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We present an accurate and computationally efficient first-principles methodology to calculate natural
optical activity. Our approach is based on the long-wave density-functional perturbation theory and
includes self-consistent field terms naturally in the formalism, which are found to be of crucial importance.
The final result is expressed exclusively in terms of response functions to uniform field perturbations and
avoids troublesome summations over empty states. Our strategy is validated by computing the natural
optical activity tensor in representative chiral crystals (trigonal Se, α-HgS, and α-SiO2) and molecules
(C4H4O2), finding excellent agreement with experiment and previous theoretical calculations.
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Natural optical activity (NOA) refers to the first-order
spatial dispersion of the macroscopic dielectric tensor [1].
Empirically, it manifests as optical rotation (OR), which is a
property of certain structures to rotate the plane of the
polarization of light that travels through them [2,3]; at
difference with the Faraday effect, NOA is reciprocal and
doesn’t require magnetism to be present [4]. It was first
measured in quartz crystals back in 1811 by Arago, and
historically, most of the studied optically active materials
turned out to be chiral. In fact, chirality is a sufficient but
not necessary condition for NOA to be present, as optically
active achiral systems also exist [5]. Since its discovery,
natural optical activity has been attracting increasing
research interest, and reliable experimental measurements
now exist for many materials, both in molecular [6–10] and
crystalline form [11–17].
Parallel to the experiments, there have been considerable

advances in the theoretical understanding of optical rotation
as well [2,11,18–20]. Ab initio methods like Hartee-Fock
(HF), [9] coupled-cluster (CC) [21], and density functional
theory (DFT) [6,7,22] have recently become popular in the
context of NOA. While most of the available literature is
about small molecules, notable attempts at calculating
optical activity in solids do exist. It is worth mentioning,
for example, the pioneering works by Zhong, Levine,
Allan, and Wilkins, [19,20] based on a numerical long-
wavelength expansion of the electromagnetic response
function. Later, Malashevich and Souza [23] and Pozo
and Souza [24] derived analytical expressions for the NOA,
thus reviving the interest in the field; their formalism
has been implemented very recently within an ab initio
context [25]. The agreement between theory and experi-
ment achieved in these works is quite good, e.g., for
trigonal Se [23,24], α quartz [19,20], and trigonal Te [26].
In spite of the remarkable progress, however, a system-

atic, first-principles-based and computationally efficient

methodology to compute the NOA has not been established
yet. The first issue concerns the treatment of the self-
consistent fields (SCFs). These were accounted for in
Ref. [27] and found to be of crucial importance, but
the numerical differentiations with respect to the wave
vector q that were used therein have limited a widespread
application of their method. The existing analytical expres-
sions [23,24] for the NOA are, in principle, better suited to
an ab initio implementation [25], but the SCF contributions
are systematically neglected therein. Another disadvantage
with the existing techniques lies in that they require
cumbersome sums over empty states; this introduces an
additional potential source of error, as the convergence with
respect to the number of bands tends to be slow. There are
additional technical subtleties that have not been consid-
ered in the context of the NOA, for example, regarding the
correct treatment of the current-density response in the
presence of nonlocal pseudopotentials [28]. It is unques-
tionable that the current limitations rule out the study of
many systems of outstanding interest (e.g., electrotoroidic
compounds [29,30]), which are hardly accessible to the
currently available schemes.
Here we present, within the framework of first-principles

long-wave density functional perturbation theory (DFPT), a
method to calculate the natural optical activity that over-
comes the aforementioned limitations and is equally valid
for molecules and extended solids. Building on Ref. [31],
we express the natural optical activity tensor as the first-
order spatial dispersion (i.e., derivative with respect to the
wave vector q) of the macroscopic dielectric function.
Crucially, the capabilities of the recently implemented
long-wave module [32] of ABINIT [33,34] allow for an
efficient calculation by combining response functions that
are already available in the code (e.g., k derivatives, electric
and orbital magnetic field perturbations). This way, sum-
mations over excited states are entirely avoided, and the
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effect of local fields is automatically included without the
need for an ad hoc treatment. We validate our methodology
by computing the NOA tensor for well-known chiral
structures, including trigonal crystals (Se, α-HgS, and
α-SiO2) and the C4H4O2 molecule. Our numerical results
show fast convergence with respect to the main computa-
tional parameters, and are in excellent agreement with
experiment and earlier theoretical calculations.
Our starting point is the double Fourier transform in

frequency ω and wave vector q of the permittivity function,
ϵαβðω;qÞ. By expanding ϵαβðω;qÞ in powers of the wave
vector q, around q ¼ 0, we obtain

ϵαβðω;qÞ ¼ ϵαβðω;q ¼ 0Þ þ iqγηαβγðωÞ þ…; ð1Þ

where ηαβγðωÞ is the natural optical activity tensor [1].
(From now on, we adopt Einstein summation conventions
for the Cartesian indices αβγ.) In absence of dissipation
(i.e., in the transparent regime), ϵαβðω;qÞ is a 3 × 3

Hermitian matrix, which at q ¼ 0 becomes real symmetric
in crystals with time-reversal (TR) symmetry. The fre-
quency-dependent natural optical activity tensor is then
also real and satisfies ηαβγðωÞ ¼ −ηβαγðωÞ, which means
that only 9 of the 27 components of ηαβγ are independent.
As a consequence, ηαβγ is often rearranged into the second-
rank gyration or gyrotropic tensor, gαβ, [1]

gαβðωÞ ¼
1

2
ϵγδαηγδβðωÞ; ð2Þ

where ϵγαδ is the Levi-Civita symbol. Assuming a crystal
structure with the point group 32 (trigonal Se, α-HgS, and
α-SiO2 belong to this crystal class), and considering that the
optical axis is oriented along the z Cartesian direction [19],

gðωÞ ¼

0
B@

g11ðωÞ 0 0

0 g11ðωÞ 0

0 0 g33ðωÞ

1
CA; ð3Þ

where g11 ¼ η231 and g33 ¼ η123. The optical rotatory
power ρ is then given by [19]

ρðωÞ ¼ ω2

2c2
g33ðωÞ; ð4Þ

where c is the speed of light. In this work, we shall focus on
theω → 0 limit, where the components of both g and η tend
to a finite constant,

ηαβγ ¼ ηαβγðω → 0Þ; gαβ ¼ gαβðω → 0Þ: ð5Þ

At leading order in the frequency, this yields a rotatory
power of

ρðωÞ ≃ ðℏωÞ2ρ̄; ρ̄ ¼ g33
2ðℏcÞ2 ; ð6Þ

where ℏ is the reduced Planck constant. The constant ρ̄ is
usually expressed in the units of deg =½mm ðeVÞ2�] and can
be directly compared to experimental measurements.
To make further progress, we shall express the dielectric

function in the low-frequency limit as a second derivative
of the ground state energy with respect to two spatially
modulated electric fields (E) [35]

ϵαβðqÞ ¼ δαβ −
4π

Ω
E
EαEβ
q : ð7Þ

This allows us to write the natural optical activity tensor as
the first derivative of ϵαβðqÞ with respect to qγ ,

ηαβγ ¼ −
4π

Ω
ImE

EαEβ
γ ; E

EαEβ
γ ¼ ∂E

EαEβ
q

∂qγ

����
q¼0

; ð8Þ

where Ω is the volume of the unit cell. By virtue of the

“2nþ 1” theorem [31], E
EαEβ
γ can be written in terms of

uniform-field response functions, which are already avail-
able in public first-principles packages like ABINIT. More
specifically, we find

E
EαEβ
γ ¼ E

EαEβ

elst;γ þ 2s
Z
BZ
½d3k�EEαEβ

k;γ ; ð9Þ

where s ¼ 2 is the spin multiplicity, and the shorthand
notation ½d3k� ¼ Ω=ð2πÞ3d3k is used for the Brillouin-zone
(BZ) integral. [We assume that the system under study is a
TR symmetric insulator.] The electrostatic (elst) term is
defined as

E
EαEβ
elst;γ ¼

Z
Ω

Z
nEαðrÞKγðr; r0ÞnEβd3rd3r0; ð10Þ

where nEβ is the first-order charge density response to Eβ,
and Kγðr; r0Þ is the first q derivative of the Hartree
exchange and correlation kernel. The wave function term
of Eq. (9), in turn, can be written as

E
EαEβ

k;γ ¼ X
EαkγEβ
k þ Y

EαEβkγ
k þ Y

kγEαEβ
k

þWα;βγ
k þ ðWβ;αγ

k Þ�: ð11Þ

We shall explain Eq. (11) term by term in the following.
For three generic perturbations, λ1, λ2, and λ3, the

calligraphic symbols in the first line are defined as

X λ1λ2λ3
k ¼

X
m

huλ1mkjĤλ2
k juλ3mki ð12Þ

and
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Yλ1λ2λ3
k ¼ −

X
mn

huλ1mkjuλ3nkihuð0Þnk jĤλ2
k juð0Þmki: ð13Þ

(The band indices m, n run over the occupied states only.)
Here, juλmki are the first-order wave functions and the first-

order calligraphic Hamiltonian is given by Ĥλ
k ¼ Ĥλ

k þ V̂λ,
where Ĥλ

k is the external perturbation and V̂λ is the SCF

potential response. Note that Ĥ
kγ
k ¼ Ĥ

kγ
k as there is no SCF

contribution to the derivative in k space, and ĤEα
k ¼ V̂Eα in

the above equations since the “external potential” is a
purely cross-gap operator in the electric-field case [31].
The third line is defined as

Wα;βγ
k ¼

X
m

ihuEαmkjuAβ

mk;γi; ð14Þ

where juAβ

mk;γi indicates the wave function response to an
electromagnetic vector potential at first order in the
modulation vector q. (See Sec. V of Ref. [36] for more
details.) We can writeW as a sum of two contributions that
are, respectively, symmetric (Sα;βγ

k ) and antisymmetric
(Aα;βγ

k ) with respect to β ↔ γ exchange,

Wα;βγ
k ¼ Sα;βγ

k þAα;βγ
k : ð15Þ

These objects are given by

Sα;βγ
k ¼ i

2

X
m

huEαmkj∂2βγuð0Þmki ð16Þ

and

Aα;βγ
k ¼ 1

2

X
m

ϵδβγhuEα
mkjuBδ

mki: ð17Þ

In Eq. (16), ∂2βγ represents a second derivative in k space.

The j∂2βγuð0Þmki functions in S are the well known d2=dkβdkγ
wave functions [31,45,46]; whereas in Eq. (17), juBδ

mki is the
wave function response to a uniform orbital magnetic field,
Bδ, as defined in Refs. [47,48].
For finite systems, the above theory nicely recovers the

established formulas that are used in quantum chemistry
calculations (more details can be found in Sec. VII of
Ref. [36]). Our formulation, however, presents many
crucial advantages. First, Eq. (9) has been derived within
a DFPT framework, and hence avoids the cumbersome
summations over unoccupied states that are required by
other methods. Second, all contributions to Eq. (11) are
individually independent of the choice of the origin, and
equally valid for both molecules and extended crystals; this
implies that our formulas are free of cancellation errors due
to incomplete basis sets. Third, all the aforementioned
terms are independent of the choice of the wave function

gauge by construction, as they are all expressed as para-
metric derivatives (with respect to q) of multiband gauge-
invariant quantities. Fourth, the treatment of the current-
density response in the presence of nonlocal pseudopoten-
tials complies with the prescriptions of Ref. [28]. Finally,
and most importantly, SCF terms naturally appear in our
formalism, both directly in Eelst and Y (both terms vanish if
local fields are neglected), and indirectly in the other terms
via the first-order wave functions juEαmki (see Sec. VI
of Ref. [36]).
A natural question to ask at this point is whether Eq. (11)

is unique, or whether there are other combinations of the
same ingredients that yield the same result. Two inequi-
valent definitions of E

E�αEβ
k;γ can, at most, differ by a

vanishing Brillouin-zone integral; so the question boils
down to asking whether we can combine the individual
pieces in Eq. (11) in such a way that the result is the total k
derivative of some function fðkÞ. An obvious choice for
fðkÞ consists in identifying it with the k derivative of
the macroscopic dielectric tensor. Indeed, by applying the
2nþ 1 theorem to the stationary expression [35,49,50] for

E
E�αEβ
k;q¼0, we find

∂E
E�αEβ
k;q

∂kγ

����
q¼0

¼ X
EαEβkγ
k þ X

kγEαEβ
k þ X

EαkγEβ
k

þ Y
EαEβkγ
k þ Y

EαkγEβ
k þ Y

kγEαEβ
k

þ 2Sα;βγ
k þ 2ðSβ;αγ

k Þ�: ð18Þ

Then, by subtracting the latter expression from Eq. (11), we
obtain another equally valid formula for the NOA,

½EEαEβ
k;γ �0 ¼ −ðXEαEβkγ

k þ X
kγEαEβ
k þ Y

EαkγEβ
k Þ

−Wα;γβ
k − ðWβ;γα

k Þ�: ð19Þ

Numerical tests confirm the consistency of Eqs. (11)
and (19) to a very high degree of accuracy. We therefore
conclude that Eq. (9) is not unique; on the contrary, there
are infinite possible definitions of the gyrotropy tensor,
differing from our Eq. (9) by a dimensionless constant
times Eq. (18).
This arbitrariness can be regarded a direct consequence

of the electromagnetic (EM) gauge freedom. Indeed, the
last lines in both Eqs. (11) and (19) have the physical
meaning of Berry curvatures in the parameter space
spanned by a uniform magnetic field (B) and an electric
field. Such curvatures are, as we said, insensitive to the
choice of the coordinate origin and the wave function
gauge. This result was achieved by expressing the B-field
response function in a cell-periodic form, consistent
with the density-operator theory of Essin et al. [47].
Notwithstanding these undeniable advantages, the afore-
mentioned Berry curvatures retain an inherent dependence
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on the EM gauge [51]. More specifically, the symbolWα;βγ

is expressed in a Landau gauge where the β component of
the A field increases linearly along γ; so when going from
Eqs. (11)–(19) we have essentially switched between two
Landau gauges in the last term, and collected the leftovers
in the form of X and Y. [It is, of course, possible to define a
third variant of Eq. (11), where the contribution of S
cancels out, at the expense of having a slightly longer list of
X and Y symbols.] Ideally, one would like to exploit this
freedom to obtain a physically intuitive separation between
well-defined (and possibly individually measurable) physi-
cal effects; whether such a choice exists is an interesting
open question, which we shall defer to a later work.
Our first principles calculations are performed with the

open-source ABINIT [33,34] package. (Details of the com-
putational parameters are provided in Sec. I of Ref. [36].)
Overall, our approach displays a remarkably fast conver-
gence with respect to the main computational parameters
(plane-wave energy cutoff and number of k points, see
Ref. [36], Sec. III). In Table I we show the converged
numerical values for the independent components of the
gyration tensor and the optical rotatory power in our test set
of trigonal crystals: trigonal Se, α-HgS, and α-SiO2

(numerical values in brackets are obtained neglecting
SCF terms). Our results are in fairly good agreement with
literature values, even if a scissor operator was applied in
Ref. [27] to correct the local-density approximation (LDA)
band gap. (More details can be found in Ref. [36], Sec. IV.)
Trigonal Se is an interesting exception, in that Ref. [27]
reports an opposite sign to ours for the non-SCF value of
the g33 component; although the reason for this discrepancy
is unclear, we remain confident in the accuracy of our
results, as other values nicely agree with ours in both
magnitude and sign. Overall, our results confirm the crucial
importance of local-field SCF contributions, consistent
with the conclusions of Ref. [27].
Given the large impact of SCF fields on the results, we

decided to repeat our calculations within the Perdew-Burke-
Ernzerhof (PBE) [52] parametrization of the generalized
gradient approximation (GGA). The corresponding values
are reported in Table II. (Further details can be found in
Ref. [36], Sec. II.) Interestingly, for a given crystal structure
the choice between the LDA and GGA seems to have a
relatively small influence on the calculated coefficients,

except for the g33 component of Se where such deviation
reaches ∼50%. Conversely, the structural parameters do
appear to have a significant impact on the final result. To
account for this fact, we have tested various models for the
crystal structure, either using the experimental (exp) one, or
relaxed tomechanical equilibrium (either within the LDA or
GGA). Our analysis shows that the fundamental gap
depends on the volume of the unit cell, and such a
dependence has a strong impact on the calculated g-tensor
components. For example, in the LDA equilibrium structure
of Se the electronic band gap is so small that wewere unable
to converge g11 and g33 to meaningful values. Conversely,
even if the PBE parametrization of the GGA displays a
significant overcorrection of the equilibrium volume, it
yields results that are in much closer agreement with the
experiment. To rationalize this outcome, note that the
PBE parametrization yields an aspect ratio (c=a ¼ 1.13)
that almost perfectly matches the experimental value
(c=a ¼ 1.14), while the relaxed LDA value (c=a ¼ 1.30)
is clearly incorrect. It is also interesting to note that theNOA,
unlike other linear-response properties (e.g., the dielectric
tensor), has a nontrivial dependence on the structure (and
hence on the amplitude of the gap). The final result
originates from the mutual cancellation of several terms,
not all of which are expected to diverge in the metallic limit.
This means that some components of g may change rather
dramatically with structure, while others remain essentially
unaltered (see Sec. II of Ref. [36] for more details).
We now focus on the isolated molecule C4H4O2.

Table III shows our computed gyration tensor (multiplied
by the volume of the simulation cell Ω), with and without
SCF terms; as in crystals, the latter have a huge impact on
some components. We also report the optical rotatory
parameter β, which in molecular systems relates to the
rotatory power αðωÞ via [53,54]

αðωÞ ¼ NAω
2

Mc2
β; β ¼ Ω

4π

1

2

X
a

1

3
gaa: ð20Þ

TABLE I. Calculated independent components of the gyration
tensor (in bohr) and the optical rotatory power ρ defined in Eq. (6)
(in deg =½mm ðeVÞ2� units). Values in brackets are computed
neglecting the SCF terms.

g11 g33 ρ̄

Se −1.307 (−1.547) −1.913 (−0.458) −74.5 (−17.8)
α-HgS 0.775 (0.554) −1.861 (−1.274) −72.5 (−49.6)
α-SiO2 −0.071 (−0.001) 0.125 (0.019) 4.9 (0.7)

TABLE II. Comparison between the LDA and GGA for the
independent components of the gyration tensor for Se, α-HgS,
and α-SiO2, for different structures. In the Structure column,
“exp” refers to the experimental structure, while Se (LDA) means
that the structure was relaxed with the LDA, for example.

g11 (bohr) g33 (bohr)

Structure LDA GGA LDA GGA

Se(exp) −1.306 −1.301 −1.910 −1.329
Se(GGA) −1.408 −1.431 −1.802 −1.216
α-HgS (LDA) 0.775 0.663 −1.861 −1.645
α-HgS (GGA) −0.716 −0.692 −0.065 −0.065
α-SiO2 (LDA) −0.071 −0.071 0.125 0.125
α-SiO2 (GGA) −0.085 −0.085 0.168 0.167
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Here NA is the Avogadro number and M is the molar mass
of the molecule. Our computed value of β almost exactly
matches the value of β ¼ −2.29 that was reported in
Ref. [55]. Although such a level of agreement gives us
confidence in the correctness of our implementation, it may
be to some extent coincidental, given the differences in our
respective approximations and computational schemes.
In summary, we have presented a formulation of optical

dispersion within the framework of density-functional
perturbation theory. Our methodology brings the first-
principles calculation of the gyration tensor to the same
level of accuracy and computational ease as standard linear-
response properties, e.g., the dielectric tensor. We have also
discussed some formal aspects of the theory, e.g., the
nonuniqueness of Eq. (9), which we relate to the gauge
freedom of electromagnetism. As an outlook, a natural
step forward consists in generalizing our method to finite
frequencies, and to magnetic materials with broken time-
reversal symmetry; progress along these lines will be
presented in a forthcoming publication.
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