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It is known that rogue waves (RWs) are generated by the modulational instability (MI) of the baseband
type. Starting with the Bers-Kaup-Reiman system for three-wave resonant interactions, we identify a
specific RW-building mechanism based on MI which includes zero wavenumber in the gain band. An
essential finding is that this mechanism works solely under a linear relation between the MI gain and a
vanishingly small wavenumber of the modulational perturbation. The same mechanism leads to the
creation of RWs by MI in other multicomponent systems—in particular, in the massive Thirring model.
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Introduction.—The modulational instability (MI) of
constant-amplitude continuous waves (cw) against long-
wavelength perturbations plays a fundamental role in
understanding nonlinear-wave dynamics [1–4]. MI has
been predicted and observed in deep water [1,2,5], plasmas
[6–8], electric transmission lines [9,10], optics [11–22],
matter waves [23–36], and other physical media [37–45].
Theoretical and experimental studies of MI started in the

1960s [1–3,37,46–48]. Nowadays, MI is a subject of great
interest as a mechanism underlying the formation of rogue
waves (RWs) [49–54], which produce a dramatic impact
on the surrounding environment [41,55–57]; see also
comprehensive reviews [53,54]. Studies of RWs have
been performed in hydrodynamics, optics, plasmas, Bose-
Einstein condensates [41,55–72], and other fields [73].
Nevertheless, a complete understanding of RW formation is
still an open question. While the generation of RWs is
driven by MI, not every kind of MI leads to this outcome
[51,74]. Two generic types of MI are baseband and
passband ones [51,74]. In the former case, the cw back-
ground is unstable against perturbations with infinitesimal
wavenumbers Q and vanishingly small gain jQj, while in
the latter case MI is absent at jQj < Qmin with finiteQmin. It
was found that RWs can be generated solely by MI of the
baseband type.
The fact that the gain of the baseband MI vanishes at

Q ¼ 0 suggests a question if a physically meaningful
system can give rise to MI with nonzero gain at Q ¼ 0,
and whether MI of this type leads to RW formation. Here,
using a system for the three-wave resonant interaction, we
demonstrate that such zero-wavenumber-gain (ZWG) MI
exists, and indeed leads to RW formation, under the
condition that an asymptotically linear relation between
the MI gain and wavenumber Q holds, see Eq. (11) below.

The three-wave resonant-interaction system and RW
existence condition.—We consider the Bers-Kaup-Reiman
(BKR) system of equations for three waves E1;2;3ðx; tÞ
coupled by the saturable quadratic interaction, which
models the resonant three-wave coupling in hydrodynam-
ics, optics, microwaves, and plasmas [75–83]:

ðEnÞt þ Vn · ðEnÞx ¼
σnE�

kE
�
l

1þ ϵ
P

3
n¼1 ðjEnj2 − a2nÞ2

: ð1Þ

Here fn; k; lg are sets of f1; 2; 3g and their transpositions,
V1 > V2 > V3 ≡ 0 are group velocities, � is the complex
conjugate, and σj are signs of the interactions, which repre-
sent the stimulated-backscattering (σ1 ¼ σ2 ¼ −σ3 ¼ 1),
soliton-exchange (σ1 ¼ −σ2 ¼ σ3 ¼ 1), and explosive
(σ1 ¼ σ2 ¼ σ3 ¼ 1) regimes. In the latter case, a compli-
cating factor is that in the system is vulnerable to the onset
of blowup, therefore it includes the saturation represented
by the term ϵ ≥ 0 in Eq. (1) [84]. The original system
(ϵ ¼ 0) gives rise to cw solution (5) written below, with
amplitudes an, whose MI and the emerging RWs are the
same as in the saturable system (ϵ > 0).
Equation (1) is integrable when ϵ ¼ 0 [75,76], making it

possible to produce exact RW solutions via the Hirota
method [81,85],

Ej ¼ aj
ðξþ θjÞðξ� − θ�jÞ þ η0

jξj2 þ η0
eiϕj ; ðj ¼ 1; 2Þ;

E3 ¼ ia3
ðξ − θ1 − θ2Þðξ� þ θ�1 þ θ�2Þ þ η0

jξj2 þ η0
e−iðϕ1þϕ2Þ; ð2Þ

where a1;2;3 are nonzero real constants, and
ξ ¼ ðα − βÞx − ðV2α − V1βÞt, α ¼ ½ð−γ1Þ=ðV1 − V2Þp2

0�,
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β¼½ð−γ2Þ=ðV1−V2Þðp0−iÞ2�, ϕj¼cjxþdjt, d1 ¼ d2 ¼
ðγ3=2Þ, c1¼−½ð2γ1þγ3Þ=2V1�, c2 ¼ −½ð2γ2 þ γ3Þ=2V2�,
θ1 ¼ ½1=ðp0 − iÞ�, θ2 ¼ −ð1=p0Þ, η0 ¼ ½1=ðp0 þ p�

0Þ2�,
with γ1 ¼ σ1a2a3=a1, γ2 ¼ σ2a1a3=a2, γ3 ¼ σ3a1a2=a3,
and p0 taken as a nonimaginary root of a quartic equation,

γ3ðV1−V2Þp2ðp− iÞ2−γ1V2ðp− iÞ2þγ2V1p2¼0: ð3Þ

To make parameters a1, a2, a3, V1, and V2 satisfying the
condition that the root of Eq. (3) must be nonimaginary for
the BKR system of the stimulated-backscattering or explo-
sive type, the sign of the discriminant of Eq. (3),

Δ ¼ −γ1γ2γ3f½γ1V2 − γ2V1 þ γ3ðV1 − V2Þ�3
þ 27V1V2ðV1 − V2Þγ1γ2γ3g; ð4Þ

must be subject to constraintΔ < 0. For the BKR system of
the soliton-exchange type, the constraint securing the
existence of the RWs is, instead, Δ ≥ 0 [85].
ZWG-MI and the general mechanism for the RW

formation.—Equation (1) admits cw solutions

Ej ¼ aj exp ½iðcjxþ djtÞ�;
E3 ¼ ia3 exp ½−iððc1 þ c2Þxþ ðd1 þ d2ÞtÞ�; ð5Þ

where c1 ¼ −½σ1σ3a22 þ d1ðd1 þ d2Þ�=½V1ðd1 þ d2Þ�, c2 ¼
−½σ2σ3a21 þ d2ðd1 þ d2Þ�=½V2ðd1 þ d2Þ�, a3 ¼ σ3a1a2=
ðd1 þ d2Þ, with free real parameters aj and dj representing
cw amplitudes and frequencies, respectively. Using in-
variances of Eq. (1), we fix a1;2 to be real, and set
d1 ¼ d2 ¼ σ3a1a2=ð2a3Þ. Thus, a1;2;3 control the cw.
Actually, cw (5) is the background supporting the RW
states (2). For the same set of an, the cw solution and the
results for its MI, following below, remain fully valid for
ϵ > 0 in Eq. (1).
To address MI, the perturbed cw is written asfEn ¼ Enð1þ pnðx; tÞ=anÞ, where

pnðx; tÞ≡ ηn;1ðtÞeiQx þ ηn;2ðtÞe−iQx ð6Þ

are small perturbations with wavenumberQ. The linearized
equations for the perturbations amount to a 6 × 6 system,
dη=dt ¼ iMη, with η ¼ ðη1;1; η�1;2; η2;1; η�2;2; η3;1; η�3;2ÞT ,
nonzero matrix elements of M being M11 ¼
σ1a2a3=a1 − V1Q, M22 ¼ −σ1a2a3=a1 − V1Q, M33 ¼
σ2a1a3=a2 − V2Q, M44 ¼ −σ2a1a3=a2 − V2Q, M55 ¼
−M66 ¼ σ3a1a2=a3, M41¼−M32¼σ2a3, M23 ¼ −M14 ¼
σ1a3, M61 ¼ −M52 ¼ σ3a2, M25 ¼ −M16 ¼ σ1a2, M63 ¼
−M54 ¼ σ3a1, and M45 ¼ −M36 ¼ σ2a1.
The stability of fEn is determined by eigenvalues Ω ofM,

which are roots of the following characteristic polynomial,

BðΩÞ¼Ω6þλ5Ω5þλ4Ω4þλ3Ω3þλ2Ω2þλ1Ωþλ0; ð7Þ

where λ0 ¼ −V2
1V

2
2γ

2
3Q

4, λ1 ¼ 2V1V2γ3½V2ðγ1 − γ3Þþ
V1ðγ2 − γ3Þ�Q3, λ2¼fV1V2½V1V2Q2þ6γ3ðγ1þγ2−γ3Þ�−
½V2ðγ1−γ3Þ−V1ðγ2−γ3Þ�2gQ2, λ3¼2fðV1þV2Þ½V1V2Q2þ
γ3ðγ1 þ γ2− γ3Þþ γ1γ2�−V2γ1ðγ1− γ3Þ−V1γ2ðγ2− γ3ÞgQ,
λ4 ¼ ðV2

1 þ V2
2 þ 4V1V2ÞQ2 − ðγ1 þ γ2 − γ3Þ2 þ 4γ1γ2,

and λ5 ¼ 2ðV1 þ V2ÞQ.
The six roots of (7) are either real ones or complex-

conjugate pairs. The MI emerges in the latter case, being
accounted for by the roots with ImðΩÞ < 0. There are three
different types of the MI: (i) Baseband-MI: ImðΩÞ < 0
at jQj > 0 and ImðΩÞ ¼ 0 at Q ¼ 0, i.e., the MI
band includes small wavenumbers Q but not Q ¼ 0.
(ii) Passband-MI: ImðΩÞ < 0 at jQj > Qmin > 0 with a
nonzero boundary Qmin of the MI band, which separates it
fromQ ¼ 0. (iii) ZWG-MI: ImðΩÞ < 0 at jQj < Qmax with
Qmax > 0, i.e., the MI band includes zero wavenumber,
Q ¼ 0. This situation implies that the mechanical system
with three degrees of freedom, which corresponds to Eq. (1)
with x-independent fields, is itself unstable, as it represents
an amplifying setup.
To address the ZWG-MI, we set Q ¼ 0 in Eq. (7),

obtaining possible nonzero roots Ω ¼ �
ffiffiffiffiffiffi
Ω2

0

p
, with

Ω2
0 ¼ ðγ1 þ γ2 − γ3Þ2 − 4γ1γ2: ð8Þ

Thus, the ZWG-MI exists for Ω2
0 < 0, as Eq. (7) has two

mutually conjugate imaginary roots Ω at Q ¼ 0. On the
other hand, if Ω2

0 ≥ 0, Eq. (7) has no imaginary roots at
Q ¼ 0, hence only the baseband or passband MI is
possible. A conclusion is that the ZWG-MI occurs if all
σn in Eq. (1) have the same sign, i.e., solely in the case of
the explosive three-wave system. Unless mentioned other-
wise, we set σ1 ¼ σ2 ¼ σ3 ¼ 1 below.
Subsequently, we focus on the MI in the crucially

important limit of Q → 0. Accordingly, if Eq. (8) yields
Ω2

0 ≠ 0, we approximate (7) as BðQΩÞ ¼ Q4bð1ÞðΩÞ, hence
Eq. (7) amounts to

bð1ÞðΩÞ ¼ −Ω2
0Ω4 þ b3Ω3 þ b2Ω2 þ b1Ωþ b0 ¼ 0; ð9Þ

where b0 ¼ −V2
1V

2
2γ

2
3, b1 ¼ 2V1V2γ3½V2ðγ1 − γ3Þþ

V1ðγ2 − γ3Þ�, b2¼6V1V2γ3ðγ1þγ2−γ3Þ− ½V2ðγ1−γ3Þ−
V1ðγ2−γ3Þ�2 and b3 ¼ 2fðV1 þ V2Þ½γ3ðγ1 þ γ2 − γ3Þþ
γ1γ2� − V2γ1ðγ1 − γ3Þ − V1γ2ðγ2 − γ3Þg.
Equation (9) with b0 < 0 yields, at least, two simple real

roots when Ω2
0 < 0. If Ω2

0 > 0, Eq. (9) has two simple real
roots at all values of parameters. Because the discriminant
of quartic equation (9) coincides with that of Eq. (3), i.e., Δ
[see Eq. (4)], the RW existence condition, Δ < 0, can be
obtained from the discriminant of Eq. (9).
Thus, for Ω2

0 ≠ 0, two cases are possible. (i) If Δ ≥ 0, all
roots of Eq. (9) are real, and no baseband-MI occurs.
Specifically, if Δ ≥ 0 and Ω2

0 < 0, there exists a ZWG-MI
region; ifΔ ≥ 0 andΩ2

0 > 0, there is passband-MI or noMI
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takes place. (ii) If Δ < 0, Eq. (9) produces two complex-
conjugate roots, and there exists a baseband-MI region at
Ω2

0 > 0, or a ZWG-MI region at Ω2
0 < 0.

Figures 1 and 2 display the predicted characteristics of
the MI and RWexistence range. Figures 1(a) and 1(b) show
that the MI of the baseband, ZWG, and passband (or maybe
no-MI) types exists, respectively, in the regions of
0 < a3 ≤ 4=5, 4=5 < a3 ≤ 4=3, and a3 > 4=3. Based on
the sign of Δ [see Eq. (4)], as shown in Fig. 1(c), it is seen
that the RW existence condition is a3 < 1.247. Namely,
when 0 < a3 < 1.247, the MI of the baseband or
ZWG types occurs and the RWs exist, but when
1.247 < a3 < 4=3, the ZWG-MI occurs too, while RWs
do not exist. Figures 2(a) and 2(b) show that the passband-
MI (or maybe no-MI) is present when 0 < a2 < 0.5, while
the ZWG-MI occurs at a2 > 0.5. Figure 2(c) demonstrates
that the RW existence condition is a2 > 0.5.
Figure 3 shows an example of a fundamental dark-

bright-dark RW in the BKR system, as given by solution
(2), with the same parameters as in Fig. 2 and a2 ¼ 1. Such

RWs emerge in the ZWG-MI region. Virtually the same
RW is produced by direct simulations. In the generic case,
multi-RW structures are produced by simulations of Eq. (1)
initiated by a chaotically perturbed cw background, as
shown in Fig. 4. Following the pattern of Ref. [53], an
individual RW selected in the figure is compared to the
analytical solution in Fig. 3 of the Supplemental Material
[86], which includes Refs. [51,53,84,87].
The above results are established for Ω2

0 ≠ 0. When
Ω2

0 ¼ 0, Eq. (9) is replaced by BðQ1=3ΩÞ ¼ Q2bð2ÞðΩÞ, and
bð2ÞðΩÞ ¼ Ω6 þ b3Ω3 ¼ 0: ð10Þ

If b3 ≠ 0, there are two complex conjugate roots of
Eq. (10), and MI is of the baseband type. If Ω2

0 ¼
b3 ¼ 0, Eq. (10) is replaced by Bð ffiffiffiffi

Q
p

ΩÞ ¼ Q3b3ðΩÞ
and bð3ÞðΩÞ ¼ Ω6 þ b2Ω2 ¼ 0. We thus infer that, with
b2 ≠ 0 (b2, b3, andΩ2

0 cannot all be equal to zero), there are
at least two complex-conjugate roots, MI being of the
baseband type. Therefore, while the baseband-MI occurs at
Ω2

0 ¼ 0, in the case of Δ ≥ 0 RWs are absent. Thus, a new
feature of the present setting is that RWs may be absent in
the baseband-MI region. This situation was not reported
before, as it was believed that the presence of baseband-MI
always leads to the creation of RWs [51,74].
Thus we arrive at the following conclusions: (i) ZWG-

MI generates RWs at Δ < 0, which implies that there exist
complex roots Ω of Eq. (7) satisfying

ImðΩÞ ¼ OðQÞ ð11Þ

(an asymptotically linear dependence) at Q → 0; (ii) the
baseband-MI (when Ω2

0 ¼ 0) cannot generate RWs at

(a) (b) (c)

FIG. 1. (a) The map of the MI gain in parameter plane (Q; a3) of
Eq. (1) with fixed parameters σ1 ¼ σ2 ¼ σ3 ¼ 1, V1 ¼ 2,
V2 ¼ 1, a1 ¼ 4, a2 ¼ 1, and ϵ ¼ 0. (b) The MI gain, jImðΩÞj,
vs Q, corresponding to panel (a) at a3 ¼ 2, a3 ¼ 1, and a3 ¼ 0.5
(the dashed blue, solid red, and dotted black curves, respectively).
Panel (c) shows the RW existence area, 0 < a3 < 1.247, no RWs
existing at a3 > 1.247. In these areas, separated by the dotted
vertical line, the dashed black and solid red curves show
dependences of ln jΔj on a3, with Δ < 0 and Δ ≥ 0 in the left
and right areas, respectively. ZWG-MI occurs in the shaded
region.

(a) (b) (c)

FIG. 2. (a) The map of the MI gain in parameter plane (Q; a2) of
Eq. (1) with fixed parameters σ1 ¼ σ2 ¼ σ3 ¼ 1, V1 ¼ 2,
V2 ¼ 1, a1 ¼ a3 ¼ 1, and ϵ ¼ 0. (b) The MI gain vs Q,
corresponding to panel (a) at a2 ¼ 0.3 and a2 ¼ 1 (the dashed
blue and solid red curves, respectively). Panel (c) shows the RW
existence area, a2 > 0.5, no RWs existing at 0 < a2 < 0.5. In
these areas, separated by the dotted vertical line, the dashed black
and solid red curves show dependences of ln jΔj on a2, with
Δ ≥ 0 and Δ < 0 in the left and right areas, respectively.
ZWG-MI occurs in the shaded region.

FIG. 3. RWs produced by solution (2) of Eq. (1), with σ1 ¼
σ2 ¼ σ3 ¼ 1, V1 ¼ 2, V2 ¼ 1, a1 ¼ a2 ¼ a3 ¼ 1, and ϵ ¼ 0.
The respective roof of Eq. (3) is p0 ¼ 0.930605 − 0.366025i.

FIG. 4. A multi-RW pattern produced by numerical solution of
Eq. (1) with a random perturbation at the 5% level added to the
cw background in the ZWG-MI regime with a1 ¼ a1 ¼ a3 ¼
V2 ¼ 1, V1 ¼ 2, and ϵ ¼ 0.1. Dashed-line boxes select an
individual RW from the pattern which is compared to the ana-
lytical solution in Fig. 3 of the Supplemental Material [86].
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Δ > 0, which implies that there are no complex roots of
Eq. (7) satisfying relation (11); (iii) the baseband-MI
(at Ω2

0 ≠ 0) can generate RWs as it satisfies Eq. (11).
Therefore, in the regions of MI of the baseband and ZWG
types the crucial difference between the presence and
absence of RWs is the existence or absence of complex
roots of Eq. (9), rather than those of Eq. (7). These facts
demonstrate that RWs are generated only when Eq. (11) is
valid. Thus, the above analysis implies that solely the MI of
the baseband and ZWG types, satisfying condition (11),
leads to the formation of RWs. This criterion was not
reported previously.
When Q ¼ 0, Eq. (7) produces four zero roots and two

other ones, Ω ¼ �
ffiffiffiffiffiffi
Ω2

0

p
. Condition (11), which produces

the asymptotically linear condition of the existence of the
rational RW solutions, implies that RWs are related, at
Q ¼ 0, only to the set of the zero eigenvalues. This fact
implies the rational growth of the MI of the respective cw
background.
In Fig. 5, we summarize results of the MI analysis

produced by varying V1, while an are fixed so as to have
Ω2

0 ¼ 0. As shown in Fig. 5(a), the respective MI is of the
baseband type, while RWs exist only in the interval of
0.1 < V1 < 2.15. Figures 5(b) and 5(c) show the MI gain,
jImðΩÞj, as produced by all complex roots of (7) at V1 ¼ 1
and V1 ¼ 3. It is seen, in particular, that Eq. (11) holds for
V1 ¼ 1, but not for V1 ¼ 3.
The predicted mechanism of the RW creation can be

experimentally realized in amplified three-wave optical,
microwave, and hydrodynamic systems. A suitable exper-
imental setup in optics is based on a semiconductor
amplifier, providing the generation of light beams with
power ∼1 W at the standard wavelength, 1.55 μm [88]. For
microwave systems, amplifiers using Josephson junctions
make it possible to implement the interaction between
waves with frequencies ∼10 GHz [89,90]. Experiments
with water waves can be performed in the frequency range
15–30 Hz, using an apparatus of size ∼30 × 30 cm [91].
The boundary conditions which are used to initiate the
required wave dynamics are specified in Supplemental
Material, Sec. B [86].

Lastly, we present results obtained for the MI and RWs in
other integrable systems, that fully agree with the above
conclusions. (i) For the BKR system of the soliton-
exchange and stimulated-backscattering types, for which
conditionΩ2

0 > 0 holds, RWs exist if and only if Eq. (9) has
complex roots. Table 1 in Supplemental Material, Sec. A
[86] shows the relationship between all possible MI types
and RW existence conditions for all types of the BKR
system (1). The interpretation of the ZWG-MI in terms of
the three-wave mixing, which underlies the BKR system, is
additionally considered in Supplemental Material, Sec. C
[86]. (ii) In the two-component massive Thirring model,
RWs are absent in the case of the ZWG-MI, as Eq. (11)
does not hold in that case; RWs do or do not exist in the
case of the baseband MI if, respectively, Eq. (11) does or
does not hold, as shown in detail analytically and numeri-
cally in Supplemental Material, Sec. D [86], which includes
Refs. [92–97]. (iii) For other integrable equations which do
not give rise to the ZWG-MI, the results concerning the
existence of RWs in the case of the baseband-MI amount to
a particular case of the above analysis, as Eq. (7) is then the
same as Eq. (9), provided that Eq. (11) holds.
Conclusion.—The present work reveals the mechanism

for the formation of RWs in multicomponent systems
with coherent coupling, i.e., with energy exchange between
the components. In the framework of this mechanism, the
three-wave BKR system creates RWs in the case of the
ZWG-MI, i.e., MI whose gain band includes zero wave-
number. An important finding is that, in both cases of the
ZWG and baseband types of MI, the system creates RWs
only under the condition of the asymptotically linear
relation (11) between the MI gain and small perturbation
wavenumber. The same analysis predicts the existence or
absence of RWs in other coherently coupled multi-
component systems.
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