. W. Morrissey and P. H. Geubelle, Int. J. Numer. Methods
Eng. 40, 1181 (1997).

[38] F. Fekak, F. Barras, A. Dubois, D. Spielmann, D. Bonamy,
P. H. Geubelle, and J. F. Molinari, J. Mech. Phys. Solids
135, 103806 (2020).

[39] A. Dubois and D. Bonamy, Phys. Rev. E 103, 013004
(2021).

[40] J. W. Morrissey and J. R. Rice, J. Mech. Phys. Solids 48,
1229 (2000).

[41] L. B. Freund, Dynamic Fracture Mechanics (Cambridge
University Press, Cambridge, England, 1998).
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