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While the role of local interactions in nonequilibrium phase transitions is well studied, a fundamental
understanding of the effects of long-range interactions is lacking. We study the critical dynamics of
reproducing agents subject to autochemotactic interactions and limited resources. A renormalization group
analysis reveals distinct scaling regimes for fast (attractive or repulsive) interactions; for slow signal
transduction, the dynamics is dominated by a diffusive fixed point. Furthermore, we present a correction to
the Keller-Segel nonlinearity emerging close to the extinction threshold and a novel nonlinear mechanism
that stabilizes the continuous transition against the emergence of a characteristic length scale due to a
chemotactic collapse.
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Nonequilibrium phase transitions encompass a broad
class of systems, including absorbing-state phase transi-
tions [1,2], roughening transitions [3,4], and ordering
transitions in active matter [5,6]. Most theoretical
studies of these paradigmatic model systems focus on
the role of local interactions. However, in addition to
short-ranged interactions, several biological and synthetic
systems exhibit many-body long-range interactions
between agents [7]. For example, the social amoeba
Dictyostelium discoideum uses chemical signaling and
chemotaxis to control aggregation under harsh conditions
[8], signaling molecules mediate intercellular communi-
cation in microbial populations [9], and microrobots and
robotic fish use infrared, electrical, and acoustic signals to
communicate [10].
Studying long-ranged interactions has a long-standing

history in the context of equilibrium continuous phase
transitions [11–13]. Their nonequilibrium counterparts are,
however, less well explored. Most attention has been paid
to systems where the long-rangedness results from Lévy-
flight-like motion, nonlocal effects due to an underlying
network architecture, or spatially dependent reaction rates
[14–17]. There, the additional interactions may lead to a
new universality class [14,16] or change the nature of
the phase transition [17]. Here, we are interested in the role
of long-range chemical signaling on classical models of
population dynamics.

For this purpose, we consider agents emitting a signal
in the form of a chemical substance which spreads by
diffusion and can be sensed by other agents that respond
by adapting their direction of motion, a process known as
chemotaxis. The dynamics of such populations has been
analyzed in terms of drift-diffusion models for the agent
density coupled to a chemical field, termed Keller-Segel
(KS) models [18–20]. These studies have identified a
plethora of different phenomena—ranging from aggre-
gation [21,22] to the formation of complex patterns
[19,23–25]. While the role of thermal fluctuations
[26,27] and fluctuations around a constant background
density [28,29] have been investigated, the role of large-
scale demographic noise—which is particularly impor-
tant close to the extinction threshold [1,2,30]—remains
largely unexplored. In this Letter, we investigate how
long-ranged chemical signaling affects the collective
behavior of a population consisting of a single type of
reproducing agents close to extinction.
We consider a generic model of a population of

diffusing cells (agents) and chemicals in terms of two
fluctuating density fields ρðx; tÞ and cðx; tÞ. The popula-
tion dynamics is assumed to follow logistic growth; i.e.,
cells proliferate at a rate μ, die at a rate λ, and resource
availability limits population growth to a finite carrying
capacity. In addition, we consider the effect of an auto-
chemotactic interaction, where each cell is capable of
responding to a chemical signal while simultaneously
sourcing it with strength α [31,32]. We are interested in
an effective, hydrodynamic description of this system,
valid on macroscopic scales and in the presence of
demographic noise. The corresponding Langevin equa-
tions are
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dρ
dt

¼ ðDρ∇2 þ θÞρ − γρ2 þ
ffiffiffiffiffiffiffiffiffi
2Λρ

p
ξþ I½ρ;∇c�; ð1Þ

dc
dt

¼ ðDc∇2 − λcÞcþ αρ; ð2Þ

where θ ¼ μ − λ is the net growth rate, θ=γ the carrying
capacity, λc the degradation rate of the signaling molecules,
and Dρ;c are the diffusion constants. The macroscopically
relevant noise is multiplicative with amplitude 2Λρðx; tÞ and
Gaussianwhite noise ξðx; tÞ. Higher-order nonlinearities and
other noise terms are irrelevant close to the absorbing state
[33]. Without the additional interaction I½ρ;∇c�, Eq. (1)
corresponds to the noisy Fisher-Kolmogorov equation
[53,54], whose universal properties fall into the universality
class of directed percolation (DP) [1,2].
The interaction term I½ρ;∇c�—which we assume to

depend only on gradients in c [33]—accounts for the
directed motion of cells along chemical gradients. Its form
depends not only on cellular details, but also on the level of
coarse graining. In particular, the absence of global mass
conservation in the population dynamics allows for a
nonconservative effective interaction.
At mean-field level, the dynamics exhibits two length

scales, a diffusion length of the agents ξρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dρ=jθj

p
and

of the chemicals ξc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Dc=λc

p
. The latter is linked to the

interaction range, since λc inhibits signal transduction over
long distances. For long-ranged chemotactic interactions
(ξc → ∞, see Appendix A) [33], the only relevant scale is
ξρ. Below this scale, demographic processes play only a
minor role and the chemotactic interaction can be formu-
lated in terms of a conserved current I½ρ;∇c� ¼ ∇J, where
J ¼ χ½ρ;∇c�ρ∇c and the sensitivity function χ½ρ;∇c�
encodes details of the sensing process [19,55,56].
However, close to the extinction threshold, the system is

dominated by a divergent correlation length ξ > ξρ and
strongly enhanced fluctuations. Furthermore, coarse grain-
ing to large scales inevitably “mixes” the effects of
chemotaxis and birth-death processes. Whereas the net
production by the linear birth-death term is independent of
the density distribution, the net degradation due to the
growth-limiting term is enhanced by density fluctuations.
Thus, the evolution of the total mass is coupled to the
chemotactic interaction by the interplay of resource limi-
tation and chemotactic drift, which alters the dynamics of
density fluctuations. Therefore, an explicit coarse-graining
procedure is needed to determine all the relevant contri-
butions. This is achieved by a renormalization group (RG)
analysis (see Ref. [33]), which reveals that close to the
extinction threshold the effective chemotactic interaction,
correctly accounting for birth-death processes, is given by

I½ρ;∇c� ¼ χ1∇ðρ∇cÞ þ ðχ2 − χ1Þρ∇2c: ð3Þ

It consists of a conservative interaction—the classical KS
[18] nonlinearity—and an additional nonconservative term.

Adimensional analysis shows that all other contributions are
irrelevant at the pertinent length scales [33]. Importantly,
Eq. (3) does not imply that the chemotactic interaction
explicitly breaks particle number conservation. Rather, it
accounts for the fact that close to the extinction threshold the
interplay between strong density fluctuations, chemotactic
drift, and population dynamics requires an effective descrip-
tion of the form (3). Conversely, if fluctuation corrections are
weak, i.e., far away from the extinction threshold, a con-
served current yields the proper description.
To analyze Eqs. (1) and (2), we first neglect the noise

term and study the resulting mean-field equations. They
yield two homogeneous stationary solutions: the absorbing
state ρ0 ¼ c0 ¼ 0 corresponding to the inactive phase and
a state corresponding to the active phase with the agent
density equal to the carrying capacity: ρ1 ¼ θ=γ and c1 ¼
αρ1=λc. From a linear stability analysis of these homo-
geneous states, one infers that there are three distinct phases
(Fig. 1). For θ < 0, only the absorbing state is stable. In
contrast, the homogeneous active state is stable for θ > 0
and

χ2 > −
γDc

α

 
1þ λcDρ

θDc
þ 2

ffiffiffiffiffiffiffiffiffiffi
λcDρ

θDc

s !
: ð4Þ

In the case of θ > 0 and χ2 below this threshold, however,
both homogeneous solutions are unstable against spatial
perturbations. This Turing-type [57] instability indicates
the onset of pattern formation [24,25], as explicitly confi-
rmed by numerical simulations shown in Fig. 1.
At θ ¼ 0, one finds a transcritical bifurcation, indicating

a continuous, absorbing-state phase transition with θ acting
as the control parameter. Close to the extinction threshold
(θ → 0) and for long-ranged interactions (ξc → ∞), the
system becomes intrinsically scale invariant. In particular,

FIG. 1. Mean-field phase diagrams of the auto-chemotactic
model for λc ¼ 0.1 (a) and λc ¼ 0 (b) with an inactive phase
(light gray), an active phase (white), and a pattern formation
regime (dark gray). The boundary between the active phase and the
pattern formation regime is given by Eq. (4). The states obtai-
ned from finite element simulations in one spatial dimension
for D ¼ 0.1, γ ¼ Dc ¼ 1, α ¼ 5, θ ∈ ½−0.2; 1� and χ1 ¼ χ2 ∈
½−2; 0.4� are marked by crosses (absorbing state), squares (active
state) and triangles (inhomogeneous), respectively. The inset
shows the largest eigenvalue of the system at λc ¼ θ andDc ¼ Dρ.
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the correlation length of density fluctuations should diverge
as ξ ∝ θ−ν, and, for a cell cluster emerging from a single
seed, its mean-squared radius and survival probability at
criticality should scale as hR2iðtÞ ∝ t2=z and PðtÞ ∝ t−δ,
respectively [1,2]. The mean-field critical exponents are
given by ν ¼ 0.5, z ¼ 2, and δ ¼ d=4. By dimensional
analysis, one identifies the following effective parameters:

u¼ γΛ
32π2D2

ρ
; g1;2¼

αχ1;2Λ
32π2D2

ρDc
; w¼ Dc

DcþDρ
: ð5Þ

In addition to the DP coupling u (representing resource
limitation), two new chemotactic couplings g1 and g2
emerge. The parameter w measures the time delay in the
chemotactic interaction due to the finite diffusion speed of
the signalingmolecules. Employing field theoretical RGand
a systematic perturbation expansion around the upper
critical dimension dc ¼ 4, we derive the flow equations [33]

μ
du
dμ

¼ −ϵuþ f1ðu; g1;2; wÞ; ð6aÞ

μ
dg1;2
dμ

¼ −ϵg1;2 þ f2;3ðu; g1;2; wÞ; ð6bÞ

μ
dw
dμ

¼ −wð1 − wÞf4ðu; g1;2; wÞ: ð6cÞ

The flow functions f1–f4 contain all information about the
dependence of the theory on the arbitrarymomentum scale μ
in d ¼ 4 − ε dimensions. Scale invariance is implied by the
existence of IR-stable (μ → 0 stable) fixed points [30].
In contrast to previous studies [28], all calculations are

performed by approaching the phase transition from the
inactive phase, the full dynamics of the chemical concen-
tration field are taken into account, and the limiting case of
DP is correctly recovered.
Inspecting Eq. (6c), one observes that w ¼ 1 is an in-

variant manifold of the RG flow. Moreover, systems where
w≲ 1 only slowly evolve away from this hyperplane. There-
fore, we first focus on this quasistatic limit of infinitely fast
diffusing chemicals [33].
We begin by investigating the case of a classical KS

interaction. This implies starting the RG coarse graining at a
scale where the chemotactic nonlinearities are equal, i.e.,
g1 ¼ g2 ¼ g0 (gray plane in Fig. 2). In addition to the
anticipated Gaussian and DP fixed points, the RG flow
exhibits a stable fixed point (CA) and a stable fixed line (CR)
(Fig. 2). They represent two different types of scale-invariant
dynamics, corresponding to chemoattractive (CA) and che-
morepellent (CR) systems. Only if g0 ¼ 0 does the flow
reach the DP fixed point, which is unstable under the
inclusion of chemotaxis, highlighting the importance of
long-ranged interaction for the agents’ critical behavior.
Furthermore, irrespective of the sign of the interaction, the

flow leaves the plane of KS interactions and terminates in
either the stable subdiffusive CA fixed point (z ¼ 2þ ϵ=18)
for chemoattraction (g0 < 0) or the stable superdiffusive CR
fixed line (z ¼ 2 − ϵ=2) for chemorepulsion (g0 > 0).
We conclude that accounting for long-range chemotactic

interactions quantitatively changes the nature of the phase
transition compared to DP, leading to two new universality
classes of absorbing-state phase transitions. The values of
the associated dynamical exponents z (Table I) match the
expectation that chemorepellent agents accelerate and che-
moattractant agents decelerate colony dispersal compared
to DP.
Furthermore, the fact that all flow lines leave the g1 ¼ g2

plane confirms that a KS interaction is not sufficient to
model the universal dynamics near criticality. Fluctuation-
generated terms are a generic phenomenon close to critical
points [34,42]. Similarly, in our case, the nonconservative
part of Eq. (3) is “generated” even if not included from the
beginning, and the effective chemotactic interaction can, in
general, not be given in terms of a conserved current.
Consequently, close to criticality, g1 ≠ g2 is of great
physical interest. In particular, the question arises how
the RG analysis relates to the mean-field analysis, which

FIG. 2. Schematic flow lines at w ¼ 1 for initial conditions
sampled from the KS plane g1 ¼ g2 ¼ g0 (gray plane). The basins
of attraction for the DP (black), CA (orange), and CR (blue)
fixed point are shown in the inset. In units of ε, the fixed
point values ðu; g1; g2Þ are ð1=12; 0; 0Þ, ð1=9;−1=3;−1=6Þ, and
ð−g2=2; 1=2; g2Þ, respectively. All flow lines starting from g0 ≠ 0
leave the KS plane.

TABLE I. Critical exponents up to first loop order for the four
distinct fixed points.

ν z δ

DP 0.5þ ϵ
16

2 − ϵ
12

1 − ϵ
4

CA 0.5þ ϵ
8

2þ ϵ
18 1 − 5ϵ

6

CR 0.5þ ϵ
8

2 − ϵ
2

1
CP 0.5þ 0.13ϵ 2 1 − 0.93ϵ
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identified a band of linearly unstable modes for g2 < −u (in
the long-ranged limit).
Indeed, the RG flow equations can be rewritten as a set of

only two equations for ū ¼ uþ g2 and g1: In the quasistatic
limit, the solution of the resulting Poisson equation (see
Appendix B) allows one to eliminate the chemical field,
leading (among other terms) to an effective growth-limiting
term with the shifted coupling constant ū ¼ uþ g2 [33].
We find that the domains of attraction of the CA and

CR fixed points are separated by an invariant manifold at
g1 ¼ 0 [Fig. 3(a)], leading to two different types of dynami-
cal scaling behaviors for g1 < 0 and g1 > 0, respectively.
This further stresses the difference between the two chemo-
tactic couplings: While the term ∼g2ρ∇2c can be absorbed
into an effective growth-limiting term, only the nonlinearity
∼g1∇ρ∇c qualitatively changes the RG flow. In addition to
the separatrix at g1 ¼ 0, the RG flow is organized by the
critical manifolds containing the CA and CR fixed points,
given (to one-loop order) by the lines ū ¼ g1=6 and ū ¼ g1,
respectively [Fig. 3(a)]. These lines are also the boundaries
of the domains of attraction of the CA (orange) and CR
(blue) fixed points, separating them from runaway flow.
Given that, in the long-ranged limit, the instability

condition (4) simplifies to ū < 0, one might have antici-
pated runaway flow in this entire region. Strikingly, the RG
analysis predicts scaling for g1 < ū < 0, which seems
contradictory at first. However, the linear stability analysis
does not allow any conclusions about the steady state of the
dynamics. Crucially, g1 does not affect the linear dynamics
but contributes only to nonlinear effects. In particular, it
enters the following exact relation for the time evolution of
the average mass (see Appendix C):

Λð∂thρ̄i − θhρ̄iÞ
32π2D2

ρ
¼ −uhρ̄2i þ g1 − ū

jVj
Z
V
hðρ − ρ̄Þ2i; ð7Þ

where ρ̄ indicates a spatial and h·i an ensemble average with
respect to the noise ξ. Equation (7) implies that, depending
on the sign of g1 − ū, fluctuations drive the system either
toward or away from the absorbing state. It applies to the
dynamics both above and below the absorbing-state phase
transition and especially when approaching the phase
transition at θ; ρ̄→ 0. This rationalizes why for ū−g1> 0
(including all KS models) nonlinear effects combined with
demographic noise lead to a continuous absorbing-state
phase transition, despite the band of linear unstable modes
for ū < 0. In contrast, for g1 > 0, the system is attracted by
the CR fixed point for ū > g1=6 and exhibits runaway flow
when ū < g1=6 [Fig. 3(a)]. The region 0 < ū < g1 is
particularly interesting: Eq. (7) implies that the linear
stability of the spatially uniform, active state is counter-
acted by a nonlinear term (∼g1 − ū) disfavoring a homo-
geneous state. Our RG analysis indicates that the anta-
gonism between these two effects leads to flow toward the
CR fixed point in the regime g1 > ū > g1=6 but to runaway
flow for ū < g1=6. Since the nonlinear instability is domi-
nant in the latter regime, the observed runaway flow is pos-
sibly indicative of a fluctuation-driven first-order transition.
The agents’ active motion can result in an effective diffu-

sion constant Dρ of similar magnitude as Dc [31,58,59].
Therefore, it is crucial to study the case w ≉ 1. In this case,
the full flow equations (6a)–(6c) exhibit an additional fixed
point of mixed stability we call the critical fixed point (CP)
at ðu; g1; g2; wÞ ¼ ð0.08ε;−0.45ε;−0.16ε; 0.64Þ and a sec-
ond DP fixed point at w ¼ 0. Our RG analysis shows that
the CP fixed point has a dynamic critical exponent z ¼ 2 to
all loop orders [33], implying purely diffusive dynamics,
akin to the critical fixed point characterizing the rough-
ening transition of the Kardar-Parisi-Zhang (KPZ) equation
[4,60,61]. As before, we first consider the case of g1 ¼
g2 ¼ g0; the resulting basins of attraction for the various
fixed points are depicted in Fig. 3(b). All points located on

FIG. 3. Evolution of initial conditions sampled from different slices of the four-dimensional parameter space under the RG flow, which
is classified into flow toward the CA fixed point (orange), the CR fixed line (blue), and four possibly different kinds of runaway flow
(gray and striped areas). The striped areas indicate effects which are present only at w < 1. (a) Schematic flow lines in the ū − g1 plane
for w ¼ 1 with three invariant manifolds g1 ¼ 0, ū ¼ g1, and ū ¼ g1=6 (bold lines). (b) Typical flow behaviors for KS-type models with
g1 ¼ g2 ¼ g0 at fixed u with DP fixed points at w ¼ 1 (unstable) and w ¼ 0 (stable). The separatrix (dashed line) introduced by the CP
fixed point (not shown) is shifted by increasing u (darker orange region). The CR fixed line is stable only at w ¼ 1. (c) Typical flow
behaviors for w < 1 and u fixed. The influence of decreasing w on the basin of attraction of CA is indicated by dashed lines and the
darker orange region. The phase boundaries in (b) and (c) were obtained by numerically solving the flow equations (6a)–(6c) [33].
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the invariant manifold g0 ¼ 0 flow toward the second DP
fixed point at w ¼ 0. Since the CP fixed point is located at
w < 1 and unstable in the w direction, it separates the
parameter space g0 < 0 into two parts. Points above this
separatrix flow to CA, whereas below it the system exhibits
a new type of runaway flow (striped dark gray). In contrast
to CA, the basin of attraction of CR does not extend to
w < 1. As pointed out above, a chemorepellent implies
superdiffusive motion (z < 2), equivalent to ∂μw < 0 near
the fixed line (CR). This renders the fixed line unstable in
the w direction. However, in the emerging runaway region
(striped blue), the projection of the fixed line to w < 1 is
still a strong attractor, which separates it from other regions
of runaway flow [Figs. 3(b) and 3(c)]. The typical shape of
the phase diagram for general g1 and g2, at fixed values of u
and w, is shown in Fig. 3(c). It features all four, possibly
different, kinds of runaway flow and bears a strong
resemblance to Fig. 3(a).
Altogether, the analyzed model reveals a correction to

the well-known Keller-Segel nonlinearity in the presence of
large fluctuations and exhibits a rich phase diagram with
two new absorbing-state phase transitions and various types
of runaway regions. The emergence of fixed points asso-
ciated to either a chemoattractant or -repellent demonstrates
the relevance of autochemotactic interactions for the
collective behavior of cells at their extinction threshold.
In particular, they highlight the impact of chemotactic
signaling for the survival probability and spreading velocity
of single colonies (Table I). For w ¼ 1, we have presented a
possible mechanism by which the runaway flow found in
Fig. 3(a) can be related to a fluctuation-induced first-order
transition [cf. Eq. (7)].
Furthermore, the emergence of theCP fixed point not only

gives rise to an unexpected type of purely diffusive scaling
behavior, it also highlights the importance of the time delay
introduced by the finite diffusion speed of the signaling
substance. The reminiscence of the CP fixed point to the
critical fixed point describing the roughening transition of
theKPZequation suggests the intriguing scenario of a strong
coupling fixed point below the separatrix.
Naturally, the multitude of theoretical predictions pre-

sented calls for a numerical study.Additionally,we hope that
our work will stimulate nonperturbative approaches [35,36]
that help to unravel the observed anomalous dynamics.
From a broader perspective, our results suggest that by
combining known universality classes of nonequilibrium
population dynamics [2,30] with various types of autoch-
emotactic feedbacks, a broad class of novel scale-invariant
dynamics could be discovered.

This work was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) through
the Collaborative Research Center SFB 1032—Project-ID
No. 201269156—and the Excellence Cluster ORIGINS
under Germany’s Excellence Strategy—EXC-2094–
390783311. Abhik Basu thanks the SERB, DST (India)

for partial financial support through the MATRICS scheme
(File No. MTR/2020/000406).

Appendix A: Long-ranged limit.—Since scale invari-
ance can be observed only if no length scale is intro-
duced by the chemotactic interaction, the long-ranged
limit λc → 0 is of particular interest. However, simply
inserting λc ¼ 0 into Eqs. (1) and (2) leads to a diver-
gent chemical density and a steady state condition ρ1 ¼
−Dc∇2c1ðxÞ=α. Thus, there would no longer be a homo-
geneous steady state for the chemical density, which
leads to an unphysical shift to the homogeneous steady
state density ρ1¼θ=ðγþαχ2=DcÞ of the agents. This devi-
ates from the actual carrying capacity θ=γ and shows
that one needs to take into account the “charge-neutral”
chemical density

c̃ðx; tÞ ¼ cðx; tÞ − α

Z
t

0

dt0ρ̄ðt0Þ; ðA1Þ

where we subtracted the homogeneous, albeit time-
dependent average production of the signaling molecule
with ρ̄ðtÞ denoting the spatial average of ρ at time t.
Importantly, this homogeneous shift does not alter the

dynamics of ρ. However, the evolution of the charge-
neutral chemical density is now given by

dc̃
dt

¼ Dc∇2c̃þ αðρ − ρ̄Þ; ðA2Þ

with no overall net production, i.e.,

d
dt

Z
V
c̃ ¼ 0: ðA3Þ

More details on this limit are provided in Supplemental
Material [33].

Appendix B: Quasistatic limit.—Another important
limit is the so-called quasistatic limit, where Dc=Dρ → ∞
and the chemical field, thus, instantly adjusts to changes
in the density field ρ. Assuming that α=Dc remains finite
[21], Eq. (A2) leads to the Poisson equation

∇2c̃ðx; tÞ ¼ −
α

Dc
½ρðx; tÞ − ρ̄ðtÞ�: ðB1Þ

For more details, we refer to Supplemental Material [33].

Appendix C: Mass evolution.—One way to analyze the
impact of different interactions is to study their effect on
the time evolution of the average density hρ̄i, where h·i
signifies an ensemble average with respect to the noise ξ.
To derive this evolution, we first note that Eqs. (1) and
(2) are Itô Langevin equations and, thus,Z

V
h
ffiffiffiffiffiffiffiffiffi
2Λρ

p
ξi ¼

Z
V
h
ffiffiffiffiffiffiffiffiffi
2Λρ

p
ihξi ¼ 0: ðC1Þ

Furthermore, we split the agents’ density into ρðx; tÞ ¼
ρ̄ðtÞ þ ρ̂ðx; tÞ, integrate Eq. (1) over space, and insert
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Eq. (B1). For the deterministic terms, this yields

∂tρ̄ ¼ θρ̄ −
1

jVj
Z
V
ðρ̄þ ρ̂Þ

�
γðρ̄þ ρ̂Þ þ αðχ1 þ χ2Þ

Dc
ρ̂

�

¼ θρ̄þ 32π2D2
ρ

Λ

�
−uρ̄2 þ g1 − ū

jVj
Z
V
ρ̂

�
; ðC2Þ

where we used that
R
V ρ̂ ¼ 0 and used the definitions (5)

of the effective couplings, as well as ū ¼ uþ g2. Taking
the ensemble average of Eq. (C2) leads to the exact re-
sult of Eq. (7). This result highlights the difference be-
tween the linear growth term ∝ θ and the nonlinearity
∝ γ modeling resource limitation. While the former con-
tributes a distribution-independent term to Eq. (C2), the
latter leads to a mass evolution which is dependent on the
density profile. Thus, it is the resource limitation which
makes the mass evolution susceptible to the influence of
chemotaxis.
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