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We report the first experimental realization of equilibrium dynamics of mutually confined waves with
signed analogous masses in an optical fiber. Our Letter is mainly demonstrated by considering a mutual
confinement between a soliton pair and a dispersive wave experiencing opposite dispersion. The resulting
wave-packet complex is found robust upon random perturbation and collision with other waves. The
equilibrium dynamics are also extended to scenarios of more than three waves. Our finding may trigger
fundamental interest in the dynamics of many-body systems arising from the concept of negative mass,
which is promising for new applications based on localized nonlinear waves.
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Negative mass generally introduces counterintuitive
effects. Typically, a negative-mass object tends to move
against an applied force, in sharp contrast to the experience
commonly encountered in our everyday lives. Analogous
phenomena also exist for waves, as represented by the well-
known example: the electrons at the top and bottom edges
of an energy band move in opposite directions upon an
identical static electric field. Basically, such different wave
dynamics stem from the inverted wave spreading (charac-
terized by dispersion relation in general), which has been
proven ubiquitous in nature [1–3]. Negative-mass dynam-
ics have been realized via dispersion management in
different branches of physics such as in optics, cold atoms,
and acoustics, and interestingly, its realization was
extended to the nonlinear regime [4,5].
The exotic feature of negative-mass matter is well-

manifested in its interaction with positive-mass matter
[6], inspiring the ideas of propellant-free propulsion [7],
explaining dark matter and energy [8], and even construct-
ing static vacuum black holes [9]. Given that negative-mass
matter is still inaccessible, nonlinear optics offers a con-
venient and feasible platform to study this intriguing
phenomenon in an analogous way. For example, the so-
called runaway motion, a kind of self-propulsion solely
driven by the interaction of matters with opposite mass
signs, was demonstrated initially in nonlinear fiber optics
[10,11] and later extended to the optical spatial domain
[12,13], leading to a wealth of advanced light manipulation
technology. Recently, this diametric drive behavior
attracted attention from the field of Bose-Einstein con-
densates [14], and was shown to exhibit unique wave
features [15] in connection to another widely explored
self-accelerating effect associated with Airy wave packets
[16–19]. During such a synchronized motion, two involved
waves bind together to form a wave complex, which is
fundamentally different from soliton bound states [20–30].

The resulting binding has to be accompanied with a self-
accelerating effect, leading to the fact that the temporal
localization must coexist with a frequency shift. To break
this linkage, one may consider scenarios involving more
waves. Indeed, the equilibrium dynamics of multiwaves
with signed masses were earlier considered [31–33] for the
purpose of realizing localized pulses in the normal
dispersion regime of fibers and further being used to
increase the capacity of optical communication [34]. But
thus far, this interesting nonlinear interaction has not been
observed in experiment to the best of our knowledge.
In this Letter, we demonstrate experimentally the first

nonlinear binding and equilibrium dynamics of multiple
interacting waves involving signed analogous masses in an
optical fiber. The first example is an optical pulse complex
consisting of a soliton pair and a dispersive wave that have
opposite signs of analogous mass. The mutually confined
entity shows a robust feature against strong random
perturbation, or upon certain collisions with other optical
pulses. Our method is also extended to cases involving
more than three waves.
At first, we present the basic idea to form a pulse

complex by using the three-wave configuration initially
proposed in Refs. [31–33] and illustrated in Fig. 1.
Considering two closely separated out-of-phase (π phase
difference) solitons, subject to anomalous group-velocity
dispersion (GVD), they repel each other upon nonlinear
interaction (Fig. 1(a)) [35]. A dispersive wave alone,
in the inverted dispersion regime (i.e., normal GVD),
would experience a self-defocusing nonlinear evolution
[Fig. 1(b)]. The three waves are able to bind together while
reach an equilibrium state [Fig. 1(c)]: the dispersive wave is
trapped by the soliton pair against the self-defocusing
effect, and meanwhile the repulsion separating the two
solitons is balanced by the attraction offered by the
dispersive wave [36–39].
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To design the equilibrium state, we employ the coupled
nonlinear Schrödinger equations that govern the pulse
propagation and interactions in optical fibers [40]:

i
∂A
∂z

¼ β2A
2

∂
2A
∂t2

− γAðjAj2 þ 2jBj2ÞA; ð1aÞ

i
∂B
∂z

¼ β2B
2

∂
2B
∂t2

− γBð2jAj2 þ jBj2ÞB; ð1bÞ

where A and B present the pulse envelopes of a soliton pair
and a dispersive wave, respectively, z is the propagation
distance, t is time in the frame moving at a group velocity
shared by all the three pulses, β2A (β2B) is the anomalous
(normal) GVD coefficient, and the coefficients γA and γB
indicate the nonlinear strength. In the following analysis, we
adopt the fiber parameters used in our experimental setting:
β2A ¼ −1.3 × 10−3 ps2m−1, β2B ¼ 1.2 × 10−3 ps2m−1,
and γA ¼ γB ¼ 0.5 × 10−3 W−1m−1. The two out-of-
phase solitons are expressed as Aðt;z¼0Þ¼
ffiffiffiffiffiffi

PA
p

sech½ðt−Δ=2Þ=TA�− ffiffiffiffiffiffi

PA
p

sech½ðtþΔ=2Þ=TA�, where
PA is the peak power, TA ¼ ½jβ2Aj=ðγAPAÞ�1=2 characterizes
the pulse duration of each soliton, and Δ introduces a
temporal separation between them. Assuming that their
repulsion is counteracted by the force exerted by the
dispersive wave, the index changes induced nonlinearly
by the solitons form a static potential well for the dispersive
wave in the retarded frame. Consequently, Eq. 1(b) becomes
a nonlinear eigenvalue problem as described by

νB ¼ β2B
2

∂
2B
∂t2

− γBð2jAj2 þ jBj2ÞB; ð2Þ

where ν is the eigenvalue. To obtain a localized solution,
the solitons are artificially flattened in the region outside

the twopeaks [Fig. 1(c)], thus avoiding the tunneling effect in
this finite potential well. This approximation was proven
valid for analyzing the two-body interactions [10,15].
Note that our design method is different from the ones
employed in Refs. [31–34]. By choosing a proper value of ν,
a desired dispersive wave used for balancing the soliton
repulsion is obtained. Figure 2(a) presents an example of
the achieved three-body system. Along the propagation, the
soliton pair and the dispersive wave reach an equilibrium
during their interaction. To quantify their spreading, the
“center of mass” is analyzed using just half of each pulse
profile (say, in the region of t > 0). It is expressed as tc ¼
R∞
0 jψ j2tdt=R∞

0 jψ j2dt (where ψ refers to pulse A or B),
which typically goes up when the pulse undergoes broad-
ening. Because of the binding effect, the values of tc for both
the soliton pair and the dispersive wave are kept nearly
constant during propagation [Figs. 2(b) and 2(c)]. In contrast,
the “center of mass” tc for either of them propagating alone
increases dramatically, induced by the repulsion or the self-
defocusing effect. Furthermore, the scenarios for different
soliton spacings are considered. To this end, tc is averaged
along the propagation distance, i.e., tc ¼

R

L
0 tcdz=L (where

L is a fiber length). Its value in terms of the spacing Δ is
presented in Fig. 2(d) for a fixed soliton peak power (i.e.,
PA ¼ 30 W). In general, as the two solitons are set closer, the

FIG. 1. Schematic diagram illustrating a nonlinear binding of
three waves with signed masses in an optical analog. (a) Two out-
of-phase solitons repel each other; (b) a dispersive wave under-
goes a self-defocusing evolution; (c) the soliton pair and the
dispersive wave reach an equilibrium state upon their mutual
interaction. FIG. 2. Numerically calculated pulse complexes and their

evolution. (a) Propagation of a typical pulse complex. (b),(c)
Spreading (characterized by tc: “center of mass” of a pulse at
t > 0) of the soliton pair (b) and the dispersive wave (c) in (a):
solid lines are associated with the scenarios where they mutually
interact at different levels of random noise (whose strength is
characterized by the parameter n defined in text) applied at the
input, while dashed lines plot the case when either of them
propagates alone. (d) The pulse spreading averaged along a
12-km-long distance for complexes designed with various soliton
separations. (e) Variance analysis of the spreading (in terms of tc)
during propagation corresponding to the cases in (d).
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resulting pulse complex has a smaller duration. This does not
hold for Δ≲ 1.3 ps, where the solved dispersive wave
manifests a considerable tunneling that is adverse to further
reducing the temporal scale of the complex. Under these
conditions, the generated pulse complex undergoes an
apparently breathing dynamic, as shown by the variances
of tc [Fig. 2(e)]. The breathing effect is more obvious for the
dispersivewave. Indeed, due to the existence of the tunneling
effect, such a three-body interaction is always in a quasie-
quilibrated regime. But for a large soliton spacing, the pulse
jitters induced by the breathing effect are negligible when
compared with the duration of the associated pulse complex
[Fig. 2(e)].
We also examine the robustness of this kind of three-

body system by imposing a random noise as the perturba-
tion to the involved pulses at the input. The noises added on
the soliton pair and the dispersive wave are expressed as
nfðtÞAðtÞ and nf0ðtÞBðtÞ, respectively, where fðtÞ and
f0ðtÞ includes random values with a uniform distribution
between −0.5 and 0.5, and n defines the noise strength. As
a typical example, the pulse complex presented in Fig. 2(a)
are used for the test. The applied noise causes a pulse
spreading at the onset of the propagation for both the
soliton pair and the dispersive wave [Figs. 2(b) and 2(c)].
This change comes earlier and becomes larger upon a
stronger noise. But eventually, the spreading ceases,
followed by a weak oscillation of the pulse duration
(characterized by tc). In principle, this stability originates
from the robustness of solitons that can bear a strong
perturbation.
Next, we carry out experiments using the setup sche-

matically plotted in Fig. 3(a) to demonstrate the binding
effect. The soliton pair and the dispersivewave are generated
by reshaping a femtosecond pulse featuring a broadband
spectrum and then properly amplified by an erbium-doped
fiber amplifier. This process involves a programmable pulse
shaper that encodes the spectral information of the prede-
signed pulse complex (see SupplementalMaterial [41]). The
nonlinear pulse propagation takes place in a dispersion-
shifted fiber (4 km long) with a zero-dispersion wavelength
at 1547.7 nm. The soliton pair and the dispersive wave,
whose center wavelengths are selected to be 1561 nm and
1536 nm, respectively, experience the same group velocity
but opposite GVDs. The input and output pulses are
measured both in temporal and spectral domains via a
frequency-resolved optical gating system and an optical
spectrum analyzer, respectively.
In order to avoid the influence of the intrapulse Raman

effect [42] that generally induces a soliton deceleration
(accordingly a frequency shift), the two solitons are
designed to feature a large duration. Figure 3(b) presents
the input and output profiles of a pulse complex. As
expected, the soliton pair and the dispersive wave remain
bound in subsequent nonlinear evolution. A small spread-
ing is observed for the pulse complex at the output, which is
caused by the fact that the theoretical model shown in

Eq. (1) does not fully describe the realistic propagation
environment. For reproducing our experimental results, we
perform numerical simulations by also involving the loss
and third-order dispersion existing in the fiber, character-
ized by α and β3, respectively. In this framework, Eqs. (1a)
and (1b) are modified as

i
∂A
∂z

¼ β2A
2

∂
2A
∂t2

þ i
β3
6

∂
3A
∂t3

− γAðjAj2 þ 2jBj2ÞA − iα
2
A;

i
∂B
∂z

¼ β2B
2

∂
2B
∂t2

þ i
β3
6

∂
3B
∂t3

− γBðjBj2 þ 2jAj2ÞB − iα
2
B :

ð3Þ

Here, the dispersion terms of orders higher than third-order
dispersion and higher-order nonlinear effects are safely
neglected as the input pulses have a large duration (∼1 ps).
By adopting the fiber parameters β3 ¼ 1 × 10−4 ps3m−1
and α ¼ 0.33 dB=km, the experimental observations are
well-reproduced in simulations. Good agreement is also
reached in the spectral domain [Fig. 3(c)]. As a result of this
binding effect, the spectral feature is almost maintained
from the input to the output. The center wavelengths for
both the soliton pair and the dispersive wave remain

FIG. 3. Experimental demonstration of a nonlinear binding of
three waves in an optical fiber. (a) Schematic setup; (b) temporal
and (c) spectral profiles of the pulse complex consisting of a
soliton pair and a dispersive wave at the input (bottom panels) and
output (upper panels). (d),(e) Temporal and spectral profiles
corresponding to (b),(c) but for the case that the soliton pair
propagates alone. (FROG, frequency-resolved optical gating;
EDFA, ermium-doped fiber amplifier; OSA, optical spectrum
analyzer).
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unchanged, validating the omittance of the Raman effect in
our simulations. Note that the pedestal in the measured
spectrum of the dispersive wave comes from the pump
source of the erbium-doped fiber amplifier, which almost
has null influence on the nonlinear interaction. Detailed
simulations show that the weakened confinement at the
output is mainly caused by the loss, while the sidebands
observed in the spectra of the soliton pair and the dispersive
wave are mainly associated with cross-phase modulation
and four-wave mixing, respectively. As a reference, the two
solitons are also injected into the dispersion-shifted fiber
without the dispersive wave in experiment. They separate
far away at the output upon their repulsion [Fig. 3(d)].
Accordingly, their spectrum exhibits fringes [Fig. 3(e)],
losing the input feature of two peaks. This direct compari-
son experiment and its agreement with the numerical
simulation further confirm the formation of the pulse
complex observed in Figs. 3(b) and 3(c). Our additional
simulations show that the nonlinear binding tends to be
weakened under the action of higher order nonlinearities,
but the timescale of the three pulses is still much smaller
than the temporal separation of the two solitons propagat-
ing alone (see Supplemental Material [41]). These pertur-
bation effects, including higher order nonlinearities and
dispersions, can be largely mitigated by designing pulse
complexes featured with a long duration [40] (see also
Supplemental Material [41]), or by properly choosing
fibers where these effects are small [33].
We further test the robustness of this nonlinear binding

upon collision with other waves. For this purpose, another
pulse in the normal GVD regime is introduced to collidewith
the pulse complex.This external pulse is imparted aGaussian
shape expressed as

ffiffiffiffiffiffiffiffi

ζPB
p

exp½−ðt − δÞ2=w2� expð−iρtÞ,
where ζ, δ, w, and ρ characterize its intensity (in terms of
the peak power of the dispersive wave, i.e., PB), delay,
duration, and initial kick, respectively. In simulations, differ-
ent values of ζ are employed, while the other parameters are
fixed at δ ¼ 2.5 ps, w ¼ 0.5 ps, and ρ ¼ 1 THz. Numerical
outputs for various input conditions are shown in Fig. 4(a).
Clearly, the pulse complex preserves when the impinging
pulse is not too intense. As the intensity of the external pulse
turns up too high, the pairing solitons become unequal in
intensity. When ζ > 2, the soliton pair is totally destroyed
and thus fails to confine a dispersive wave between them.
Two typical examples that visualize the pulse propagation are
presented in Figs. 4(b)–(e) to illustrate the stable and unstable
regimes. In the case of theweak external pulse (ζ ¼ 1), all the
components in the pulse complex experience an oscillatory
evolution after the collision. The dispersive wave shows a
time jitter, while the soliton pair becomes asymmetric with
the peak power alternatively switching between its two
components. However, they can still bind together, showing
a stable feature [Figs. 4(b) and 4(d)].When the external pulse
is too strong (ζ ¼ 3.5), the same pulse complex can only
sustain for a limited distance [Figs. 4(c) and 4(e)]. After that,
it exhibits a dramatic distortion: the energy of the trailing

soliton is largely transferred to the leading one, thus losing
the pair structure to trap the dispersive wave that eventually
mixes with the external pulse to form a fringe pattern. In
experiment, similar features are observed at the output by
using the input conditions close to the numerical simulations
[Figs. 4(d) and 4(e)]. Additional simulated scenarios, pre-
senting the interactions between two pulse complexes, also
show the ability of this mutually confined state to sustain
certain collisions (see Supplemental Material [41]).
Our design method can be readily extended to form pulse

complexes involving more solitons and dispersive waves
[see Figs. 5(a) and 5(b) and Supplemental Material [41]]. In
experiment, we realize the case of three solitons [Fig. 5(c)].
As a result of the nonlinear binding, the three solitons
copropagating with the associated dispersive waves show a
smaller separation comparing to the case where they
propagate alone (more experimental data are presented
in Supplemental Material [41]). Note that it is a challenge to
observe pulse complexes for further increasing the number
of solitons due to the resolution limit of the state-of-the-art
pulse shaper.
In conclusion, we have experimentally demonstrated

equilibrium dynamics of mutually confined waves with
signed analogous masses in an optical fiber. We realize a
cross-trapping between a soliton pair and a dispersive
wave. The resulting pulse complex is stable against random

FIG. 4. Evolution of a pulse complex upon colliding with an
external pulse. (a) Output profiles of the complex impinged by the
external pulse having various input intensities; (b)–(e) numerical
propagation (b),(c) and input/output profiles (d),(e) for the cases
of ζ ¼ 1 (b),(d) and 3.5 (c),(e). Experimentally measured input/
output profiles are also plotted in (d),(e) in solid curves.
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noise and can preserve their structures during certain
collisions with other pulses. Furthermore, we extend the
equilibriumdynamics tomultiwave interactions by including
more solitons. Our Letter could trigger fundamental interests
in investigating many-body interactions involving the con-
cept of negative mass. From the application viewpoint, the
results may spark new ideas for realizing pulse complexes
beneficial to increasing the transmission capacity in fiber
communications [23].
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