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Deciphering the Long-Distance Penguin Contribution to Bd’s — yy Decays
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We compute for the first time the long-distance penguin contribution to the double radiative B-meson
decays by applying the perturbative factorization theorem. The numerically dominant penguin amplitude
arises from the soft-gluon radiation off the light up-quark loop rather than the counterpart charm-loop
effect. Importantly, the long-distance up-quark penguin contribution brings about the substantial
cancellation of the known factorizable power correction, thus enabling B, — yy to become new

benchmark probes of physics beyond the standard model.
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Introduction.—It is widely accepted that the exclusive
radiative penguin bottom-meson decays play a central role in
exploring the quark-flavor dynamics of the standard model
(SM) and in probing the nonstandard electroweak inter-
actions at the LHCb and Belle II experiments. In particular,
the double radiative B, — yy decays with nonhadronic
final states offer a remarkably clean environment to
address the intricate strong interaction mechanism of the
heavy-hadron system with the perturbative factorization
technique, in comparison with the radiative decays B — Vy.
Phenomenologically the direct CP asymmetries of the
double radiative B-meson decays with the linearly polarized
photon states will be also highly beneficial for determining
the Cabibbo-Kobayashi-Maskawa phase angle y [1].
Applying the QCD factorization approach, the leading-
power contributions to the exclusive B,, — yy decay
amplitudes in the heavy quark expansion have been dem-
onstrated to be factorized into the short-distance Wilson
coefficients and the leading-twist bottom-meson distribu-
tion amplitude [2]. In addition, a variety of the subleading-
power corrections to Bd,s — yy were investigated with the
diagrammatic factorization approach [3].

However, the persistent problem of evaluating the long-
distance penguin contribution to the double radiative bot-
tom-meson decay amplitudes in the presence of soft-gluon
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emission remains unresolved at present. For decades the
nonlocal subleading power correction arising from the soft-
gluon radiation off the charm-loop diagrams has constituted
the long-standing obstacle to improve theory computations
for the angular observables of B — K*)## at large hadronic
recoil [4-14] (see Refs. [15-17] for discussions on such
nonlocal contributions at low recoil). Achieving the robust
predictions of the long-distance charm-loop effect in
B — K™ ¢¢ will be evidently indispensable for disentan-
gling the genuine new physics effect from the SM back-
ground contribution and for advancing our understanding
toward the nature of the observed flavor anomalies (see
for instance Refs. [18-23]). To this end, constructing
the systematic formalism to tackle the long-distance penguin
contribution to B, — yy will further shed new light
on the model-independent calculation of the analogous
QCD corrections to the flavor-changing neutral current
decays B — K*)¢Z. More generally, the newly proposed
framework to cope with the nonlocal power correc-
tion to By, — yy will be of importance to perform the
precision calculation of the exclusive heavy-flavor baryon
decays [24-33].

According to the numerical hierarchy between the
bottom and charm quark masses, we will apply the power
counting scheme  mj, > m. ~ O(\/Aqcpmy) > Agep
[15,34-37] in establishing the factorization formulas for
the long-distance penguin contribution, instead of the
alternative counting scheme m;, ~ m. > Agcp employed
in Refs. [38,39]. Subsequently, we will report on a novel
observation on the hadronic matrix element responsible for
the soft-gluon radiation off the penguin diagrams.
Integrating out the short-distance QCD fluctuations
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embedded in this hadronic quantity will give rise to the
generalized three-particle B-meson distribution amplitude
in heavy quark effective theory (HQET) defined by the
nonlocal matrix element (0|g,(7in)G,, (z272)T;:h,(0)|B,)
rather than the conventional light-cone distribution
amplitudes (LCDAs) as previously introduced in
Refs. [40,41]. Employing the asymptotic behaviors of this
generalized B-meson distribution amplitude determined
from the analytic properties of the renormalization-group
(RG) evolution equation, we will demonstrate that the soft-
collinear convolution integrals entering the factorized
expressions of the long-distance penguin contributions
converge for both the massless-quark and massive-quark
loop induced terms. Phenomenological implications of the
newly computed power correction to the double radiative
bottom-meson decay observables will be further explored
with the three-parameter model for the B-meson soft
function.

General analysis.—The effective weak Hamiltonian of
the double radiative b — ¢gyy transitions has been shown to
be identical to the one for b — gy decays [42],

4G
Hor = —2 3V, Vi, [a(u)P%”)(u) + CW)PY (v)

\/E p=u,c
8

+) ¢ (v)Pi(u)] +Hec., (1)

i=3

by employing the classical equations of motion [43]. We will

further adopt the operator basis PS” ) as advocated in Ref. [44]
ensuring the disappearance of Dirac traces involving an odd
number of y5 in the effective theory computations.

Up to the lowest order in the electromagnetic interaction
one can cast the exclusive B ¢ — vy amplitude in the
following form [3]:
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where Tgf;)ﬁ can be further decomposed as
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where the perturbative penguin function is given by
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thanks to the QED Ward-Takahashi identities and the
transversality of the on shell photons. Here we have
introduced the shorthand notations
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by defining two light-cone vectors n, and 71, which satisfy
the constraints p, = mp ii,/2 and g, = mp n,/2. 1t is

Gap = Gap —

interesting to note that only the left-handed form factors

F l(pL) will survive at leading order in the heavy quark
expansion. Explicitly, the resulting factorization formula

for F f’l) at leading power can be written as
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where the effective hard function V7, the matching
coefficient K, and the hard-collinear function J at one
loop can be found in Refs. [3,45-47].

QCD factorization for the long-distance penguin
contribution.—We are now in a position to explore fac-
torization properties of the subleading power effect from
the long-distance penguin contribution by inspecting the
partonic diagram in Fig. 1. Both the hard-collinear and the
anti-hard-collinear field modes carrying the four-momenta
Phey~O(1,2,2%) and P, ~ O(2, 1,2'/?) will appear in
our problem, where the individual momentum components
correspond to n-P, in- P, and P, in sequence for an
arbitrary momentum P,, and the expansion parameter A
scales as Agcp/m,. Integrating out the hard-collinear
quark loop, one can derive the scattering amplitude of
9(€) + b(v) - q(q) + y(p) governed by the effective
Hamiltonian [Eq. (1)] by discarding the yet higher-order
terms in an expansion of Agcp/m;, [in comparison with
those terms shown in Eq. (6)]

)Qp[ (z,) = 1] —|—6C6ZQq —1]
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FIG. 1. Diagrammatical representation of the soft-gluon emis-
sion from the factorizable quark loop in Bq — yy, where the
symmetric diagram due to exchanging two on shell photons is not
shown. The quark and photon fields marked with red color carry
the anti-hard-collinear momenta, while the off shell quark in the
fermion loop and the other photon marked with blue color
correspond to the hard-collinear fields.

and we have further employed the conventions

m? —i0t - 1
W= () ®

Importantly, the hard-scattering kernel displayed
in Eq. (6) depends on the unique component 7 - £ of the
soft-gluon momentum. Employing the scaling behavior
25 ~ O(my/Agep), we can verify that the bottom-quark

|

loop diagram with an insertion of Py generates the yet
higher-order effect compared with the charm-loop effect.
We can proceed to evaluate the amplitude of
9(¢) + b(v) + q(k) = y(p) +v(gq) by integrating out the
anti-hard-collinear quark propagator in Fig. 1,

(r(p)r(@)|aysP LG, blg(£)b(v)q(k))
e (0)65 ) AR 7P G O)0(0)

+0(a,), ©)

where the short-distance coefficient depends on the
component n - k (rather than 7 - k) of the soft-quark momen-
tum in the leading-power approximation. We then need to
introduce the subleading distribution amplitude defined
by the HQET matrix element of g,(z,n)G,, (z,7)T';},(0).
Constructing the general parametrization of this effective
matrix element with the covariant tensor formalism [48] (as
adopted in Ref. [41]) allows us to derive the factorization
formula of the soft-gluon radiative correction to the left-
handed helicity form factor

8 . 0,fB, [+ dw +oo  dw C
Sl - Selb [ g 10 (e SU)0,1F(y) - 11+ 660 R - 1
i=1 - - ¢

mp, w 01 =10/ o @wy—

~[(rm )+ 16( o= ) 2 foston o + 01 (10

It is customary to define w; = n - k and w, = 71 - £ such
that the resulting hard-collinear function develops a pecu-
liar dependence on w, via the quantity z, = —m3/(mpw,)
(apart from an overall factor 1/®,). In accordance with the
power-counting rules for the short-distance matching coef-
ficients and the nonperturbative HQET function in the
obtained factorization formulas [Eqs. (5) and (10)], we can
verify the scaling behavior of the long-distance penguin
contribution in the heavy quark expansion

8
|:Z C[Fgfvl?,soft 4q:| . |:
i=1

Including the higher-order QCD corrections will gen-
erate the nontrivial hard functions from matching the

8
CiFS’I;‘)‘LP] ~ AQCD . mBq. (1 1)
=1

=

|
effective four-quark operators P,(.p ) onto soft-collinear

effective theory I (SCET}) and simultaneously result in
the interesting impacts on the (anti)-hard-collinear matching
coefficients that appeared in Eq. (10). Schematically, the
factorized expression for the long-distance penguin correc-
tion to B ¢ — vy canbe castin the form HJ * J *®g, which
resembles the very pattern for the Of — 0, contribution to
B — X,y [49] (see also Refs. [50,51]). Moreover, the
crossing Feynman diagram due to exchanging the two on
shell photons gives rise to the contribution identical to the
direct diagram.

The subleading distribution amplitude (more appropri-
ately called soft function) ®g in Eq. (10) is defined by the
matrix element of the nonlocal operator with quark-gluon
fields localized on distinct light-cone directions

(01(2,S,) (211)(S17)(0) (S39:G Sa) (2271) Ay, 75 (S5, ) (0)[By,)

- —+o0 “+o0
= 2f3(ﬂ)m3/ dwl/ dw, exp [—i(w7) + 0y7,) | Pg (@, Wy, ), (12)

where the two soft Wilson lines §,, and Sj; (see Ref. [3] for the explicit definitions) are essential to maintain gauge invariance.
Comparing with the subleading shape function g;; for the inclusive B-meson decays, the distinctive features of @ consist of
the nonforward composite operator in the defining matrix element and the appearance of the QCD quark field whose
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interactions with soft gluons cannot be described by the
Eikonal effective theory. Neglecting renormalization effects,
the nonlocal HQET matrix element on the left-hand side of
Eq. (12) can be described by the familiar three-particle
LCDAs when taking the limit ;) — 0. In contrast to the
HQET distribution amplitudes @, s, taking into account the
ultraviolet renormalization of ®g results in the intriguing
pattern of mixing positive into negative support [see Eqs. (7)
and (8) of the Supplemental Material [52] for the manifest
expression of the evolution equation], thus demanding the
different limits of the corresponding convolution integrals in
the tree-level normalization conditions

+o0 [+3]
/ do, P (0, 0,.4) —/ do @y(w;,w3,1),

0 0

+oo A
/ dw,Og(w,,0,,1) :/ dw,®s(wy, ;. 1),

0 0

+00 +00 12442
/ d(l)l/ d(l)zq)G(Cl)l,(l)z,ﬂ):%, (13)

where the explicit definitions of ®, 5 can be foundin Ref. [41].
2% and 2% can be defined by the effective matrix elements of
the local chromoelectric and chromomagnetic operators [53].
As already mentioned, the support region of ®g(w;, w,, )
must be extended to the entire real axes —co0 < w;, < +o0
due to the RG evolution, in analogy to the earlier observation
for the QED-generalized soft function of the charmless two-
body B — MM, decays [54]. This distinctive feature for the
bottom-meson soft function @ will be maintained even if we
initially assume @} > 0 and @), > 0. In particular, the emer-
ged imaginary part in the anomalous dimension I'(w;, »,
o}, ) implies that the soft function ®g for the theory
description of the long-distance penguin contributions to
Bq — yy becomes complex due to the soft-parton rescatter-
ing. Furthermore, the asymptotic behaviors of the RG-evolved
soft function can be determined from the analytic properties of
the one-loop evolution equation. On the basis of the scaling
behaviors for @ (w;, wy, p) at @y, — 0 and @, , — Fo0 as
derived in the Supplemental Material [52] (with the inclusion
of Refs. [54—60]), we can verify that the convolution integrals
in the factorized expression [Eq. (10)] converge.

As already discussed in Ref. [61], the normalization
integrals of the renormalized B-meson LCDAs are
divergent due to the singularities of the corresponding
position-space amplitudes in the small light-cone separa-
tion limit [62]. Analogously, the asymptotic behavior of
DG (w;, wy, p) at large values of w; , displayed in Eq. (30)
of the Supplemental Material [52] indicates that all non-
negative moments of ®g diverge. Consequently, the
obtained constraints in Eq. (13) do not hold beyond the
tree-level approximation. Instead, the model-independent
constraints on ®@g(w;,wy, ) at |w;,| > Agcp can be
derived from the operator-product-expansion (OPE) analy-
sis of the regularized moments (for N, > 0),

) A@ 7)) 7
M, (AN A A )
AU +AY)
—/ Uvda)la)llvl/~(2)Uvda)2w12V2(I)G(a)1,a)2,/,4), (14)
-A

1A%

following the Lee-Neubert strategy [61]. One can then
construct the improved model for the soft function by
gluing continuously the radiative tail ®g° onto the given
model function ®1° and by enforcing the OPE constraints
on the cut-off moments [61] (see also Refs. [63,64]). We
will leave the detailed discussions on the systematic para-
metrization of ®¢ satisfying the nontrivial short-distance
constraints for our future work.

It remains interesting to explore the nonperturbative
behavior of the initial condition for @5 with the dispersion
technique as adopted in Refs. [53,62,65-67]. Starting with
the HQET correlation function

Mg =i / d*x exp (=ion - ) {O[T{[(2,S,) (r17)

(S582)(0)(Sh95G,.,S5) (1) hy' 5 (Shh, ) (0)],
[h,(x)9,G ,;(x)0”y5q,(x)]}0). (15)

we can on the one hand compute this quantity in the
kinematic region || > Agcp With the OPE technique
and on the other hand derive the hadronic representation
of I by taking advantage of analyticity with respect to the
variable . Matching the above two dispersion representa-
tions with the aid of the parton-hadron duality ansétz enables
us to extract the scaling behavior ®g(w;, w,, o) ~ w3
at W12 - 0.

Additionally, the theory framework of evaluating the
long-distance penguin contribution developed here can be
extended to explore the exclusive electroweak penguin
decays B — K¥¢¢ systematically by investigating the
appropriate QCD correlation function with a variety of
the subleading soft functions in analogy to ®g.

Numerical implications.—We turn to address the phe-
nomenological implications of the long-distance penguin
contributions to B ¢ — vy decay amplitudes. To achieve this
goal, we will adopt the particular nonperturbative model

22 —i6— 22 a)l(;)% exp <_ o) + a)2>
o,

DG (@, w7, ) =

0 @9
r(p+2) Y _aw1+w2
F(a+2)U(ﬁ 4-a, o >
x 0(w,)0(w,), (16)

at uo = 1.0 GeV, motivated from the three-parameter
ansitz for the twist-two LCDA [68]. It needs to be stressed
that the initial condition of the soft function is assumed to
be real and normalizable here. While this ansitz is
acceptable for the subsequent numerical analysis, it does
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not hold strictly due to the presence of the radiative tail and
imaginary part at an arbitrary scale. The shape parameters
@y, @, and f can be determined by enforcing the first and
second normalization relations in Eq. (13) and by
employing the concrete model of ®,5 in Ref. [37]. The
leading-logarithmic evolution of ®g to the factorization
scale u will be accomplished with the aid of Eq. (21)
in the Supplemental Material [52]. The conventional

HQET LCDA:s in the factorization formulas of F f'z)( R) from

Ref. [3] will be also in demand, and we will apply the same
phenomenological model as presented in this reference,
with the exceptions of updated intervals for 15, = (275 &
75) MeV and 15 = (325 £ 75) MeV [69] (see Ref. [67] for
arecent determination). The allowed intervals of additional
input parameters are identical to the ones collected in
Ref. [3].

Inspecting the numerical features of the soft-gluon
radiative corrections to the helicity form factors displayed
in Fig. 1 of the Supplemental Material [52] (with the
inclusion of Refs. [3,70-73]) indicates that the newly
computed up-quark penguin contribution generates the
substantial cancellation of the combined factorizable power
corrections discussed in Ref. [3], and the long-distance
charm-quark penguin mechanism merely brings about the
minor impact on »_; C;F ,(CL) Having at our disposal the
desired theory predictions for the helicity form factors, we
proceed to explore the phenomenological implications of the
long-distance penguin contributions on the CP-averaged
branching fractions, the polarization fractions, and the time-
dependent CP asymmetries of B, — yy. To achieve this
goal, we display our numerical predictions for these inter-
esting observables with three distinct scenarios: (I) including
only the leading power contributions at the next-to-leading-
logarithmic accuracy, (II) combining the available leading-
power contributions with the subleading-power corrections
as previously determined in Ref. [3], and (IIT) adding further
the newly determined long-distance penguin contributions.

It is evident from Fig. 2 that the improved predictions for
the CP-averaged branching fractions with the inclusion of
the long-distance penguin contributions turn out to be only
marginally different from the counterpart theory determi-
nations obtained in our previous work [3]. We further
present the comparative predictions for the CP-averaged
polarization fractions and the CP-violating observables in
Figs. 2 and 3 of the Supplemental Material [52], where the
explicit definitions of these experimental observables for
the double radiative B 4 — vv decays in the presence of the
neutral-meson mixing are also provided. Interestingly, the
power suppressed soft-gluon radiative effects can result in
the noticeable impacts on the two particular CP-violating

observables Amlx I and AL numerically O(30%) cor-
rections for both b — dy and b — sy transitions with the
default inputs. Since the yielding numerical results for the
CP-violating observables are generally insensitive to /13,,,

7t T
6 —_ LP + NLPapp
5 LP + NLP3p20 + NLPo 49

1

BR(By — vy) x 10°
w

Ok s s s
020 025 030 035
A By [GGV]
—LP
- 14F
= ol — LP + NLPag0
X 10 LP + NLP3g20 + NLPyoft 4q
=
R
K 6 [
E aF \
o~
m o
0] 1 s . L
0.25 0.30 035 0.40

A B, [GGV}

FIG. 2. Theory predictions for the CP-averaged branching
fractions of B, — yy [top] and B, — yy [down] obtained from
including only the leading-power contributions [gray bands],
from taking into account both the leading-power contributions
and the various subleading-power corrections estimated in
Ref. [3] [blue bands], and from adding further the newly
determined long-distance penguin corrections [red bands].

we collect here only our predictions of these asymmetries
{ASL pmixll pdin L qmixLy — (134405, —1943%, 3411 %,
1341%} for By — yy at Ay, =275 MeV and {A?;‘;”, A,
ABEEAZRLY = {-0.677023%, 0.971053%, —1.8703%,
—0.521037%} for B, — yy at Az = 325 MeV.
Conclusions.—In conclusion, we have presented the first
computation of the long-distance penguin contribution to
the double radiative B-meson decays. Adopting the power
counting scheme m. ~ O(y/Aqcpm;), we demonstrated
that the soft function ®¢ defined by the three-body HQET
operator with partonic fields localized on two distinct
light-ray directions emerged naturally in the factorization
formula [Eq. (10)]. Phenomenologically the soft-gluon
radiative off the factorizable up-quark loop appeared to
bring about a more pronounced effect in comparison with
the corresponding charm-quark penguin mechanism.
Despite the negligible impacts on the CP-averaged branch-
ing fractions, including the long-distance penguin contri-
butions can generate noticeable corrections to our theory

predictions for the CP-violating observables Amlx I and
A Tn addition, our analysis will be evidently beneficial
for exploring the charming penguin dynamics in B - K*y
and B — K"W¢7, which are generally recognized as the
flagship probes of physics beyond the SM.
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