
Using Adaptiveness and Causal Superpositions Against Noise in Quantum Metrology

Stanisław Kurdziałek ,1,* Wojciech Górecki ,1,* Francesco Albarelli ,2,3 and Rafał Demkowicz-Dobrzański 1

1Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland
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We derive new bounds on achievable precision in the most general adaptive quantum metrological
scenarios. The bounds are proven to be asymptotically saturable and equivalent to the known parallel
scheme bounds in the limit of a large number of channel uses. This completely solves a long-standing
conjecture in the field of quantum metrology on the asymptotic equivalence between parallel and adaptive
strategies. The new bounds also allow us to easily assess the potential benefits of invoking nonstandard
causal superposition strategies, for which we prove, similarly to the adaptive case, the lack of asymptotic
advantage over the parallel ones.
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Introduction.—In the field of quantum information and
quantum technologies, one can distinguish three levels of
quantumness that are behind the boost in performance of
various communication [1,2], computational [3], or met-
rological tasks [4–6]. The most rudimentary one is quantum
coherence (C), which refers to the potential of having a
single quantum system in the state of quantum super-
position. This is already enough to implement secure
quantum key distribution protocols [7] or even reach the
Heisenberg limit in noiseless quantum metrology, provided
a given quantum probe can pass through a sensing channel
multiple times [8,9]. The next level is entanglement (E),
where quantum coherence present in multipartite systems
manifests itself in the form of nonclassical correlations.
This quantumness level is crucial to guarantee quantum
speedup in computational tasks [10] as well as to assure the
ultimate security in the so-called device-independent quan-
tum key distribution [11]. In quantum metrology, it had
long been appreciated as the way to boost the precision in
optical and atomic interferometric tasks [12–16], either in
the form of N00N states [17,18] or much more practical
optical and atomic squeezed states [19,20]. Finally, exploit-
ing the quantum potential to its limits, one can consider
adaptive (AD) or active quantum feedback strategies, where
the probes are entangled with noiseless ancillary systems,
and quantum control operations may actively modify the
probe system that will be sent to the subsequent channel
based on the information obtained so far [21–25], see
Fig. 1. Such protocols represent the most general channel
sensing schemes, containing E as a special case and
encompassing in particular all quantum error-correcting
strategies widely used in the whole field of quantum
information processing to counter noise [26–29].
Interestingly, in the absence of noise, AD strategies

provide no advantage over optimal E strategies [30]. In the

presence of noise, however, some advantages have been
observed in the small-number-of-uses regime where a
direct search of optimal metrological protocols could be
carried out [21,31–35]. In 2014 a conjecture was formu-
lated [21] predicting no asymptotic advantage of AD over
E. A notable progress in answering this fundamental
question was made in 2021 [36,37], when it was demon-
strated that in the models where quantum coherence cannot
be protected against noise on an arbitrary scale, and hence
the Heisenberg scaling (HS) is not achievable, AD strat-
egies offer no asymptotic advantage over E. Still, the full
answer to the question was lacking, mainly due to the fact
that the bounds used there were not tight enough.
In this Letter, utilizing our new bounds, we indeed

answer the conjecture in an affirmative way, proving in full

FIG. 1. Metrological schemes utilizing “four levels of quantum-
ness”: (C) channels probed independently (basic use of quantum
coherence); (E) channels probed in parallel using a general
entangled state, with ancillary systems potentially involved;
(AD) general adaptive (active quantum feedback) strategies;
(CS) causal superposition strategies, where additionally channels
may be probed in a superposition of different causal orders.
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generality that AD strategies provide no asymptotic ad-
vantage over E. As negative as it may sound, the result by
no means implies that AD strategies are useless. In fact, our
bounds allow us to clearly pinpoint the potential advantage
one may expect in the finite number-of-uses regime, and
easily observe how the advantage fades away when
approaching the asymptotic limit of a large number of
channel uses. On a more practical side, adaptive strategies
may sometimes be in fact easier to implement than parallel,
as they may not necessarily require entangling a large
number of particles, while obtaining the same effect via
small scale entanglement and active feedback. Even though
the “three levels of quantumness” listed above appear to
cover all quantum aspects of metrological protocols, an
intriguing idea was put forward of considering causal
superposition (CS) strategies where different channels
are being probed in a superposition of different causal
orders [35,38–44]. Advantages of such a strategy over the
most general AD strategy have been observed, but no
efficiently computable bounds have been proposed. In this
Letter, we provide bounds valid also for this more general
class of protocols and show their asymptotic equivalence to
AD and E, which also means that CS strategies cannot
surpass the HS [45].
Introductory example.—Let us start with the most

elementary yet very illuminating example of a noisy
metrological model, where it is possible to remove noise
while assuring the preservation of HS of precision in the
asymptotic regime. Consider a single qubit channel
Λφð·Þ ¼

P
k Kφ;k · K

†
φ;k, where Kφ;k ¼ UφKk,

Uφ ¼ e−
i
2
σzφ; K1 ¼

ffiffiffiffi
p

p
1; K2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
σx: ð1Þ

The channel represents dephasing of a qubit along the x
axis of the Bloch ball (the operator K2 may be understood
as a σx error occurring with probability 1 − p) and the
subsequent rotation Uφ of the state around the z axis by
angle φ, where φ is the parameter to be estimated—a
similar model has been used in an experimental demon-
stration of quantum error-correction enhanced metrology in
NV-center sensing setups [46], as well as in [47] where the
possibility of beating the standard scaling (SS) in the
presence of transversal noise was shown. In the case of
a single channel use, n ¼ 1, the effect of noise may be
completely mitigated by choosing the input state as
jψ ð1Þi ¼ jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

. This state is not affected
by the σx error and the output state jψφi ¼ ðj0i þ
eiφj1iÞ= ffiffiffi

2
p

represents a noiseless phase encoding. We will
quantify the performance of a given protocol using the
quantum Fisher information (QFI) [48,49] of the output
state, which in this case is Fð1Þ ¼ 1 (we recall the definition
of the QFI in [50], Section A).
Assume now that we can use the channel twice, n ¼ 2. If

we send the optimal single qubit probes independently to

each of the channels, we get the QFI value Fð2Þ
C ¼ 2. We

can, however, also consider a parallel strategy involving an
entangled input state jψ ð2Þi ¼ ðj00i þ j11iÞ= ffiffiffi

2
p

(the
N00N state [52]). In this case if either zero or two σx
errors occur, the final state will again correspond to the

noiseless phase encoding jψ ð2Þ
φ i ¼ U2

φjψ ð2Þi ¼ ðj00i þ
e2iφj11iÞ= ffiffiffi

2
p

for which the QFI equals 4. Whereas, if
only a single σx occurs the state will contain no information
about the phase at all. As a result the final QFI reads

Fð2Þ
E ¼ 4½p2 þ ð1 − pÞ2� ≥ Fð2Þ

C . Interestingly, this result
may be further improved via a simple adaptive strategy.
The protocol involves entangling the initial single probe
qubit with a single ancillary qubit, so that the input state is
again jψ ð2Þi. After a single action of the channel, Λφ ⊗ I ,
an error correction operation is performed, where we check
if a σx error occurred and correct the error accordingly.
Then the channel acts on the probe state again, and with

probability p yields the ideal state jψ ð2Þ
φ i; while if another

σx error occurs, the final unitary rotationUφ removes all the
phase information from the state. Consequently, the pro-
tocol yields a QFI equal to 4p. This protocol is actually the
optimal one provided p ≥ 0.5. If p < 0.5, then one simply
needs to modify the recovery operation in a way that
instead of correcting a single σx error on the probe system
the σx operation is applied to the ancillary qubit. In the end

the optimal QFI reads Fð2Þ
AD ¼ 2ð1þ j1 − 2pjÞ ≥ Fð2Þ

E (see
Ref. [50] Section A for details).
With this example in mind, one may wonder how to

prove that the actual protocols are indeed optimal and what
is (if any) the potential benefit of using even more general
CS strategies (Fð2Þ

CS>
?
Fð2Þ
AD). For larger n the task becomes

even more challenging, and no brute-force optimization
approach can tell what happens in the asymptotic limit
n → ∞. The methods developed in this Letter allow us to
answer all these questions.
State-of-the-art bounds.—The most powerful state-of-

the-art bounds for the performance of E as well as AD
strategies, are based on the concept of minimization of
certain operator norm expressions over different Kraus
representations of the channel Λφ ¼ P

k Kφ;k · K
†
φ;k

[21,22,28,31,37,53–56]—in what follows we drop sub-
script φ in Kraus operators for conciseness. For E strat-
egies, the upper bound on the achievable QFI reads

FðnÞ
E ≤ min

fKkg
4½nkαk þ nðn − 1Þkβk2�; ð2Þ

where k � � � k denotes the operator norm, α ¼ P
k K̇

†
kK̇k,

β ¼ P
k K̇

†
kKk, and K̇k ¼ ∂φKk. If a Kraus representation

exists for which β ¼ 0, the QFI scales asymptotically at
most linearly with n—SS models—and the optimal quan-
tum enhancement amounts to a constant factor improve-
ment [21,54–56]. If no such representation exists, then the
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HS can be preserved asymptotically [28,37]. Interestingly,
the above bound has been proven to be asymptotically tight
for both SS (β ¼ 0) and HS (β ≠ 0) models [37].
Moving to AD strategies, the best state-of-the-art uni-

versally valid bound reads [21,31,37]

FðnÞ
AD ≤min

fKig
4
h
nkαkþnðn−1Þkβk

�
kβkþ2

ffiffiffiffiffiffiffiffi
kαk

p �i
: ð3Þ

It is asymptotically equivalent to the parallel bound,
Eq. (2), in the case of SS models (β ¼ 0), and, since the
parallel bound is asymptotically saturable, this implies no
asymptotic advantage of AD strategies over E. Still, the
bound leaves space for improvement for finite n and does
not exclude an asymptotic advantage for HS models—the
term quadratic in n has a larger coefficient than the one
in Eq. (2).
Iterative bound.—Below, we derive a tighter adaptive

bound than the one given above, and prove it is asymp-
totically equivalent to the parallel one—consequently, this
implies no asymptotic advantage of AD over E for all
models (both SS and HS).
Let ΛðnÞ

φ ð·Þ ¼ P
kðnÞ KkðnÞ · K

†
kðnÞ represent a combined

action of n channels Λφ in a general adaptive strategy
where they are intertwined with control operations Vi
acting on probe and ancillary systems, as in Fig. 1
(AD). KkðnÞ denote the corresponding Kraus operators,
which can be computed via the following iteration relation:
Kkð1Þ ¼ V1ðKk1 ⊗ 1Þ,

Kkðiþ1Þ ¼ Viþ1ðKkiþ1
⊗ 1ÞKkðiÞ ; ð4Þ

where kðiÞ ¼ ðki;…; k1Þ, and 1 is acting on the ancillary
system (we will drop it in what follows for conciseness of
notation).
The starting point for the derivation of the state-of-the art

bounds as reported in Eqs. (2), (3), is an observation that,
given a channelΛðnÞ

φ , maximization of the QFI of the output
state over all inputs and sets of control operations can be
upper bounded by [53]

FðnÞ
AD ¼ max

ρ0;fVig
F
h
ΛðnÞ
φ ðρ0Þ

i
≤ max

fVig
min
fK

kðnÞ g
4kαðnÞk; ð5Þ

where αðnÞ ¼ P
kðnÞ K̇

†
kðnÞ

K̇kðnÞ , the minimization is per-

formed over all equivalent Kraus representations of ΛðnÞ
φ .

Note that for a large enough ancillary system the inequality
becomes equality. As such, this inequality is not of much
practical use due to the infeasibility of performing the
minimization over all Kraus representations for larger
values of n, as well as the need to additionally perform
the optimization over the control operations Vi. The
usefulness of this inequality stems from the fact, that it
is possible to further upper bound the rhs of Eq. (5) with

norms of operators defined in terms of Kraus operators of
the elementary channel Λφ. This is how bounds (2) and (3)
were obtained [21,31,37,54,55].
In what follows we provide a novel step-by-step

approach, where at each step we bound the maximal
increase in the final QFI thanks to the additional usage
of a single quantum channel [57]. Using Eq. (4) we have

αðiþ1Þ ¼
X

kiþ1;kðiÞ

�
K†

kðiÞK̇
†
kiþ1

þ K̇†
kðiÞK

†
kiþ1

�
× H:c:

¼
X
kðiÞ

K†
kðiÞ
αKkðiÞ þ K†

kðiÞ
βK̇kðiÞ þ K̇†

kðiÞ
β†KkðiÞ þ αðiÞ:

ð6Þ

We will now use the following operator norm inequality
(see Ref. [50] Section B for the proof):

����X
k

L†
kAQk

���� ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����X
k

L†
kLk

����
s

kAk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����X

k

Q†
kQk

����
s

; ð7Þ

which, together with the triangle inequality and the trace
preservation condition,

P
kðiÞ K

†
kðiÞ
KkðiÞ ¼ 1, yields

kαðiþ1Þk ≤ kαðiÞk þ kαk þ 2kβk
ffiffiffiffiffiffiffiffiffiffiffiffi
kαðiÞk

q
: ð8Þ

Let us define the following iteration:

aðiþ1Þ ¼ aðiÞ þ kαk þ 2kβk
ffiffiffiffiffiffiffi
aðiÞ

p
; að0Þ ¼ 0; ð9Þ

which, in light of Eqs. (5) and (8), yields FðnÞ
AD ≤ 4aðnÞ. The

resulting bound 4aðnÞ may be optimized over the choice of
Kraus representation of the elementary channel in each
iteration separately (how to efficiently implement this
iteration numerically is described in [50], Section D) or,
in a weaker variant, over a single Kraus representation
identically used in each step (for which the resulting bound
will also be valid for CS strategies—see Ref. [50] Section C
for the proof). Since aðnÞ is strategy independent, the
maximization over fVig, or, more generally, over all CS
strategies, is no longer necessary. This finally yields

FðnÞ
AD ≤ min

fKkg×n
4aðnÞ; FðnÞ

CS ≤ min
fKkg

4aðnÞ: ð10Þ

Interestingly, the possibility to use a different Kraus repre-
sentation for each channel use allows us to tighten the bound
also for parallel strategies, see Ref. [50] Section D3.
Closed formula bounds.—In order to appreciate how

much tighter the obtained bounds are compared to the state-
of-the-art bounds, we will provide some closed formulas
for the bounds that result from a relaxed variants of the
iteration procedure. First, observe that from Eq. (7) we get
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kβk ≤
ffiffiffiffiffiffiffiffikαkp

. From Eq. (9) it then follows that aðnÞ ≤
n2kαk (the bound obtained in [34]), which when put back
into the iteration formula results in

FðnÞ
AD;CS ≤ min

fKkg
4
�
nkαk þ nðn − 1Þkβk

ffiffiffiffiffiffiffiffi
kαk

p �
: ð11Þ

Note, that the bound is noticeably tighter than Eq. (3) and is
also valid for CS strategies, as the same Kraus representa-
tion is used in each step. We also see that the difference
between this bound and Eq. (2) amounts to replacing one
kβk with ffiffiffiffiffiffiffiffikαkp

. It might be tempting to conjecture that this
difference reflects the asymptotic gain of AD over E
strategies. This is not the case, however, as we demonstrate
below.
For any fixed kαk, kβk consider the following function

fðnÞ ¼ nkαk þ nðn − 1Þkβk2 þ n log nðkαk − kβk2Þ. For
n ≥ 0 it can be shown (see Ref. [50] Section E) that
fðnþ 1Þ ≥ fðnÞ þ kαk þ 2kβk ffiffiffiffiffiffiffiffiffi

fðnÞp
. Hence, in light of

Eq. (9) we get fðnÞ ≥ aðnÞ and as a result

FðnÞ
AD;CS ≤min

fKkg
4

�
nkαkþnðn−1Þkβk2

�
1þc logn

n−1

�	
; ð12Þ

where c ¼ ðkαk − kβk2Þ=kβk2. Since we know that the
parallel bound, Eq. (2), is asymptotically saturable this
implies that

lim
n→∞

�
FðnÞ
AD;CS=F

ðnÞ
E

�
¼ 1 ð13Þ

and, hence, there is no asymptotic advantage of AD nor CS
over E.
Interestingly, lack of asymptotic advantage thanks to

adaptiveness has also been demonstrated for continuous-
time models [25], a result which can be regarded as a
limiting case of the theory we develop here (see Ref. [50]
Section F for details).
Examples.—In order to illustrate the practical applica-

tions of the bounds, we compute them for four represen-
tative models and compare the results with the actual
performance of the optimal protocols that can be deter-
mined numerically for a small number of channel uses
(n ≤ 4) via semidefinite programming (SDP) as described
in [21] (parallel strategies), [33] (adaptive protocols), and
[35] (causal superposition protocols). The results are
presented in Fig. 2. As a figure of merit we plot the
achievable QFI with n uses of a channel normalized by n
times Fð1Þ (the maximal QFI for single-channel sensing
with a possible use of ancillary systems).
Figure 2(a) presents results corresponding to the intro-

ductory example of the perpendicular dephasing model,
Eq. (1)—in all the models that follow we also assume the
convention that Kφ;k ¼ UφKk (signal comes after noise).
Among the four models presented, this is the only one that

admits asymptotic HS—hence the linear increase of the
figure of merit. Interestingly, the bounds are saturated for
n ¼ 2 and the optimal QFI values are equal to the ones
obtained for the protocols discussed in the introductory
example, proving they are indeed optimal. For larger n, the
bounds are very tight, and, as expected, the bounds for AD
and CS converge asymptotically to the E bound (unlike the
state-of-the-art bound).
Results depicted in Fig. 2(b) refer to the parallel dephasing

model (both the unitary encoding and the dephasing arewith
respect to the z axis), where the Kraus operators read

K1 ¼
ffiffiffiffi
p

p
1; K2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
σz: ð14Þ

In this case, gains due to adaptiveness or causal super-
positions areverymodest, and the bounds are not particularly
tight for lown—still, thanks to the general theorem,we know
they are tight asymptotically.
Figure 2(c) illustrates results for the perpendicular

amplitude damping model (unitary encoding with respect
to the z axis, amplitude damping with respect to the x axis):

K1 ¼ j−ih−j þ ffiffiffiffi
p

p jþihþj; K2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
j−ihþj;

ð15Þ

(a) (b)

(d)(c)

Exact

Bound
new

old

FIG. 2. Achievable QFI as a function of the number of channels
probed for parallel (E, black), adaptive (AD, red), and causal
superposition strategies (CS, green) normalized by n times the
single-channel QFI. Points represent the result of the exact
optimization, while curves represent the respective bounds.
The best previously known adaptive bound (gray) is depicted
for comparison. The four plots correspond to different metro-
logical models with a qualitatively different behavior: (a) dephas-
ing perpendicular to the signal, Eq. (1) (p ¼ 0.75); (b) dephasing
parallel to the signal, Eq. (14) (p ¼ 0.75); (c) damping
perpendicular to the signal, Eq. (15) (p ¼ 0.15); (d) damping
parallel to the signal, Eq. (16) (p ¼ 0.75).
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where j�i ¼ ðj0i � j1iÞ= ffiffiffi
2

p
are the eigenvectors of σx.

This model is of particular interest as the finite-n bounds
are saturated here both for AD and CS for all n. This
suggests that it is highly unlikely that any tighter metro-
logical bounds can be derived solely from the properties of
the single-channel Kraus operators.
Finally, Fig. 2(d) depicts results for the parallel ampli-

tude damping model with

K1 ¼ j0ih0j þ ffiffiffiffi
p

p j1ih1j; K2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
j0ih1j: ð16Þ

This model illustrates particulary well how much tighter the
novel bounds are, when compared with the previous state-
of-the-art ones.
Conclusions and open problems.—With the results

presented in this Letter, we dare to say that the theory
of single-parameter quantum metrology in the presence of
uncorrelated noise is now complete. Universal asymptoti-
cally saturable bounds are known as well as efficiently
computable bounds in the regime of finite (but potentially
large) number of channel uses. This, together with exact
algorithms to find optimal protocols for small n, provides a
complete landscape of achievable quantum enhancement in
realistic quantum metrology. This said, we need to admit
that in the case of multiparameter models [58,59], Bayesian
models [60,61], and most importantly models involving
temporally or spatially correlated noise [33,62–65], the
quest for a full understanding of quantum metrological
potential is still not complete. Nevertheless, these achieve-
ments compare favorably to the ones obtained in the related
field of (binary) quantum channel discrimination [66,67].
Interestingly, adaptive strategies are not useful asymptoti-
cally for asymmetric hypothesis testing [68–70], while an
advantage is possible in the symmetric setting [71,72].
However, easily computable asymptotic bounds, as well as
practical strategies to attain them for arbitrary channels are
still missing, unlike in quantum metrology. Moreover, the
asymptotic analysis of causal superposition strategies for
quantum channel discrimination [44,73] is still an open
question.
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