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The fact that quantum mechanics predicts stronger correlations than classical physics is an essential
cornerstone of quantum information processing. Indeed, these quantum correlations are a valuable resource
for various tasks, such as quantum key distribution or quantum teleportation, but characterizing these
correlations in an experimental setting is a formidable task, especially in scenarios where no shared
reference frames are available. By definition, quantum correlations are reference-frame independent, i.e.,
invariant under local transformations; this physically motivated invariance implies, however, a dedicated
mathematical structure and, therefore, constitutes a roadblock for an efficient analysis of these correlations
in experiments. Here we provide a method to directly measure any locally invariant property of quantum
states using locally randomized measurements, and we present a detailed toolbox to analyze these
correlations for two quantum bits. We implement these methods experimentally using pairs of entangled
photons, characterizing their usefulness for quantum teleportation and their potential to display quantum
nonlocality in its simplest form. Our results can be applied to various quantum computing platforms,
allowing simple analysis of correlations between arbitrary distant qubits in the architecture.
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Introduction.—Quantum mechanics contains a plethora
of fascinating nonlocal effects that are useful in various
applications of quantum technologies. Such effects are, by
definition, invariant under changes of the local reference
systems or, mathematically speaking, of the choice of the
local bases of the Hilbert space. This naturally leads to the
expectation that they should be describable by quantities
which are invariant under such transformations. A quantum
state of composite systems is described by a density matrice
ρAB in the tensor product space of the individual systems, so
invariance under local basis changes of any function fðρABÞ
of the state can, in the case of bipartite systems, be
expressed as

fðρABÞ ¼ fðUA ⊗ UBρABU
†
A ⊗ U†

BÞ; ð1Þ
where UA and UB are unitary matrices governing the basis
change of the first and second system, respectively.
Because of this invariance, an average over all such
transformations yields

fðρABÞ ¼
ZZ

dUAdUBfðUA ⊗ UBρABU
†
A ⊗ U†

BÞ: ð2Þ

On the other hand, any physical function may be expanded
in terms of powers of expectation values of certain
observables, yielding

fðρABÞ ¼
X
⃗t

c⃗thM1it1hM2it2… ð3Þ

for appropriately chosen bipartite observables Mi and
coefficients c⃗t, where ⃗t ¼ ðt1; t2;…Þ denotes all possible
multi-indices with positive integers ti and a varying number
of entries k. Combining this with local unitary invariance
yields

fðρABÞ ¼
X
⃗t

c⃗tR
ðt1Þ
M1

ðρABÞRðt2Þ
M2

ðρABÞ…; ð4Þ

where the quantities

RðtÞ
MðρÞ≔

ZZ
dUAdUBfTr½ðUA ⊗UBÞρðU†

A ⊗U†
BÞM�gt

ð5Þ

are the tth moments of the probability distribution of
measurement results for the bipartite observable M under
random local basis changes. For the case of product

observables, the quantities RðtÞ
A⊗B have been studied as

randomized measurements, see, e.g., Refs. [1–5]. The
advantages of these schemes include the possibility to
obtain the data without having shared reference frames,
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having limited control over the measurements and in the
presence of uncharacterized local unitary noise. With
sufficient experimental control, the random unitaries may
even be selected from a finite unitary t design instead [6,7].
Note that the mild assumptions on the measurement
capabilities are in contrast to the stronger ones in shadow
tomography schemes, where known random unitary rota-
tions are applied to a state to estimate expectation values
with a small number of measurements [8].
Here, we go beyond the standard randomized measure-

ment schemes by allowing for non-product observables.
While this sounds like a disadvantage for practical imple-
mentations, we stress that it is possible to obtain the moment
data for nonproduct observables from the data of multiple
product observables by classical postprocessing.
As the moments of these distributions can be measured

directly, they form the main objects of interest in order to
describe the local unitary invariant functions. In principle, it
is possible to expand any (polynomial) local unitary invariant
(LU invariant) in this manner. However, so far only a small
subset of these moments has been exploited for tasks like
entanglement detection [9–12] or fidelity estimation [13,14].
In this Letter, we develop a general framework linking

the moments of randomized measurements and the set of
LU invariants. For fixed local dimension d, the set of
polynomial invariants is finitely generated [15,16], so it
suffices to consider the generators. Indeed, complete sets of
generators have been found in the case of two-qubit states
and certain classes of higher-dimensional cases [17,18]. In
the following, we develop concrete schemes to measure all
of the relevant two-qubit invariants, but naturally our theory
can be extended to known invariants in higher-dimensional
or multiparticle systems. We illustrate this by deriving a
scheme to measure the Kempe invariant in three-qubit
systems [19,20]. As an application, we experimentally
implement a randomized measurement scheme to measure
some of the invariants and use it to certify the presence of
Bell nonlocality and the usefulness of the prepared states
for teleportation schemes.
Randomized measurements.—In the framework of ran-

domized measurements, a multiparticle quantum state
undergoes random local unitary transformations before a
fixed observable M is measured. The experiment is
repeated a number of times for different choices of local
unitaries. From the statistics and the moments of the
resulting probability distribution, one then aims to infer
properties of the underlying quantum state.
More formally, the quantities obtained in the experiment

for a bipartite quantum state ρ are those given in Eq. (5),
where the integrals are evaluated with respect to the Haar
measure over the unitary group UðdÞ, the measured
observable is denoted M, and the moment of the corre-
sponding probability distribution is denoted by t.
In this Letter, we are mainly concerned with two-

qubit states, for which a complete generating set of 18

polynomial invariants has been characterized before [17].
Of these invariants, six are needed only to distinguish
certain specific states by the signs of these invariants, thus
we do not expect to extract relevant information in terms of
entanglement or nonlocality from these. The remaining
twelve invariants are of degree up to six. In order to express
them properly, let us decompose the bipartite quantum state
in terms of the Bloch representation, i.e., we write

ρ ¼ 1

4

�
1 ⊗ 1þ α⃗ · σ⃗ ⊗ 1þ 1 ⊗ β⃗ · σ⃗ þ

X3
i;j¼1

Tijσi ⊗ σj

�
;

ð6Þ

where σ1;2;3 denote the usual Pauli matrices. Thus, the state

is determined by its local Bloch vectors α⃗ and β⃗, and the
real correlation matrix T. In terms of these, the invariants
can be expressed conveniently, and we give a complete list
in Appendix A in the Supplemental Material [21]. For our
purposes, we will focus on the invariants I1 ¼ detðTÞ, I2 ¼
TrðTTTÞ and I3 ¼ TrðTTTTTTÞ. With the help of these
three invariants, it is possible to decide whether the state
can violate a CHSH-like Bell inequality. Furthermore, it is
possible to bound the teleportation fidelity of the state.
Two of the invariants, including I1, are special in the

sense that they flip signs under partial transposition of ρ,
whereas all other invariants do not. This has consequences
on how to measure them: While the other invariants can be
obtained from the statistics of product observables, I1 and
I14 require nonproduct observables. In turn, they are linked
to the entanglement of the state and can be used to obtain
the entanglement measure of negativity of the state using
randomized measurements [36], see Appendix A for more
details [21].
Expressions for the LU invariants.—Let us now state

explicitly how to measure the LU invariants in a random-
ized measurement scheme. To that end, recall that in order
to observe the moments in Eq. (5), one has to choose an
appropriate observable. Here, we show how to choose it in
order to obtain the invariants I1, I2 and I3.
As a first example, we explore the moments in case of the

choice M ¼ Z ⊗ Z. Note that choosing any other combi-
nation of Pauli matrices yields the same results, as they are
related by local unitary rotations. For this choice, the first
moment vanishes and we obtain as the second moment

Rð2Þ
Z⊗Z ¼ 1

9
TrðTTTÞ ¼ 1

9
I2; ð7Þ

where the occurring integrals can be solved using
Weingarten calculus [37].
Next, t ¼ 3 yields again zero (as well as any odd

moment). For t ¼ 4, we obtain
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Rð4Þ
Z⊗Z ¼ 1

75
½2TrðTTTTTTÞ þ TrðTTTÞ2�

¼ 1

75
½2I3 þ I22�; ð8Þ

giving access to the invariant I3.
Finally, as I1 ¼ detðTÞ flips sign under partial trans-

position, we consider the nonproduct observable Mdet ¼P
3
i¼1 σi ⊗ σi and t ¼ 3. Note that even though the observ-

able is nonproduct, the moments can still be obtained by
local measurements, as the expectation value can be
obtained from the three measurements X ⊗ X, Y ⊗ Y, Z ⊗
Z for a fixed choice of unitaries. The corresponding
moment yields

Rð3Þ
Mdet

ðρÞ ¼ detðTÞ ¼ I1: ð9Þ

This scheme is not limited to bipartite systems. Indeed, it
is possible to measure a mixed-state variant of the Kempe
invariant of three-qubit systems [19,20]. We demonstrate
this using the observable MKempe ¼ Z ⊗ Z ⊗ 1þ Z ⊗
1 ⊗ Z þ 1 ⊗ Z ⊗ Z in Appendix A [21]. Before turning
to the experimental implementation of the randomized
measurement scheme, some statistical considerations are
in order. For any fixed choice of local unitaries, multiple
measurements are needed to obtain an estimate of the
expectation value. Furthermore, a large number of random
unitaries have to be chosen. We denote the number of
random unitary choices by M, and the number of mea-
surements per choice to obtain the expectation value by K,

such that the total number of measurements is given
by MK.
Central for this scheme is the generation of Haar random

unitaries. We certify the randomness of unitaries in our
setup by calculating their so-called frame potential as
detailed in Appendix B [21].
Experimental methods.—We experimentally verify the

functionality of the proposed randomized measurement
method for the two-qubit case using polarization-entangled
photon pairs. A schematic of our experimental setup is
shown in Fig. 1(a). The entangled photon source (EPS)
generates signal and idler photon pairs via four-wave
mixing in a dispersion shifted fiber (DSF) [38]. The
DSF is pumped with a 50 MHz pulsed fiber laser centered
at 1552.52 nm and is arranged in a Sagnac loop with a
polarizing beam splitter (PBS) to entangle the signal and
idler in polarization. The photons are spectrally demulti-
plexed into 100 GHz-spaced channels on the International
Telecommunication Union (ITU) grid after the Sagnac
loop, resulting in photons with a temporal duration of about
15 ps [39,40]. For the experiment described here, ITU
channels 27 (1555.75 nm) and 35 (1549.32 nm) are used.
The source is tunable and typically outputs μ ¼ 0.001–0.1
pairs per pump pulse. Each photon is detected with gated
InGaAs detectors with detection efficiencies of η ∼ 20%

and dark count probabilities of ∼4 × 10−5 per gate [41,42].
Given the polarization-entangled state generated by our

source, we must implement random local unitary rotations
in the form of random polarization state rotations.
Therefore, we utilize the scrambling function of automated
polarization controllers in order to apply random

FIG. 1. (a) Schematic diagram of the experimental setup for performing the randomized measurement protocol with polarization-
entangled photon pairs. Detector station (DS), dispersion-shifted fiber (DSF), entangled photon source (EPS), polarization analyzer
(PA), polarization scrambler (SCR), single photon detector (SPD). (b),(c),(d) Experimentally determined unbiased estimators for the
invariants I1, I2, and I3 for 25 different runs consisting of measurements with 200 different random unitaries. The black lines show the
expected values of each parameter calculated from the density matrix of the experimental system.
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polarization rotations (for the remainder of the Letter, a
polarization controller operating in scrambling mode will
be referred to as a polarization scrambler).
After verifying that the polarization scramblers can be

used to apply sufficiently random unitaries, we measured
unbiased estimators (see Appendix C [21]) for the I1, I2, and
I3 invariants via Eqs. (7)–(9). Each polarization scrambler
was set to rotate incident light to a random polarization state
(therefore, acting as a random unitary), and coincidences
were measured in different bases. To that end, we define for
each of the two parties i ¼ 1, 2 the local bases fjHii; jViig
of horizontally and vertically polarized light, fjDii; jAiig of
diagonal and antidiagonal polarized light and fjLii; jRiig of
left circular and right circular polarized light. Note thatwhile
we associate these bases with polarization states, the unitary
invariance of the measured quantities allows us to choose
any local bases, as long as they are rotated by ðπ=2Þ on the
Bloch sphere with respect to each other. In particular, the
bases for measuring photons 1 and 2 do not need to be
aligned, i.e., jHi1 and jHi2 do not need to be equivalent on
their respective Bloch spheres. We then measured in each
combination of these local bases repeatedly for M ¼ 200
different settings of the polarization scramblers, i.e., 200
different random unitaries were applied, where for each of
these settings, K ≈ 1500 repetitions were used to measure
the expectation value.
The method to estimate I1, I2, and I3 from finite meas-

urement results is discussed in detail in Appendix C [21].
Althoughwe collect measurement results in the fjHii; jViig,
fjDii; jAiig and fjLii; jRiig bases described above, the
estimators for I2 and I3 only require projectivemeasurements
in a single joint basis. Therefore, those estimators are
calculated using only a subset of the data, for example, the
results for jHi1jHi2, jHi1jVi2, jVi1jHi2, and jVi1jVi2. On
the other hand, the estimator for I1 requires projective
measurements in all three of the measured joint bases
After calculating the invariants, the experiment described
abovewas repeated 25 different times to allow for a statistical
analysis of the results.
The experimentally determined estimators of the I1, I2,

and I3 invariants for all 25 runs (each run is shown in a
different color) are shown in Figs. 1(b)–1(d), respectively.
The green band in all plots corresponds to the expected value
of each invariant to allow for comparison with our method.
The band represents the mean value plus or minus the
standarddeviationof each invariant calculated byperforming
quantum state tomography many times to characterize the
state output by the EPS. A more-detailed description of how
these expected values are calculated is found inAppendix E3
in the Supplemental Material [21]. The experimentally
determined invariants converge near the expected values,
therefore validating our randomized measurement protocol.
Applications to the detection of Bell nonlocality and

teleportation fidelity.—The most straightforward applica-
tion is the evaluation of I2 ¼ TrðTTTÞ, also known as the

two-body sector length [43]. A quantum state is entangled
if I2 > 1, and the maximal value is I2 ¼ 3 for Bell states.
Note that additional knowledge of I3 ¼ TrðTTTTTTÞ
allows for the detection of many more entangled states [12].
Combined knowledge of I1 ¼ detðTÞ, I2 ¼ TrðTTTÞ,

and I3 ¼ TrðTTTTTTÞ is useful for completely determining
if a state’s nonlocality can be detected by a CHSH-like
inequality: Given the observable [44]

B ¼
X3
i;j¼1

½aiðcj þ djÞ þ biðcj − djÞ�σi ⊗ σj; ð10Þ

where a⃗, b⃗, c⃗, and d⃗ are real, normalized vectors, its
expectation value is bounded by 2 for local states. For a
given quantum state, the maximum expectation value that
one can observe by varying the vectors that define the
observable is given by 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ21 þ λ22

p
, where λ1 and λ2 are the

two largest singular values of the correlation matrix T [45].
Thus, the quantity

CHSHðρÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ21 þ λ22

q
− 2 ð11Þ

measures the observable violation.
As the squares of the singular values of T coincide with

the eigenvalues of TTT, we can obtain them by measuring
the coefficients of the characteristic polynomial

pTðxÞ ¼ x3 −TrðTTTÞx2

−
1

2
½TrðTTTTTTÞ−TrðTTTÞ2�x− detðTÞ2; ð12Þ

which are LU invariants, and calculating its roots. However,
some care is needed to properly transfer statistical errors
from finite statistics of the invariants to the roots of this
polynomial; we explain the data analysis methods in
Appendix D [21].
As a second figure of merit, we can decide whether a

given two-qubit state is useful in a teleportation protocol.
There, the maximal fidelity fmax of the teleported state is
given by [46]

fmax ¼
Fmaxdþ 1

dþ 1
; ð13Þ

where in our case d ¼ 2 and Fmax is the maximal overlap of
the distributed state with the maximally entangled state
jϕþi ¼ ð1= ffiffiffi

2
p Þðj00i þ j11iÞ under local operations and

classical communication. As local unitary rotations con-
stitute a subset of these, we can lower bound Fmax by
optimizing over LUs instead, yielding [47]
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Fmax ≥ FU
max ≔

1

4
maxf1− λ1 − λ2 − λ3; 1− λ1 þ λ2 þ λ3;

1þ λ1 − λ2 þ λ3; 1þ λ1 þ λ2 − λ3g: ð14Þ

By examining the invariants I1, I2 and I3, we can minimize
FU
max over all singular values λi which are compatible with

the observed data, giving a lower bound on the teleportation
fidelity of the prepared quantum state.
Results.—Using the methods described above and under

the assumption that 25 repetitions of the experiment yields
results which are well described by the Gaussian approxi-
mation, we extract the following experimental values for
the invariants:

detðTÞ ¼ −0.62� 0.15; ð15Þ

TrðTTTÞ ¼ 2.41� 0.15; ð16Þ

TrðTTTTTTÞ ¼ 2.21� 0.21; ð17Þ

where the confidence regions correspond to 3σ, i.e., 99.73%
confidence levels. These values are all in agreement with the
values determined from quantum state tomography [shown
by the green bands in Figs. 1(b)–1(d)]: I1 ¼ −0.71� 0.12,
I2 ¼ 2.41� 0.34, and I3 ¼ 1.95� 0.34 with 1σ confi-
dence regions.
From these values, we obtain a potential CHSH

violation of

CHSHðρÞ ≥ 0.46: ð18Þ

The confidence of this violation is given by 0.991 ≈ 2.6σ,
as detailed in Appendix D [21]. For comparison, the
maximal CHSH violation calculated from quantum state
tomography is CHSHQST ≤ 0.60� 0.11. Note that the
maximal observable value for a fully entangled state is
given by 2

ffiffiffi
2

p
− 2 ≈ 0.83.

Similarly, by requiring a higher confidence level of 5σ
for the invariants, CHSHðρÞ ¼ 0.42 with confidence
0.999 998 ≈ 4.7σ can be obtained.
Using either method, our results clearly show that the

randomized measurement protocol successfully determines
that the state output by our EPS has the potential to violate a
CHSH inequality.
For the teleportation fidelity, a confidence level of 3σ of

the LU invariants yields a fidelity of at least

FU
max ¼ 0.88; ð19Þ

or, via Eq. (13), fmax ¼ 0.92, with a confidence level of
0.991 ≈ 2.6σ, By raising the confidence of the invariants to
5σ, the lower bound decreases to FU

max ¼ 0.86, or
fmax ¼ 0.90, with confidence 0.999 998 ≈ 4.7σ. For com-
parison, the fidelity of the state calculated from tomography
is FQST ¼ 0.90� 0.08, and the teleportation fidelity is

fQST ¼ 0.93� 0.05, confirming that the randomized meas-
urement protocol accurately determines these parameters.
A detailed derivation of these values can be found in

Appendix E, where we also give values for these quantities
without the assumption of Gaussian distribution, by using
the Hoeffding inequality instead [21].
Conclusion.—We showed that any local unitary invariant

characterizing the quantum correlations in quantum states
of two or more particles can be directly measured using the
moments of randomized measurements. We exemplified
this for two-qubit states, where we showed how all relevant
LU invariants can be inferred from randomized measure-
ments of appropriately chosen observables. We proceeded
to demonstrate the practicality of the introduced methods
by conducting an experiment with entangled photon pairs
leading to an efficient measurement of the LU invariants I1,
I2, and I3. The latter allowed us to directly certify important
properties of the state, i.e., its Bell nonlocality as well as its
usefulness for quantum teleportation. Furthermore, as a
necessary by-product of our investigations, we devised
methods allowing for a characterization of the degree of
randomness of a set of experimentally implemented unitary
transformations.
We emphasize the simplicity of the presented scheme

which allows to infer several important properties of the
underlying quantum state through a number of randomly
assorted measurements. For this reason, it will be an
interesting direction of future research to extend the present
explicit constructions for two-qubit states also to higher-
dimensional systems which likely will find ample appli-
cations in quantum communication tasks. Also, it would be
desirable to extend our approach to the characterization of
nonlocal quantum channels and multiparticle quantum
correlations such as multi-setting Bell nonlocality or spin
squeezing.
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