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We compute for the first time the long-distance penguin contribution to the double radiative B-meson
decays by applying the perturbative factorization theorem. The numerically dominant penguin amplitude
arises from the soft-gluon radiation off the light up-quark loop rather than the counterpart charm-loop
effect. Importantly, the long-distance up-quark penguin contribution brings about the substantial
cancellation of the known factorizable power correction, thus enabling Bd;s → γγ to become new
benchmark probes of physics beyond the standard model.
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Introduction.—It is widely accepted that the exclusive
radiative penguin bottom-meson decays play a central role in
exploring the quark-flavor dynamics of the standard model
(SM) and in probing the nonstandard electroweak inter-
actions at the LHCb and Belle II experiments. In particular,
the double radiative B̄d;s → γγ decays with nonhadronic
final states offer a remarkably clean environment to
address the intricate strong interaction mechanism of the
heavy-hadron system with the perturbative factorization
technique, in comparisonwith the radiative decays B̄ → Vγ.
Phenomenologically the direct CP asymmetries of the
double radiativeB-meson decays with the linearly polarized
photon states will be also highly beneficial for determining
the Cabibbo-Kobayashi-Maskawa phase angle γ [1].
Applying the QCD factorization approach, the leading-
power contributions to the exclusive B̄d;s → γγ decay
amplitudes in the heavy quark expansion have been dem-
onstrated to be factorized into the short-distance Wilson
coefficients and the leading-twist bottom-meson distribu-
tion amplitude [2]. In addition, a variety of the subleading-
power corrections to B̄d;s → γγ were investigated with the
diagrammatic factorization approach [3].
However, the persistent problem of evaluating the long-

distance penguin contribution to the double radiative bot-
tom-meson decay amplitudes in the presence of soft-gluon

emission remains unresolved at present. For decades the
nonlocal subleading power correction arising from the soft-
gluon radiation off the charm-loop diagrams has constituted
the long-standing obstacle to improve theory computations
for the angular observables ofB → Kð�Þll at large hadronic
recoil [4–14] (see Refs. [15–17] for discussions on such
nonlocal contributions at low recoil). Achieving the robust
predictions of the long-distance charm-loop effect in
B → Kð�Þll will be evidently indispensable for disentan-
gling the genuine new physics effect from the SM back-
ground contribution and for advancing our understanding
toward the nature of the observed flavor anomalies (see
for instance Refs. [18–23]). To this end, constructing
the systematic formalism to tackle the long-distance penguin
contribution to B̄d;s → γγ will further shed new light
on the model-independent calculation of the analogous
QCD corrections to the flavor-changing neutral current
decays B → Kð�Þll. More generally, the newly proposed
framework to cope with the nonlocal power correc-
tion to B̄d;s → γγ will be of importance to perform the
precision calculation of the exclusive heavy-flavor baryon
decays [24–33].
According to the numerical hierarchy between the

bottom and charm quark masses, we will apply the power
counting scheme mb ≫ mc ∼Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΛQCDmb
p Þ ≫ ΛQCD

[15,34–37] in establishing the factorization formulas for
the long-distance penguin contribution, instead of the
alternative counting scheme mb ∼mc ≫ ΛQCD employed
in Refs. [38,39]. Subsequently, we will report on a novel
observation on the hadronic matrix element responsible for
the soft-gluon radiation off the penguin diagrams.
Integrating out the short-distance QCD fluctuations
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embedded in this hadronic quantity will give rise to the
generalized three-particle B-meson distribution amplitude
in heavy quark effective theory (HQET) defined by the
nonlocal matrix element h0jq̄sðτ1nÞGμνðτ2n̄ÞΓihvð0ÞjB̄vi
rather than the conventional light-cone distribution
amplitudes (LCDAs) as previously introduced in
Refs. [40,41]. Employing the asymptotic behaviors of this
generalized B-meson distribution amplitude determined
from the analytic properties of the renormalization-group
(RG) evolution equation, we will demonstrate that the soft-
collinear convolution integrals entering the factorized
expressions of the long-distance penguin contributions
converge for both the massless-quark and massive-quark
loop induced terms. Phenomenological implications of the
newly computed power correction to the double radiative
bottom-meson decay observables will be further explored
with the three-parameter model for the B-meson soft
function.
General analysis.—The effective weak Hamiltonian of

the double radiative b → qγγ transitions has been shown to
be identical to the one for b → qγ decays [42],

Heff ¼
4GFffiffiffi

2
p

X
p¼u;c

VpbV�
pq

�
C1ðνÞPðpÞ

1 ðνÞ þ C2ðνÞPðpÞ
2 ðνÞ

þ
X8
i¼3

CiðνÞPiðνÞ
�
þ H:c:; ð1Þ

by employing the classical equations of motion [43]. Wewill

further adopt the operator basisPðpÞ
i as advocated in Ref. [44]

ensuring the disappearance of Dirac traces involving an odd
number of γ5 in the effective theory computations.
Up to the lowest order in the electromagnetic interaction

one can cast the exclusive B̄q → γγ amplitude in the
following form [3]:

ĀðB̄q → γγÞ ¼ −
4GFffiffiffi

2
p αem

4π
ϵ�αðpÞϵ�βðqÞ

×
X
p¼u;c

VpbV�
pq

X8
i¼1

CiT
ðpÞ
i;αβ; ð2Þ

where TðpÞ
i;αβ can be further decomposed as

TðpÞ
i;αβ ¼ im3

Bq

h
ðg⊥αβ − iε⊥αβÞFðpÞ

i;L − ðg⊥αβ þ iε⊥αβÞFðpÞ
i;R

i
; ð3Þ

thanks to the QED Ward-Takahashi identities and the
transversality of the on shell photons. Here we have
introduced the shorthand notations

g⊥αβ ≡ gαβ −
nαn̄β
2

−
n̄αnβ
2

; ε⊥αβ ≡ 1

2
εαβρτn̄ρnτ; ð4Þ

by defining two light-cone vectors nμ and n̄μ which satisfy
the constraints pμ ¼ mBq

n̄μ=2 and qμ ¼ mBq
nμ=2. It is

interesting to note that only the left-handed form factors

FðpÞ
i;L will survive at leading order in the heavy quark

expansion. Explicitly, the resulting factorization formula

for FðpÞ
i;L at leading power can be written as

X8
i¼1

CiF
ðpÞ;LP
i;L ¼ −

QqfBq
m̄bðνÞ

mBq

VðpÞ
7;effðmb;μ;νÞ

×K−1ðmb;μÞ
Z

∞

0

dω
ω

ϕþ
B ðω;μÞJðmb;ω;μÞ;

ð5Þ

where the effective hard function VðpÞ
7;eff , the matching

coefficient K, and the hard-collinear function J at one
loop can be found in Refs. [3,45–47].
QCD factorization for the long-distance penguin

contribution.—We are now in a position to explore fac-
torization properties of the subleading power effect from
the long-distance penguin contribution by inspecting the
partonic diagram in Fig. 1. Both the hard-collinear and the
anti-hard-collinear field modes carrying the four-momenta
Phc;μ ∼Oð1; λ; λ1=2Þ and Phc;μ ∼Oðλ; 1; λ1=2Þwill appear in
our problem, where the individual momentum components
correspond to n · P, n̄ · P, and P⊥ in sequence for an
arbitrary momentum Pμ, and the expansion parameter λ
scales as ΛQCD=mb. Integrating out the hard-collinear
quark loop, one can derive the scattering amplitude of
gðlÞ þ bðvÞ → qðq̃Þ þ γðpÞ governed by the effective
Hamiltonian [Eq. (1)] by discarding the yet higher-order
terms in an expansion of ΛQCD=mb [in comparison with
those terms shown in Eq. (6)]

Mðgþ b → qþ γÞ ¼ i
4GFffiffiffi

2
p gemgs

4π2
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VpbV�
pq

��
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2Nc

�
Qp½FðzpÞ − 1� þ 6C6

X
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Qq0 ½Fðzq0 Þ − 1�

þ
��
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C4

2Nc

�
þ 16

�
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2Nc

��
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q̄ðq̃ÞγβPLGμαF̃μβbðvÞ

i pα

ðp − lÞ2 ; ð6Þ

where the perturbative penguin function is given by

FðxÞ ¼ 4x arctan2
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4x − 1

p
�
; ð7Þ
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and we have further employed the conventions

zp ¼ m2
p − i0þ

ðp − lÞ2 ; F̃μν ¼ −
�
1

2

�
ϵμναβFαβ: ð8Þ

Importantly, the hard-scattering kernel displayed
in Eq. (6) depends on the unique component n̄ · l of the
soft-gluon momentum. Employing the scaling behavior
zb ∼Oðmb=ΛQCDÞ, we can verify that the bottom-quark

loop diagram with an insertion of P6 generates the yet
higher-order effect compared with the charm-loop effect.
We can proceed to evaluate the amplitude of

gðlÞ þ bðvÞ þ q̄ðkÞ → γðpÞ þ γðqÞ by integrating out the
anti-hard-collinear quark propagator in Fig. 1,

hγðpÞγðqÞjq̄γβPLGμαF̃μβbjgðlÞbðvÞq̄ðkÞi

⇒
igemeq
ðq − kÞ2 ϵ

μβλτpλϵ
�
τðpÞϵ�ρðqÞ½q̄ðkÞγρ⊥=qγβPLGμαðlÞbðvÞ�

þOðαsÞ; ð9Þ

where the short-distance coefficient depends on the
component n · k (rather than n̄ · k) of the soft-quarkmomen-
tum in the leading-power approximation. We then need to
introduce the subleading distribution amplitude defined
by the HQET matrix element of q̄sðτ1nÞGμνðτ2n̄ÞΓihvð0Þ.
Constructing the general parametrization of this effective
matrix element with the covariant tensor formalism [48] (as
adopted in Ref. [41]) allows us to derive the factorization
formula of the soft-gluon radiative correction to the left-
handed helicity form factor

X8
i¼1

CiF
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i;L ¼ −

QqfBq

mBq
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−∞

dω1

ω1 − i0
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−∞

dω2

ω2 − i0

��
C2 −

C1

2Nc

�
Qp½FðzpÞ − 1� þ 6C6Qc½FðzcÞ − 1�

−
��

C3 −
C4

2Nc

�
þ 16

�
C5 −

C6

2Nc

��
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�
ΦGðω1;ω2; μÞ þOðαsÞ: ð10Þ

It is customary to define ω1 ¼ n · k and ω2 ¼ n̄ · l such
that the resulting hard-collinear function develops a pecu-
liar dependence on ω2 via the quantity zp ¼ −m2

p=ðmBω2Þ
(apart from an overall factor 1=ω2). In accordance with the
power-counting rules for the short-distance matching coef-
ficients and the nonperturbative HQET function in the
obtained factorization formulas [Eqs. (5) and (10)], we can
verify the scaling behavior of the long-distance penguin
contribution in the heavy quark expansion

�X8
i¼1

CiF
ðpÞ;soft 4q
i;L

�
∶
�X8
i¼1

CiF
ðpÞ;LP
i;L

�
∼ ΛQCD∶mBq

: ð11Þ

Including the higher-order QCD corrections will gen-
erate the nontrivial hard functions from matching the

effective four-quark operators PðpÞ
i onto soft-collinear

effective theory I (SCETI) and simultaneously result in
the interesting impacts on the (anti)-hard-collinear matching
coefficients that appeared in Eq. (10). Schematically, the
factorized expression for the long-distance penguin correc-
tion to B̄q → γγ can be cast in the formHJ⋆J̄⋆ΦG, which
resembles the very pattern for the Qq

1 −Q7γ contribution to
B̄ → Xsγ [49] (see also Refs. [50,51]). Moreover, the
crossing Feynman diagram due to exchanging the two on
shell photons gives rise to the contribution identical to the
direct diagram.
The subleading distribution amplitude (more appropri-

ately called soft function) ΦG in Eq. (10) is defined by the
matrix element of the nonlocal operator with quark-gluon
fields localized on distinct light-cone directions

h0jðq̄sSnÞðτ1nÞðS†nSn̄Þð0ÞðS†n̄gsGμνSn̄Þðτ2n̄Þn̄ν=nγμ⊥γ5ðS†n̄hvÞð0ÞjB̄vi

¼ 2f̃BðμÞmB

Z þ∞

−∞
dω1

Z þ∞

−∞
dω2 exp ½−iðω1τ1 þ ω2τ2Þ�ΦGðω1;ω2; μÞ; ð12Þ

where the two soft Wilson lines Sn and Sn̄ (see Ref. [3] for the explicit definitions) are essential to maintain gauge invariance.
Comparing with the subleading shape function g17 for the inclusive B-meson decays, the distinctive features ofΦG consist of
the nonforward composite operator in the defining matrix element and the appearance of the QCD quark field whose

FIG. 1. Diagrammatical representation of the soft-gluon emis-
sion from the factorizable quark loop in B̄q → γγ, where the
symmetric diagram due to exchanging two on shell photons is not
shown. The quark and photon fields marked with red color carry
the anti-hard-collinear momenta, while the off shell quark in the
fermion loop and the other photon marked with blue color
correspond to the hard-collinear fields.
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interactions with soft gluons cannot be described by the
Eikonal effective theory. Neglecting renormalization effects,
the nonlocal HQET matrix element on the left-hand side of
Eq. (12) can be described by the familiar three-particle
LCDAs when taking the limit τ1ð2Þ → 0. In contrast to the
HQET distribution amplitudes Φ4;5, taking into account the
ultraviolet renormalization of ΦG results in the intriguing
pattern of mixing positive into negative support [see Eqs. (7)
and (8) of the Supplemental Material [52] for the manifest
expression of the evolution equation], thus demanding the
different limits of the corresponding convolution integrals in
the tree-level normalization conditions

Z þ∞

−∞
dω1ΦGðω1;ω2;μÞ¼

Z
∞

0

dω1Φ4ðω1;ω2;μÞ;Z þ∞

−∞
dω2ΦGðω1;ω2;μÞ¼

Z
∞

0

dω2Φ5ðω1;ω2;μÞ;
Z þ∞

−∞
dω1

Z þ∞

−∞
dω2ΦGðω1;ω2;μÞ¼

λ2Eþλ2H
3

; ð13Þ

where theexplicit definitions ofΦ4;5 canbe found inRef. [41].
λ2E and λ2H can be defined by the effective matrix elements of
the local chromoelectric and chromomagnetic operators [53].
As already mentioned, the support region of ΦGðω1;ω2; μÞ
must be extended to the entire real axes −∞ < ω1;2 < þ∞
due to the RG evolution, in analogy to the earlier observation
for the QED-generalized soft function of the charmless two-
body B̄ → M1M2 decays [54]. This distinctive feature for the
bottom-meson soft functionΦG will bemaintained even if we
initially assume ω0

1 > 0 and ω0
2 > 0. In particular, the emer-

ged imaginary part in the anomalous dimension Γðω1;ω2;
ω0
1;ω

0
2Þ implies that the soft function ΦG for the theory

description of the long-distance penguin contributions to
B̄q → γγ becomes complex due to the soft-parton rescatter-
ing. Furthermore, the asymptotic behaviorsof theRG-evolved
soft function can be determined from the analytic properties of
the one-loop evolution equation. On the basis of the scaling
behaviors forΦGðω1;ω2; μÞ at ω1;2 → 0 and ω1;2 → �∞ as
derived in the Supplemental Material [52] (with the inclusion
of Refs. [54–60]), we can verify that the convolution integrals
in the factorized expression [Eq. (10)] converge.
As already discussed in Ref. [61], the normalization

integrals of the renormalized B-meson LCDAs are
divergent due to the singularities of the corresponding
position-space amplitudes in the small light-cone separa-
tion limit [62]. Analogously, the asymptotic behavior of
ΦGðω1;ω2; μÞ at large values of ω1;2 displayed in Eq. (30)
of the Supplemental Material [52] indicates that all non-
negative moments of ΦG diverge. Consequently, the
obtained constraints in Eq. (13) do not hold beyond the
tree-level approximation. Instead, the model-independent
constraints on ΦGðω1;ω2; μÞ at jω1;2j ≫ ΛQCD can be
derived from the operator-product-expansion (OPE) analy-
sis of the regularized moments (for N1;2 ≥ 0),

MN1;N2

�
Λð1Þ
UV;Λ

ð2Þ
UV;Λ̃

ð1Þ
UV;Λ̃

ð2Þ
UV;μ

�

¼
Z þΛð1Þ

UV

−Λ̃ð1Þ
UV

dω1ω
N1

1

Z þΛð2Þ
UV

−Λ̃ð2Þ
UV

dω2ω
N2

2 ΦGðω1;ω2;μÞ; ð14Þ

following the Lee-Neubert strategy [61]. One can then
construct the improved model for the soft function by
gluing continuously the radiative tail Φasy

G onto the given
model function Φmod

G and by enforcing the OPE constraints
on the cut-off moments [61] (see also Refs. [63,64]). We
will leave the detailed discussions on the systematic para-
metrization of ΦG satisfying the nontrivial short-distance
constraints for our future work.
It remains interesting to explore the nonperturbative

behavior of the initial condition for ΦG with the dispersion
technique as adopted in Refs. [53,62,65–67]. Starting with
the HQET correlation function

ΠG ¼ i
Z

d4x exp ð−iωv · xÞh0jTf½ðq̄sSnÞðτ1nÞ

ðS†nSn̄Þð0ÞðS†n̄gsGμνSn̄Þðτ2n̄Þn̄ν =nγμ⊥γ5ðS†n̄hvÞð0Þ�;
½h̄vðxÞgsGρλðxÞσρλγ5qsðxÞ�gj0i; ð15Þ

we can on the one hand compute this quantity in the
kinematic region jωj ≫ ΛQCD with the OPE technique
and on the other hand derive the hadronic representation
of ΠG by taking advantage of analyticity with respect to the
variable ω. Matching the above two dispersion representa-
tionswith the aid of the parton-hadron duality ansätz enables
us to extract the scaling behavior ΦGðω1;ω2; μ0Þ ∼ ω1ω

2
2

at ω1;2 → 0.
Additionally, the theory framework of evaluating the

long-distance penguin contribution developed here can be
extended to explore the exclusive electroweak penguin
decays B → Kð�Þll systematically by investigating the
appropriate QCD correlation function with a variety of
the subleading soft functions in analogy to ΦG.
Numerical implications.—We turn to address the phe-

nomenological implications of the long-distance penguin
contributions to B̄q → γγ decay amplitudes. To achieve this
goal, we will adopt the particular nonperturbative model

ΦGðω1;ω2; μ0Þ ¼
λ2E þ λ2H

6

ω1ω
2
2

ω5
0

exp

�
−
ω1 þ ω2

ω0

�

Γðβ þ 2Þ
Γðαþ 2ÞU

�
β − α; 4 − α;

ω1 þ ω2

ω0

�

× θðω1Þθðω2Þ; ð16Þ
at μ0 ¼ 1.0 GeV, motivated from the three-parameter
ansätz for the twist-two LCDA [68]. It needs to be stressed
that the initial condition of the soft function is assumed to
be real and normalizable here. While this ansätz is
acceptable for the subsequent numerical analysis, it does
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not hold strictly due to the presence of the radiative tail and
imaginary part at an arbitrary scale. The shape parameters
ω0, α, and β can be determined by enforcing the first and
second normalization relations in Eq. (13) and by
employing the concrete model of Φ4;5 in Ref. [37]. The
leading-logarithmic evolution of ΦG to the factorization
scale μ will be accomplished with the aid of Eq. (21)
in the Supplemental Material [52]. The conventional

HQET LCDAs in the factorization formulas of FðpÞ
i;LðRÞ from

Ref. [3] will be also in demand, and we will apply the same
phenomenological model as presented in this reference,
with the exceptions of updated intervals for λBd

¼ ð275�
75Þ MeVand λBs

¼ ð325� 75Þ MeV [69] (seeRef. [67] for
a recent determination). The allowed intervals of additional
input parameters are identical to the ones collected in
Ref. [3].
Inspecting the numerical features of the soft-gluon

radiative corrections to the helicity form factors displayed
in Fig. 1 of the Supplemental Material [52] (with the
inclusion of Refs. [3,70–73]) indicates that the newly
computed up-quark penguin contribution generates the
substantial cancellation of the combined factorizable power
corrections discussed in Ref. [3], and the long-distance
charm-quark penguin mechanism merely brings about the
minor impact on

P
i CiF

ðcÞ
i;L. Having at our disposal the

desired theory predictions for the helicity form factors, we
proceed to explore the phenomenological implications of the
long-distance penguin contributions on the CP-averaged
branching fractions, the polarization fractions, and the time-
dependent CP asymmetries of B̄q → γγ. To achieve this
goal, we display our numerical predictions for these inter-
esting observableswith three distinct scenarios: (I) including
only the leading power contributions at the next-to-leading-
logarithmic accuracy, (II) combining the available leading-
power contributions with the subleading-power corrections
as previously determined in Ref. [3], and (III) adding further
the newly determined long-distance penguin contributions.
It is evident from Fig. 2 that the improved predictions for

the CP-averaged branching fractions with the inclusion of
the long-distance penguin contributions turn out to be only
marginally different from the counterpart theory determi-
nations obtained in our previous work [3]. We further
present the comparative predictions for the CP-averaged
polarization fractions and the CP-violating observables in
Figs. 2 and 3 of the Supplemental Material [52], where the
explicit definitions of these experimental observables for
the double radiative B̄q → γγ decays in the presence of the
neutral-meson mixing are also provided. Interestingly, the
power suppressed soft-gluon radiative effects can result in
the noticeable impacts on the two particular CP-violating

observables Amix;k
CP and Amix;⊥

CP : numerically Oð30%Þ cor-
rections for both b → dγ and b → sγ transitions with the
default inputs. Since the yielding numerical results for the
CP-violating observables are generally insensitive to λBq

,

we collect here only our predictions of these asymmetries

fAdir;k
CP ;Amix;k

CP ;Adir;⊥
CP ;Amix;⊥

CP g¼f13þ4
−3%;−19þ5

−8%;34þ7
−5%;

13þ7
−6%g for B̄d → γγ at λBd

¼275MeV and fAdir;k
CP ; Amix;k

CP ;
Adir;⊥

CP ; Amix;⊥
CP g ¼ f−0.67þ0.15

−0.23%; 0.97þ0.44
−0.27%; −1.8þ0.3

−0.5%;
−0.52þ0.32

−0.41%g for B̄s → γγ at λBs
¼ 325 MeV.

Conclusions.—In conclusion, we have presented the first
computation of the long-distance penguin contribution to
the double radiative B-meson decays. Adopting the power
counting scheme mc ∼Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΛQCDmb
p Þ, we demonstrated

that the soft function ΦG defined by the three-body HQET
operator with partonic fields localized on two distinct
light-ray directions emerged naturally in the factorization
formula [Eq. (10)]. Phenomenologically the soft-gluon
radiative off the factorizable up-quark loop appeared to
bring about a more pronounced effect in comparison with
the corresponding charm-quark penguin mechanism.
Despite the negligible impacts on the CP-averaged branch-
ing fractions, including the long-distance penguin contri-
butions can generate noticeable corrections to our theory

predictions for the CP-violating observables Amix;k
CP and

Amix;⊥
CP . In addition, our analysis will be evidently beneficial

for exploring the charming penguin dynamics in B → K�γ
and B → Kð�Þll, which are generally recognized as the
flagship probes of physics beyond the SM.

FIG. 2. Theory predictions for the CP-averaged branching
fractions of B̄d → γγ [top] and B̄s → γγ [down] obtained from
including only the leading-power contributions [gray bands],
from taking into account both the leading-power contributions
and the various subleading-power corrections estimated in
Ref. [3] [blue bands], and from adding further the newly
determined long-distance penguin corrections [red bands].

PHYSICAL REVIEW LETTERS 131, 091902 (2023)

091902-5



The research of Q. Q. is supported by the National
Natural Science Foundation of China with Grant
No. 12005068. C.W. is supported in part by the
National Natural Science Foundation of China with
Grant No. 12105112 and the Natural Science Foundation
of Jiangsu Education Committee with Grant
No. 21KJB140027. The research of Y. L. S. is supported
by the National Natural Science Foundation of China with
Grant No. 12175218 and the Natural Science Foundation of
Shandong with Grant No. ZR2020MA093. Y. M.W.
acknowledges support from the National Natural Science
Foundation of China with Grants No. 11735010 and
No. 12075125, and the Natural Science Foundation of
Tianjin with Grant No. 19JCJQJC61100.

*qqin@hust.edu.cn
†Corresponding author: shenylmeteor@ouc.edu.cn
‡Corresponding author: chaowang@nankai.edu.cn
§Corresponding author: wangyuming@nankai.edu.cn

[1] S. W. Bosch and G. Buchalla, J. High Energy Phys. 08
(2002) 054.

[2] S. Descotes-Genon and C. T. Sachrajda, Phys. Lett. B 557,
213 (2003).

[3] Y.-L. Shen, Y.-M. Wang, and Y.-B. Wei, J. High Energy
Phys. 12 (2020) 169.

[4] A. Ali, T. Mannel, and T. Morozumi, Phys. Lett. B 273, 505
(1991).

[5] A. Khodjamirian, T. Mannel, A. A. Pivovarov, and Y. M.
Wang, J. High Energy Phys. 09 (2010) 089.

[6] A. Khodjamirian, T. Mannel, and Y. M. Wang, J. High
Energy Phys. 02 (2013) 010.

[7] C. Hambrock, A. Khodjamirian, and A. Rusov, Phys. Rev. D
92, 074020 (2015).

[8] C. Bobeth, M. Chrzaszcz, D. van Dyk, and J. Virto,
Eur. Phys. J. C 78, 451 (2018).

[9] A. Kozachuk andD.Melikhov, Phys. Lett. B 786, 378 (2018).
[10] D. Melikhov, EPJ Web Conf. 222, 01007 (2019).
[11] N. Gubernari, D. van Dyk, and J. Virto, J. High Energy

Phys. 02 (2021) 088.
[12] V. G.Chobanova,T.Hurth, F.Mahmoudi,D.Martinez Santos,

and S. Neshatpour, J. High Energy Phys. 07 (2017) 025.
[13] A. Arbey, T. Hurth, F. Mahmoudi, and S. Neshatpour, Phys.

Rev. D 98, 095027 (2018).
[14] T. Hurth, F. Mahmoudi, and S. Neshatpour, Phys. Rev. D

102, 055001 (2020).
[15] B. Grinstein and D. Pirjol, Phys. Rev. D 70, 114005 (2004).
[16] M. Beylich, G. Buchalla, and T. Feldmann, Eur. Phys. J. C

71, 1635 (2011).
[17] J. Lyon and R. Zwicky (2014).
[18] S. Jäger and J. Martin Camalich, J. High Energy Phys. 05

(2013) 043.
[19] S. Descotes-Genon, J. Matias, and J. Virto, Phys. Rev. D 88,

074002 (2013).
[20] S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto, J. High

Energy Phys. 06 (2016) 092.
[21] M. Ciuchini, M. Fedele, E. Franco, S. Mishima, A. Paul, L.

Silvestrini, and M. Valli, J. High Energy Phys. 06 (2016) 116.

[22] J. Aebischer, W. Altmannshofer, D. Guadagnoli, M.
Reboud, P. Stangl, and D. M. Straub, Eur. Phys. J. C 80,
252 (2020).

[23] M. Ciuchini, M. Fedele, E. Franco, A. Paul, L. Silvestrini,
and M. Valli, Phys. Rev. D 103, 015030 (2021).

[24] C.-H. Chen and C. Q. Geng, Phys. Rev. D 64, 074001
(2001).

[25] X.-G. He, T. Li, X.-Q. Li, and Y.-M. Wang, Phys. Rev. D 74,
034026 (2006).

[26] Y.-M.Wang,Y.Li, andC.-D.Lu,Eur. Phys. J.C59, 861 (2009).
[27] P. Ball, V. M. Braun, and E. Gardi, Phys. Lett. B 665, 197

(2008).
[28] Y.-M. Wang, Y.-L. Shen, and C.-D. Lu, Phys. Rev. D 80,

074012 (2009).
[29] T. Mannel and Y.-M. Wang, J. High Energy Phys. 12

(2011) 067.
[30] T. Feldmann and M.W. Y. Yip, Phys. Rev. D 85, 014035

(2012); 86, 079901(E) (2012).
[31] W. Wang, Phys. Lett. B 708, 119 (2012).
[32] V. M. Braun, S. E. Derkachov, and A. N. Manashov,

Phys. Lett. B 738, 334 (2014).
[33] Y.-M. Wang and Y.-L. Shen, J. High Energy Phys. 02

(2016) 179.
[34] H. Boos, T. Feldmann, T. Mannel, and B. D. Pecjak,

Phys. Rev. D 73, 036003 (2006).
[35] H. Boos, T. Feldmann, T. Mannel, and B. D. Pecjak, J. High

Energy Phys. 05 (2006) 056.
[36] Y.-M. Wang, Y.-B. Wei, Y.-L. Shen, and C.-D. Lü, J. High

Energy Phys. 06 (2017) 062.
[37] J. Gao, T. Huber, Y. Ji, C. Wang, Y.-M. Wang, and Y.-B.

Wei, J. High Energy Phys. 05 (2022) 024.
[38] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda,

Nucl. Phys. B591, 313 (2000).
[39] T. Huber, S. Kränkl, and X.-Q. Li, J. High Energy Phys. 09

(2016) 112.
[40] H. Kawamura, J. Kodaira, C.-F. Qiao, and K. Tanaka, Phys.

Lett. B 523, 111 (2001); 536, 344(E) (2002).
[41] V. M. Braun, Y. Ji, and A. N. Manashov, J. High Energy

Phys. 05 (2017) 022.
[42] B. Grinstein, R. P. Springer, and M. B. Wise, Nucl. Phys.

B339, 269 (1990).
[43] H. D. Politzer, Nucl. Phys. B172, 349 (1980).
[44] K. G. Chetyrkin, M. Misiak, and M. Munz, Phys. Lett. B

400, 206 (1997); 425, 414(E) (1998).
[45] E. Eichten and B. R. Hill, Phys. Lett. B 234, 511 (1990).
[46] E. Lunghi, D. Pirjol, and D. Wyler, Nucl. Phys. B649, 349

(2003).
[47] S. W. Bosch, R. J. Hill, B. O. Lange, and M. Neubert,

Phys. Rev. D 67, 094014 (2003).
[48] A. F. Falk, H. Georgi, B. Grinstein, and M. B. Wise,

Nucl. Phys. B343, 1 (1990).
[49] M. Benzke, S. J. Lee, M. Neubert, and G. Paz, J. High

Energy Phys. 08 (2010) 099.
[50] T. Hurth and M. Nakao, Annu. Rev. Nucl. Part. Sci. 60, 645

(2010).
[51] M. Benzke, T. Hurth, and S. Turczyk, J. High Energy Phys.

10 (2017) 031.
[52] See SupplementalMaterial at http://link.aps.org/supplemental/

10.1103/PhysRevLett.131.091902 for the detailed numerical
predictions for the helicity form factors and the comprehensive

PHYSICAL REVIEW LETTERS 131, 091902 (2023)

091902-6

https://doi.org/10.1088/1126-6708/2002/08/054
https://doi.org/10.1088/1126-6708/2002/08/054
https://doi.org/10.1016/S0370-2693(03)00173-4
https://doi.org/10.1016/S0370-2693(03)00173-4
https://doi.org/10.1007/JHEP12(2020)169
https://doi.org/10.1007/JHEP12(2020)169
https://doi.org/10.1016/0370-2693(91)90306-B
https://doi.org/10.1016/0370-2693(91)90306-B
https://doi.org/10.1007/JHEP09(2010)089
https://doi.org/10.1007/JHEP02(2013)010
https://doi.org/10.1007/JHEP02(2013)010
https://doi.org/10.1103/PhysRevD.92.074020
https://doi.org/10.1103/PhysRevD.92.074020
https://doi.org/10.1140/epjc/s10052-018-5918-6
https://doi.org/10.1016/j.physletb.2018.10.026
https://doi.org/10.1051/epjconf/201922201007
https://doi.org/10.1007/JHEP02(2021)088
https://doi.org/10.1007/JHEP02(2021)088
https://doi.org/10.1007/JHEP07(2017)025
https://doi.org/10.1103/PhysRevD.98.095027
https://doi.org/10.1103/PhysRevD.98.095027
https://doi.org/10.1103/PhysRevD.102.055001
https://doi.org/10.1103/PhysRevD.102.055001
https://doi.org/10.1103/PhysRevD.70.114005
https://doi.org/10.1140/epjc/s10052-011-1635-0
https://doi.org/10.1140/epjc/s10052-011-1635-0
https://doi.org/10.1007/JHEP05(2013)043
https://doi.org/10.1007/JHEP05(2013)043
https://doi.org/10.1103/PhysRevD.88.074002
https://doi.org/10.1103/PhysRevD.88.074002
https://doi.org/10.1007/JHEP06(2016)092
https://doi.org/10.1007/JHEP06(2016)092
https://doi.org/10.1007/JHEP06(2016)116
https://doi.org/10.1140/epjc/s10052-020-7817-x
https://doi.org/10.1140/epjc/s10052-020-7817-x
https://doi.org/10.1103/PhysRevD.103.015030
https://doi.org/10.1103/PhysRevD.64.074001
https://doi.org/10.1103/PhysRevD.64.074001
https://doi.org/10.1103/PhysRevD.74.034026
https://doi.org/10.1103/PhysRevD.74.034026
https://doi.org/10.1140/epjc/s10052-008-0846-5
https://doi.org/10.1016/j.physletb.2008.06.004
https://doi.org/10.1016/j.physletb.2008.06.004
https://doi.org/10.1103/PhysRevD.80.074012
https://doi.org/10.1103/PhysRevD.80.074012
https://doi.org/10.1007/JHEP12(2011)067
https://doi.org/10.1007/JHEP12(2011)067
https://doi.org/10.1103/PhysRevD.85.014035
https://doi.org/10.1103/PhysRevD.85.014035
https://doi.org/10.1103/PhysRevD.86.079901
https://doi.org/10.1016/j.physletb.2012.01.036
https://doi.org/10.1016/j.physletb.2014.09.062
https://doi.org/10.1007/JHEP02(2016)179
https://doi.org/10.1007/JHEP02(2016)179
https://doi.org/10.1103/PhysRevD.73.036003
https://doi.org/10.1088/1126-6708/2006/05/056
https://doi.org/10.1088/1126-6708/2006/05/056
https://doi.org/10.1007/JHEP06(2017)062
https://doi.org/10.1007/JHEP06(2017)062
https://doi.org/10.1007/JHEP05(2022)024
https://doi.org/10.1016/S0550-3213(00)00559-9
https://doi.org/10.1007/JHEP09(2016)112
https://doi.org/10.1007/JHEP09(2016)112
https://doi.org/10.1016/S0370-2693(01)01299-0
https://doi.org/10.1016/S0370-2693(01)01299-0
https://doi.org/10.1016/S0370-2693(02)01866-X
https://doi.org/10.1007/JHEP05(2017)022
https://doi.org/10.1007/JHEP05(2017)022
https://doi.org/10.1016/0550-3213(90)90350-M
https://doi.org/10.1016/0550-3213(90)90350-M
https://doi.org/10.1016/0550-3213(80)90172-8
https://doi.org/10.1016/S0370-2693(97)00324-9
https://doi.org/10.1016/S0370-2693(97)00324-9
https://doi.org/10.1016/S0370-2693(98)00225-1
https://doi.org/10.1016/0370-2693(90)92049-O
https://doi.org/10.1016/S0550-3213(02)01032-5
https://doi.org/10.1016/S0550-3213(02)01032-5
https://doi.org/10.1103/PhysRevD.67.094014
https://doi.org/10.1016/0550-3213(90)90591-Z
https://doi.org/10.1007/JHEP08(2010)099
https://doi.org/10.1007/JHEP08(2010)099
https://doi.org/10.1146/annurev.nucl.012809.104424
https://doi.org/10.1146/annurev.nucl.012809.104424
https://doi.org/10.1007/JHEP10(2017)031
https://doi.org/10.1007/JHEP10(2017)031
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.091902
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.091902
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.091902
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.091902
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.091902
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.091902
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.091902


explorations of renormalization-group properties for the gen-
eralized bottom-meson soft function.

[53] A. G. Grozin and M. Neubert, Phys. Rev. D 55, 272
(1997).

[54] M. Beneke, P. Böer, J.-N. Toelstede, and K. K. Vos, J. High
Energy Phys. 08 (2022) 020.

[55] M. Beneke, C. Bobeth, and R. Szafron, J. High Energy
Phys. 10 (2019) 232; 11 (2022) 099(E).

[56] M. Beneke, P. Böer, J.-N. Toelstede, and K. K. Vos, J. High
Energy Phys. 11 (2020) 081.

[57] B. O. Lange and M. Neubert, Phys. Rev. Lett. 91, 102001
(2003).

[58] Y.-K. Huang, Y.-L. Shen, C. Wang, Y.-M. Wang, and X.-C.
Zhao (to be published).

[59] S. Actis, M. Beneke, P. Falgari, and C. Schwinn, Nucl. Phys.
B807, 1 (2009).

[60] A. J. Buras, M. Jamin, M. E. Lautenbacher, and P. H. Weisz,
Nucl. Phys. B370, 69 (1992); B375, 501(A) (1992).

[61] S. J. Lee and M. Neubert, Phys. Rev. D 72, 094028
(2005).

[62] V. M. Braun, D. Y. Ivanov, and G. P. Korchemsky, Phys.
Rev. D 69, 034014 (2004).

[63] T. Feldmann, B. O. Lange, and Y.-M. Wang, Phys. Rev. D
89, 114001 (2014).

[64] M. Beneke, G. Finauri, K. K. Vos, and Y. Wei,
arXiv:2305.06401.

[65] A. Khodjamirian, T. Mannel, and N. Offen, Phys. Rev. D 75,
054013 (2007).

[66] C.-D. Lü, Y.-L. Shen, Y.-M. Wang, and Y.-B. Wei, J. High
Energy Phys. 01 (2019) 024.

[67] A. Khodjamirian, R. Mandal, and T. Mannel, J. High
Energy Phys. 10 (2020) 043.

[68] M. Beneke, V. M. Braun, Y. Ji, and Y.-B. Wei, J. High
Energy Phys. 07 (2018) 154.

[69] M. Beneke, C. Bobeth, and R. Szafron, Phys. Rev. Lett. 120,
011801 (2018).

[70] A. Cerri et al., CERN Yellow Rep. Monogr. 7, 867 (2019).
[71] M. Ciuchini, M. Fedele, E. Franco, A. Paul, L. Silvestrini,

and M. Valli, Eur. Phys. J. C 83, 64 (2023).
[72] W. Altmannshofer and F. Archilli, in 2022 Snowmass

Summer Study (2022), arXiv:2206.11331.
[73] W. Altmannshofer et al. (Belle-II Collaboration), Prog.

Theor. Exp. Phys. 2019, 123C01 (2019); 2020, 029201(E)
(2020).

PHYSICAL REVIEW LETTERS 131, 091902 (2023)

091902-7

https://doi.org/10.1103/PhysRevD.55.272
https://doi.org/10.1103/PhysRevD.55.272
https://doi.org/10.1007/JHEP08(2022)020
https://doi.org/10.1007/JHEP08(2022)020
https://doi.org/10.1007/JHEP10(2019)232
https://doi.org/10.1007/JHEP10(2019)232
https://doi.org/10.1007/JHEP11(2022)099
https://doi.org/10.1007/JHEP11(2020)081
https://doi.org/10.1007/JHEP11(2020)081
https://doi.org/10.1103/PhysRevLett.91.102001
https://doi.org/10.1103/PhysRevLett.91.102001
https://doi.org/10.1016/j.nuclphysb.2008.08.006
https://doi.org/10.1016/j.nuclphysb.2008.08.006
https://doi.org/10.1016/0550-3213(92)90345-C
https://doi.org/10.1103/PhysRevD.72.094028
https://doi.org/10.1103/PhysRevD.72.094028
https://doi.org/10.1103/PhysRevD.69.034014
https://doi.org/10.1103/PhysRevD.69.034014
https://doi.org/10.1103/PhysRevD.89.114001
https://doi.org/10.1103/PhysRevD.89.114001
https://arXiv.org/abs/2305.06401
https://doi.org/10.1103/PhysRevD.75.054013
https://doi.org/10.1103/PhysRevD.75.054013
https://doi.org/10.1007/JHEP01(2019)024
https://doi.org/10.1007/JHEP01(2019)024
https://doi.org/10.1007/JHEP10(2020)043
https://doi.org/10.1007/JHEP10(2020)043
https://doi.org/10.1007/JHEP07(2018)154
https://doi.org/10.1007/JHEP07(2018)154
https://doi.org/10.1103/PhysRevLett.120.011801
https://doi.org/10.1103/PhysRevLett.120.011801
https://doi.org/10.23731/CYRM-2019-007.867
https://doi.org/10.1140/epjc/s10052-023-11191-w
https://arXiv.org/abs/2206.11331
https://doi.org/10.1093/ptep/ptz106
https://doi.org/10.1093/ptep/ptz106
https://doi.org/10.1093/ptep/ptaa008
https://doi.org/10.1093/ptep/ptaa008

