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We show that it is possible for fermion condensation of the Nambu-Jona-Lasinio type to induce a
nonsingular bounce that smoothly connects a phase of slow contraction to a phase of expansion. A chiral
condensate—a nonzero vacuum expectation value of the spinor bilinear hΨ̄Ψi—can form spontaneously
after a slow contraction phase smooths and flattens the universe and the Ricci curvature exceeds a cri-
tical value. In this approach, a high density of spin-aligned free fermions is not required, which avoids
the problem of generating a large anisotropy and initiating chaotic mixmaster behavior during the
bounce phase.
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Introduction.—The salient cosmological properties of
the observable universe—its homogeneity, isotropy, spatial
flatness, and nearly scale-invariant spectrum of density
perturbations—can be explained by a period of slow con-
traction followed by a nonsingular bounce that smoothly
connects the contracting phase to the current period of
expansion [1]. During a slow contraction phase, the scale
factor shrinks gradually as aðtÞ ∼ jtj1=ε for t → 0− where
ε ≫ 3, and the energy density driving the slow contraction
grows quickly as 1=a2ε. Slow contraction has been shown
to be a robust smoother, meaning that homogeneity,
isotropy, and flatness are achieved during slow contraction
even if the initial state is far from smooth and flat [2]; it is a
rapid smoother, meaning that the smoothness is achieved
after aðtÞ shrinks by just a few e-folds [3], leaving ample
time for the generation of a nearly scale-invariant spectrum
of density fluctuations during the remaining slow contrac-
tion phase [4,5]; and it is a universal smoother, meaning
that the entire universe is smoothed and flattened even over
distances that are greater than a Hubble radius apart
throughout the smoothing process [6].
To ensure that these desirable features generated during

the contraction phase survive into the expanding phase, a
smooth transition is needed. One approach is a nonsingular
classical bounce at an energy density sufficiently far below
the Planck density that quantum gravity effects do not spoil
smoothness. According to well-known singularity theo-
rems [7–9], a classical bounce requires a stable form of
stress energy that violates the null energy condition (NEC)
or a modification of Einstein general relativity that avoids
the null convergence condition (or both). Although this
comes at the cost of some form of instability in certain cases
[10], examples that avoid all known instabilities have been
identified [11–13].
In this Letter, we consider an alternative semiclassi-

cal bounce induced by fermion condensation of the
Nambu-Jona-Lasinio (NJL) type [14,15]. The bounce is

semiclassical in that the formation of the fermion con-
densate is a quantum effect but its impact on cosmic
evolution can be described by classical equations of
motion.
To incorporate fermions in general relativity, Einstein’s

theory can be naturally extended to include torsion, where
the spin of the matter fields is the source for torsion in much
the same way as the matter fields are a source of curvature
in Einstein’s theory. In the resulting Einstein-Cartan-
Sciama-Kibble theory [16,17], the torsion is nondynamical,
and so can be integrated out and traded in favor of spin-spin
interactions. If the torsion is sourced by the Dirac fermions,
the spin-spin interaction is a four-fermion interaction term
AμAμ [17,18], where Aμ is the fermion axial current.
As shown here, the NJL chiral symmetry breaking phase

transition can be triggered by the gravitational background
if the absolute value of the Ricci curvature rises above a
critical value during slow contraction. The background-
triggered chiral symmetry breaking can occur naturally
after the slow contraction phase smooths and flattens the
universe but well before the energy density would reach the
Planck density when quantum gravity effects become non-
negligible. At this point in time, the hAμi and the fermion
vector current hVμi and, consequently, the spin and fermion
density are all negligible, and they remain negligible
throughout the bounce as well. However, due to the brea-
king of chiral symmetry, hAμAμi − hVμVμi ∼ hðΨ̄ΨÞ2i
becomes nonzero, producing a negative contribution to
the Friedmann equation that grows rapidly enough to act as
the NEC-violating interaction needed to induce a bounce.
The fact that the spin and fermion density remain

negligible throughout the slow contraction and bounce
phases is an important advantage compared to previous
proposals for spin-induced bounces. It was first noticed by
Trautman [19] that spin-spin interactions can act as an
NEC-violating source that induces a bounce. His treatment,
like those of later authors [20,21], assumed a high density
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of spin-aligned fermions to obtain a nonzero average spin
hSρμνi and, thereby, a nonzero value of the spin-spin
interaction. This approach is difficult to combine with
slow contraction, though. If the large fermion energy
density of physical particles is reached, it produces a
nonzero spacelike value of hAμi and spinor vector current
hVμi that creates a large anisotropy, pushing the universe
away from Friedmann-Robertson-Walker (FRW) and trig-
gering chaotic mixmaster behavior. This problem is
avoided in the NJL approach considered in this Letter.
Slow contraction via scalar fields.—Beginning from a

highly inhomogeneous, anisotropic, and spatially curved
initial condition, a period of slow contraction can robustly,
rapidly, and universally smooth and flatten the universe [1].
A standard approach, which we incorporate here, is that the
slow contraction is achieved as a scalar field ϕ evolves
down a steep negative exponential portion of its potential,
VðϕÞ ≈ −V0 expð−ϕ=mϕÞ where 0 < V0 ≪ 1 and mϕ <

1=
ffiffiffi

6
p

in reduced Planck units (8πG ¼ 1, where G is the
Newton gravitational constant). An example is the right-
hand side of the potential shown in Fig. 1. Beginning from
inhomogeneous, anisotropic, and curved initial conditions
that are far from FRW (stage 1 in Fig. 1), the universe
rapidly smooths and flattens, approaching an FRWattractor
solution with equation of state ε ¼ ð3=2Þð1þ p=ρÞ ¼
1=ð2m2

ϕÞ > 3 (stage 2 in Fig. 1).
The slow contraction phase ends when ϕ passes the

minimum of the potential Vmin and begins to roll up the
potential toward a positive plateau (stage 5). Contraction
continues and the scalar field kinetic energy continues to
increase due to Hubble antifriction; however, the contri-
bution of VðϕÞ becomes negligible, causing the equation of
state to approach ε → 3 [22]. For the example illustrated in
this Letter, we have chosen

VðϕÞ ¼ VDE − V0

�

1 −
m�
2mϕ

�

exp
�

−
ϕ

mϕ

�

×
tanhð ϕ

m�
Þ þ 1

ð1 − m�
mϕ
Þ tanhð ϕ

m�
Þ þ 1

; ð1Þ

which has an exponentially increasing form beyond the
minimum with a different slope parametrized by m�. The
field continues to evolve until it reaches the positive plateau
on the other side of the potential minimum (stage 8). [N.B.:
The pieced-together potential in Eq. (1) is constructed for
purposes of illustration and studied in detail in Ref. [22]
where it was shown to rapidly smooth and flatten spacetime
beginning from initial conditions that are far from FRW. As
shown in [22], the same supersmoothing results can be
achieved by using any negative potential satisfying
jV 0=Vj > 5, including ones of simpler form. We use this
example because it is well documented, but our results are
not sensitive to the choice in Eq. (1).]

Fermions and the NJL-mediated bounce.—The NEC
violation and the nonsingular bounce are entrusted to a
Dirac spinor (spin-1=2 fermion). The diffeomorphism
group does not admit a spinorial representation, so we
must use the first-order formalism of general relativity to
couple spinors with gravity. In the first order formalism, the
variables of the gravitational field are the tetrad eI and the
spin connection ωIJ. The metric tensor can be built from
the tetrads: gμν ¼ eIμeJνηIJ [23]. Finally, our model is based
on the following action (the integration sign is implicit in
front of each term):

S ¼ −
1

4
ϵABMNeA ∧ eB ∧ RMN

−
i

2 · 3!
ϵABMNeA ∧ eB ∧ eM ∧ ðΨ̄γNDΨ −DΨ̄γNΨÞ

− ⋆1
�

1

2
ð∂ϕÞ2 þ VðϕÞ þmΨΨ̄Ψ

�

þ ⋆1ξ½ðΨ̄ΨÞ2 þ ðiΨ̄γ5ΨÞ2�: ð2Þ

FIG. 1. A qualitative sketch of the effective potential used in
this Letter and the various stages of evolution according to the
equations of motion. The field begins at some ϕ ¼ ϕinit (stage 1)
on the right-hand side of the minimum Vðϕm ¼ 0Þ. Evolving
toward the left and down the exponentially steep potential
triggers a phase of slow contraction during which the universe
is rapidly smoothed and flattened and ε approaches 1=2m2

ϕ > 3

(stage 2). At this point, H is negative and decreasing. As the field
continues down the potential the Ricci curvature R (which is
negative) falls below a critical negative value Rc that switches on
the NJL mechanism (stage 3). As the field reaches the minimum
of the potential, R and Ḣ also reach their minimum values (stage
4). Slow contraction ends as ϕ crosses the minimum of the
potential Vmin, but ordinary contraction continues during stage 5
(R and Ḣ are negative though increasing) as the field continues to
roll up to the left side of the potential onto the plateau. At some
moment the energy of the condensate is large enough to flip the
sign of the Ricci curvature (stage 6); and then flip the sign of Ḣ
(stage 7); after whichH starts to increase. Eventually,H increases
to the point where it crosses from negative to positive, corre-
sponding to the bounce (stage 8). Finally, due to the Hubble
friction when H > 0, the field comes to rest at some point ϕend
along the positive plateau.
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The first line is the Einstein-Hilbert term; the second is the
kinetic term for the massless Dirac spinor; the first two
terms on the third line stand for the action of the scalar;
while the very last term is the mass term for the spinor. We
takem4

Ψ to be small compared to all other energy scales and
densities during the bounce.
On the fourth line, we have the four-Fermi interactions

generated by the torsion-spinor current couplings after the
torsion is integrated out [25,26]. These four-Fermi inter-
actions are invariant under the chiral transformations, Ψ →
eiαγ5Ψ, and are equivalent to the Nambu-Jona-Lasinio mo-
del interactions. The volume form ⋆1¼−1=4!ϵABMNeA∧
eB∧eM∧eN¼d4xdetðeÞ. The connection ωIJ is torsion
free DeI ¼ 0.
In the NJL scenario considered here, there are no on-shell

fermions present hΨ̄γ0Ψi ¼ 0. Instead, the nonzero vacuum
expectation value of the scalar bilinear hΨ̄Ψi occurs through
the NJL mechanism. The NJL gap equation with curvature
and derivative corrections can be expressed as

−
1

Λ2

8π2

ξ
uþ ∂f4

∂u
−

2

Λ2
f0∇2u −

1

Λ2
ð∂uÞ2 ∂f0

∂u

þ R
6Λ2

�

2uf1 þ u2
∂f1
∂u

�

þ 2

Λ4
R2

1

∂f1
∂u

−
2

Λ4
R2

2

∂f2
∂u

þ 2

Λ4
R2

3

∂f3
∂u

¼ 0; ð3Þ

where u≡ −2ξhΨ̄Ψi=Λ, Λ is the UV cutoff and theR2
i are

R2
1≡−

1

120
∇2Rþ 1

288
R2−

1

180
RμνRμν

−
7

1440
RμνρσRμνρσ;

R2
2≡ 1

12
∇2Rþ 1

36
RμνRμνþ 1

144
RμνρσRμνρσ;

R2
3≡ 1

10
∇2Rþ 1

72
R2þ 7

180
RμνRμνþ 1

60
RμνρσRμνρσ; ð4Þ

where

f1 ≡ 1

1þ u2
−

y2

y2 þ u2
− log

�

1þ u2

y2 þ u2

�

;

f2 ≡ 1

2ð1þ u2Þ2 −
y4

2ðy2 þ u2Þ2 ;

f3 ≡ 1

3ð1þ u2Þ3 −
y6

3ðy2 þ u2Þ3 ;

f4 ≡ ð1 − y2Þu2 þ log ð1þ u2Þ

− y4 log

�

1þ u2

y2

�

− u4 log

�

1þ u2

y2 þ u2

�

;

f0 ≡ f1 þ 4f3 þ 8u2
�

1

ð1þ u2Þ3 −
y4

ðy2 þ u2Þ3
�

: ð5Þ

Equation (3) is derived from the one-loop effective action,
which itself is derived from the spinor part of Eq. (2) in a
curved background space-time (see Appendix of [25] for
detailed discussion or [26]). Although u is a scalar, its
effective action induces derivative interactions essential for
violating the null energy condition, which does not occur for
canonical scalar fields. We used the Riemann normal
coordinatemethod to derive the curvature corrections, while
the derivative corrections were computed using the algo-
rithm described in [27]. Equation (3) is easily verifiable in
the Λ → ∞ limit; see, for example, [33] Chap. 5.7. Briefly,
the first two terms on line one represent the usual NJL gap
equation with an invariant UV cutoff Λ [34]. The last two
terms on line one are derivative corrections that arisewhen u
is time dependent, nonuniform, or both. Lines two and three
represent the curvature corrections discussed in Ref. [25].
The ratio y≡ 2mΨ=Λ ≪ 1, a dimensionless measure of the
explicit chiral symmetry breaking scale, sets the IR cutoff
necessary to avoid loop divergences that arise in the limit of
exactly massless spinors. The generalization of (3), with Ψ
having N colors or flavors is straightforward. The large N
limit also removes the ambiguity between choosing hΨ̄Ψi2
and hΨ̄ΨΨ̄Ψi, as the difference between these two scales
as N−2.
In the absence of gravity, the fate of the condensate is

determined by the NJL coupling strength ξ. If ξ > ξc, with
ξc ¼ 2π2=Λ2, then the chiral symmetry is spontaneously
broken and hΨ̄Ψi ≠ 0. In the presence of gravity, the fate of
the condensate depends on both the NJL coupling and the
Ricci curvature. In particular, solving Eq. (3) shows that
large negative Ricci curvature favors chiral symmetry
breaking and condensate formation.
For example, if the constant ξ is below its critical value

and the universe begins to slowly contract, the Ricci
curvature R is negative and growing increasingly negative.
Above some critical value 0 > R > Rc, the Ricci curvature
is not sufficiently negative to break the chiral symmetry, so
hΨ̄Ψi ¼ 0 and only the scalar field contributes to the
Einstein equations. Once the universe is sufficiently
smoothed and flattened by slow contraction to be well
approximated as FRW (by stage 2 in Fig. 1), the scale factor
evolves as a power law in time, while the scalar field
evolves as a logarithm:

aðtÞ ¼ a0jtj2m
2
ϕ ; ϕðtÞ ¼ mϕ log

�

V0t2

2m2
ϕ − 12m4

ϕ

�

; ð6Þ

at t → 0−. The Ricci curvature is negative and decreasing as
R ∝ −1=t2. The Hubble parameter H is also negative and
decreasing as 2m2

ϕ=t.
Provided ξ is not too far below ξc, there can come a time

tc when the Ricci curvature R falls below the critical value
Rc (stage 3 in Fig. 1), while R=Λ2 remains small enough for
the curvature expansion in (3) to be valid. At that moment, a

PHYSICAL REVIEW LETTERS 131, 091001 (2023)

091001-3



gravitational switch is thrown: the chiral symmetry is
broken and the effective potential of the spinor bilinear
develops energetically favorable minima away from u ¼ 0.
As a consequence the scalar bilinear acquires a nonzero
vacuum expectation value, hΨ̄Ψi ≠ 0, and the equations in
this FRW limit become

ϕ̈þ 3
ȧ
a
ϕ̇þ dV

dϕ
¼ 0; ð7Þ

3H2 ¼ 1

2
ϕ̇2 þ V þmΨhΨ̄Ψi − ξhΨ̄Ψi2; ð8Þ

Ḣ ¼ −
1

2
ϕ̇2 þmΨ

6H
dhΨ̄Ψi
dt

−
ξ

3H
hΨ̄Ψi dhΨ̄Ψi

dt
; ð9Þ

while hΨ̄Ψi evolves according to Eq. (3). The linear and
quadratic curvature corrections in the gap equation (3),
arise from the loop corrections and compared to the
Einstein-Hilbert term, are ℏ suppressed. This is the reason
they are not included in Eq. (8).
The sign in front of the bilinear squared in the Friedmann

equation, Eq. (8), corresponds to a source of NEC viola-
tion. Following the field equations, the Ricci curvature R
begins to grow, crossing from negative to positive (stage 6
in Fig. 1), and Ḣ also increases until it flips from negative to
positive (stage 7). Once that occurs, which is well before
jHj reaches the Planck scale, H (which is still < 0 and had
been decreasing) begins to increase. Finally, as field
reaches the positive plateau, the bounce occurs: H crosses
from negative to positive and aðtÞ reaches its minimal
value. At the same time, the Ricci curvature reaches its
maximum value during this entire period of contraction,
Rb ≈ 3.5 × 10−4 ¼ 3.5 × 10−3Λ2, which is sufficiently
below the Planck scale to justify neglecting quantum
gravity effects and higher order curvature corrections not
included in Eq. (3).
Figures 2–4 illustrate numerical solutions of the Hubble

parameter, positive and negative contributions to Ḣ, and
the condensate, respectively, for an example where
Λ ¼ 1=

ffiffiffiffiffi

10
p

; mϕ ¼ 1=800, m� ¼ 1=2500, mΨ ¼ Λ=200,
V0 ¼ 10−4, VDE ¼ 0, and ξ ¼ 0.99999ξc. We set the con-
ditions when the chiral symmetry is first broken (Stage 3:
ffiffiffiffi

V
p

0tc ≈ −0.009) to be að ffiffiffiffi

V
p

0tcÞ ¼ 1, uð ffiffiffiffi

V
p

0tcÞ ¼ 0,
u0ð ffiffiffiffi

V
p

0tcÞ ¼ −5 × 10−3. The latter is set by the mΨ, as
this scale is responsible for the explicit chiral symmetry
breaking.
Figure 2 shows that HðtÞ < 0 decreases rapidly as the

scalar field rolls downhill (t≲ 0); decreases more slowly
after the scalar field passes the minimum and rolls uphill;
then increases slowly as Ḣ first increases above zero; and
finally increases sharply and passes through zero on the
right as the condensate begins to sharply rise near the
bounce (as illustrated in the inset in Fig. 4).

Figure 3 shows the evolution of the positive and negative
contributions to Ḣ. Soon after the fermion condensate
forms, the positive contribution increases sufficiently fast to
overtake the negative contributions, causing Ḣ to become
positive, indicative of NEC violation.
The behavior of the condensate u in Fig. 4 shows the

evolution between the initial chiral symmetry breaking at
t ¼ tc (Stage 3 in Fig. 1) and the bounce (t ¼ tb). Before
chiral symmetry breaking, the potential for u has a single
(global) minimum at u ¼ 0. When the chiral symmetry is
broken, u ¼ 0 becomes a local maximum and there are
global minima at u ¼ uminðtÞ on either side of the u ¼ 0.
The values of u ¼ uminðtÞ and the shape of the condensate
potential vary with the Riemann curvature and, depending
on parameters, may go through various stages of symmetry
restoration and breaking. The average effect is to drive u

FIG. 2. The normalized Hubble parameterH=V1=2
0 as a function

of the normalized time V1=2
0 t, where t ¼ 0 corresponds to the

moment when a singularity (crunch) would have occurred if the
fermions were absent and the potential were purely a negative
exponential, VðϕÞ ¼ −V0 exp ð−ϕ=mϕÞ. The cosmological solu-
tion of interest was derived according to Eqs. (3), (7), (8), and the
potential in Eq. (1) and Fig. 1. The insets on the left and right
show that apparently sharp features in the evolution of H are
actually smooth transitions.

FIG. 3. The behavior of the negative and positive contribu-
tions to Ḣ=V0 in Eq. (9): solid red, the absolute value of the
negative contributions [first two terms on the right-hand side of
Eq. (9)]; dashed blue, the positive contribution (last term on the
right-hand side).
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farther from the u ¼ 0. The key moment occurs just as the
bounce approaches. By this point, the value of u is moving
farther and farther from zero and lies beyond the minimum
of the potential. As the bounce approaches, the curvature
increases, the symmetry is restored, and the potential away
from u ¼ 0 becomes steeper and steeper. The field, which
had been moving away from u ¼ 0, is thereby forced to
slow down and eventually reverse course. The bounce
corresponds to the moment when u reaches its greatest
magnitude (u̇b ¼ 0) and R reaches its maximum value.
Summary and outlook.—In this Letter, we have intro-

duced the possibility of a semiclassical, nonsingular,
fermion condensate induced cosmological bounce medi-
ated by the NJL mechanism. The NJL mechanism does not
require a high density of fermions or a violation of isotropy.
Instead, the nonzero vacuum expectation of the scalar
bilinear occurs because the external gravitational field
(more specifically, the Ricci curvature) acts as a switch
for chiral condensate formation. The scenario naturally
combines with a preceding phase of slow contraction that
smooths and flattens the universe.
We have stopped the evolution at the bounce (H ¼ 0).

The stability of the NJL-mediated bounce to matter and
gravitational perturbations; the reheating after the bounce,
and the generation of nearly scale-invariant density per-
turbations will be the subject of forthcoming work.
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