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Theoretical calculations predict the anisotropic dissipationless circulating current induced by a spin
defect in a two-dimensional electron gas. The shape and spatial extent of these dissipationless circulating
currents depend dramatically on the relative strengths of spin-orbit fields with differing spatial symmetry,
offering the potential to use an electric gate to manipulate nanoscale magnetic fields and couple magnetic
defects. The spatial structure of the magnetic field produced by this current is calculated and provides a
direct way to measure the spin-orbit fields of the host, as well as the defect spin orientation, e.g., through
scanning nanoscale magnetometry.
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Single spins associated with point defects in solid-state
materials are promising candidates for qubits and novel
quantum spintronic devices for communication, sensing,
and information processing [1–5]. Isolated magnetic dop-
ants embedded in two-dimensional electron gases (2DEGs)
with spin-orbit coupling (SOC) can be electrically and
optically addressed [6–8] and coherently manipulated.
Control of the relative phases of defect spin wave functions
through manipulation of the spin-spin coupling enables
spin-based quantum computation [1–3]. To date most spin-
spin couplings are achieved either through dipolar magnetic
fields arising from the spin [9,10], which are difficult to
tune, or through photonic coupling [11], which is effective
for much longer distances. The magnetic moment of a bare
spin is modified by the spin-orbit interaction of the host,
leading to proposals for single-spin control via g tensor
manipulation [12–19], however, the effects on nanoscale
dipolar fields and the consequences for coupling spins
remain unexplored.
Here we derive the dissipationless circulating current

surrounding a spin embedded in a 2DEG with spin-orbit
coupling, and show that these effects are significant and
their anisotropic spatial structure is detectable by current
nanoscale magnetometry [20–23]. The spin-orbit inter-
action in a 2DEG can be modified with a perpendicular
electric field (without dissipative current flow) thus we
further propose that modifying these magnetic fields
provides a method of electrically tuning spin-spin inter-
actions to produce quantum entangling gates. Our results
rely on a derivation of the 2DEG’s current operator that
identifies the critical role of effective spin-orbit vector
potentials in correctly producing currents that are dissipa-
tionless. We compare diverse hosts for these phenomena
including semiconductor quantum wells (QWs) and surfa-
ces (e.g., the electron accumulation layer in InAs [24–26]),

oxide interfaces (e.g., LaAlO3=SrTiO3 [27]), atomically
thin materials (e.g., BiSb [28] and WSeTe [29]) and
films (e.g., LaOBiS2 [30]). Our expressions for circulating
currents connect to other fundamental features of an
electron gas interacting with localized magnetic moments,
including Friedel oscillations of charge and spin densities
[31,32], the Dzyaloshinskii-Moriya interaction [33], and
long-range Ruderman-Kittel-Kasuya-Yosida (RKKY)
[34–37] interactions between defects. Measurement of the
spatial structure of this current can be achieved by probing
the magnetic fringe field above the surface with nanoscale
scanning magnetometry [e.g., using nitrogen-vacancy (NV)
centers in diamond [20–23] ], which have achieved spatial
resolution in the nanometer range and field sensitivity (tens
to hundreds of nT), on the order of the features calculated
here. Another option relies on recent advances in electron
ptychography for direct sensing [38].
Central to our results is the derivation of the current

operator associated with the effective Hamiltonian describ-
ing a 2DEG with SOC in a noncentrosymmetric material,

H ¼ ℏ2k2

2m� þ αðσxky − σykxÞ þ βðσxkx − σykyÞ: ð1Þ

The spin-orbit fields linear in crystal momentum k emerge
from both the crystal’s bulk inversion asymmetry (BIA,
with coefficient β) [39] and the inversion asymmetry of the
heterostructure (SIA, with coefficient α, which can be tuned
by applied electric fields perpendicular to the 2DEG plane)
[40]. We derive the current operator (see Supplemental
Material [41]) from the steady-state continuity equation
∂tnþ∇ · j ¼ 0 and group the spin-orbit terms together in
an effective spin-dependent vector potential Aso. The
expected value of the charge current is evaluated using
the Green’s function (GF) scattering formalism,
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where G0ðr; r0Þ are the 2DEG retarded GFs, tσ are the
defect T-matrix elements with spin projection σ, Eso is the
energy minimum of the 2DEG, Ef is the Fermi energy
(determined by the electron density n), and the effective
vector potential

Aso ¼
ℏkso
e

f½σx cos ðθ − τÞ − σy sin ðθ þ τÞ�r̂
þ½σx sin ðθ − τÞ − σy cos ðθ þ τÞ�θ̂g; ð3Þ

with τ ¼ tan−1 ðα=βÞ and kso ¼ ðm�=ℏ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

p
.

The retarded Green’s function from Eq. (1) is [43]

g0ðk;EÞ ¼
�
2m�

ℏ2

� ðk2E − k2Þσ0 − 2ksok½Uxσx −Uyσy�
k4E − 2k2½k2E þ 2k2sofτðθkÞ� þ k4

ð4Þ

where k2E ¼ 2m�E=ℏ2 and fτðθkÞ ¼ 1þ sin ð2τÞ sin ð2θkÞ.
The poles of the Green’s function correspond to Fermi
contours of the two spin-split subbands at energy E and are
obtained from the roots of the denominator,

k� ¼Q� kso
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fτðθkÞ

p
; Q¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2E þ k2sofτðθkÞ

q
: ð5Þ

The representation of the GF in real space is obtained by
Fourier transform of Eq. (4),

G0ðr;EÞ ¼ −
m�

2π2ℏ2

Z
θþπ=2

θ−π=2
dθk

�
σ0
Q

½kþI1ðkþρÞ þ k−I1ðk−ρÞ� − i
½Uxσx −Uyσy�

Q
ffiffiffiffiffi
fτ

p ½kþI2ðkþρÞ − k−I2ðk−ρÞ�
�
; ð6Þ

where ρ ¼ r cosðθk − θÞ, Ux ¼ cosðθk − τÞ, Uy ¼
sin ðθk þ τÞ, and I1=2ðk�ρÞ are closed-form functions
[43]. Changes in the convexity of the outer contour,
kþðθk; τÞ, for a given energy E ¼ ℏ2k2E=2m

�, are driven
by the SOC ratio τ through fτðθkÞ and produce important
consequences for electronic properties in real space, such as
enhanced electron beam formation for transport along
symmetry axes [43].
We now embed a defect with spin employing the Dyson

equation for the new GF perturbed by a magnetic potential.
For simplicity we assume a δ-function scattering potential
centered at the defect position, although our treatment is
easily generalized to more complex situations. At low
energies, the electron wavelength is much larger than the
effective size of the target potential. Taking the lowest order
in the partial wave expansion (s-wave approximation), the
T matrix assumes the form [44],

tσ ¼
�
4iℏ2

m�

�
½eð2iδσÞ − 1�; ð7Þ

where the scattering phase shift of the spin channel σ, δσ, is
related to the defect local density of states (LDOS) through
the Friedel sum rule [31] and encodes its charge and spin
state. This appears in the Dyson equation via

Gðr; r0;EÞ ¼ G0ðr; 0;EÞTG0ð0; r0;EÞ; ð8Þ

where Gðr; r0;EÞ is the GF for the system with the defect.

Here we assume an energy independent T matrix for a
spin-polarized defect with magnetization fixed along the
out-of-plane axis (z axis) where the spin-down state is fully
occupied with a LDOS peak below the Fermi energy and
thus the spin-down electrons do not participate in scattering
processes (δ↓ ¼ 0) while the spin-up channel has a LDOS
peak centered at the Fermi energy, and δ↑ ¼ π=2.
We now show results for a 2DEG formed by the electron

accumulation layer at a InAs(001) surface [24] using
kso ¼ 0.2 nm−1, Ef ¼ 10 meV, and m� ¼ 0.023m0. The
low effective mass, strong spin-orbit coupling, and high
Landé g factor makes this a promising system in which to
detect these orbital features since the current magnitude is
proportional to ðα2 þ β2Þ1=2=m� [Eq. (2)]. Dimensionless
scaling factors for different materials are provided in Table I

TABLE I. For several different materials, the parameters
(effective mass m� and spin-orbit strength α) and the scaling
factors for the spatial dimension (dfac) and magnetic field strength
(Bfac) of the features relative to the values for InAs
(dfac ¼ Bfac ¼ 1). We assume the QW width is 10 nm.

Material m�ðm0Þ α ðmeV nmÞ dfac Bfac

InAs [45] 0.023 50 1.0 1.0
GaAs=AlGaAs [46] 0.067 4.8 3.58 0.096
LAO=STO [27] 2.2 3.4 0.15 0.068
InGaAs=InAlAs [47] 0.05 40.0 0.57 0.8
BiSb [28] 0.002 230 2.5 4.6
LaOBiS2 [30] 0.07 478 0.034 9.56
WSeTe [29,48] 0.81 92 0.015 1.84
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for the spatial dimensions (dfac) and for the magnetic field
strengths (Bfac) in the figures below.
Figure 1 shows the current density induced by a

magnetic defect at the origin (r0 ¼ 0) with spin projection
along the [001] out-of-plane direction, calculated from
Eq. (2). For α ≫ β, corresponding to τ ¼ π=2 (taking the
limit β → 0 in the definition of τ) [Fig. 1(a)], the isotropic
dispersion relation implied by a θk-independent fτ allows
for an analytical solution to Eq. (6) in terms of
Hankel functions of the first kind [32,49]. The current
then has only an angular component and oscillates with two
characteristic lengths, reminiscent of Friedel oscillations,
given by λf ¼ 1=kf, tuned by the Fermi energy through
charge carrier density and λso ¼ 1=kso which is induced by
SOC and is inversely proportional to the applied bias
field.
The emergence of the anisotropy in the dispersion

relation when both α and β are relevant [Figs. 1(b)
and 1(c)] drastically changes the spatial structure of the
circulating current compared to Fig. 1(a), stretching the
features along the symmetry axes. For α=β > 0 a stronger
current density focuses along the θ ¼ 3π=4 direction
[Fig. 1(b)] and rotates by 90° focusing along θ ¼ π=4
when α=β < 0 [Fig. 1(c)], a consequence of an interfering
contribution of stationary points [43]. The currents
are equal but rotate in opposite directions for values of
τ ¼ π=4� δ (τ ¼ π=4 corresponds to α ¼ β), as shown in
Figs. 1(b) and 1(c). This change in rotation would invert the
orbital magnetization around the spin (see Supplemental
Material [41]). We note that when α ¼ β, the extra SU(2)
symmetry implies a fixed spin quantization axis indepen-
dent of k, making the 2DEG GF of Eq. (6) spin diagonal
upon a global spin rotation [50] and thus both contributions
to the current in Eq. (2) vanish.
The spatial structure of the orbital magnetization density

associated with these circulating currents can be calculated
in analogy with classical electrodynamics using [51]

morbðrÞ ¼ ð1=2Þr × jðrÞ; the current density is obtained
from Eq. (2). To compare both the orbital and spin
contributions to the defect-induced magnetization we
calculate the latter by

mspinðrÞ ¼ −
μB
π
Im

Z
Ef

Eso

σGðr;EÞdE; ð9Þ

where μB is the Bohr magneton and σ are the Pauli
matrices. We note that orbital momentum quenching is
reduced for systems with strong spin-orbit coupling,
allowing a comparable orbital magnetization to the spin
magnetization. As shown in Fig. 2, although the spin-orbit
fields alter both orbital and spin magnetization densities
around a magnetic defect, the orbital magnetization has
distinct spatial oscillations and is highly sensitive to the
SOC ratio τ.
The magnetic fringe field above the 2DEG is obtained

from the orbital magnetization density of a quantum well

FIG. 1. Current density induced by a magnetic point defect with spin pointing perpendicular to an InAs 2DEG. (a) SIA dominated
regime (β ¼ 0, τ ¼ π=2) showing angular symmetry. (b)–(d) β ≠ 0; the angularly anistropic circulating current stretches along the
symmetry axis θ ¼ 3π=4 for α=β > 0 [(b),(c)] or along θ ¼ π=4 for α=β < 0 (d). Opposite circulation direction of τ ¼ π=4þ 0.1 (b)
from τ ¼ π=4 − 0.1 (c); current vanishes for τ ¼ π=4 (α ¼ β).

FIG. 2. Orbital (morb) and spin (mz
spin) contributions to the

2DEG magnetization density showing the effects of the current
circulation inversion between τ ¼ π=4 − 0.1 (a) and τ ¼ π=4þ
0.1 (b) along the ½11̄0� direction from a magnetic defect pointing
perpendicular to the 2DEG.
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with width d confined along the z axis under hard-wall
boundary conditions. By using the ground-state electron
envelope function, ϕðzÞ ¼ ð1= ffiffiffi

d
p Þ cos ðπz=dÞ, the previ-

ously calculated two-dimensional current density acquires
a z dependence of cos2 ðπz=dÞ, and a volumetric orbital
magnetization density can be defined inside the quan-
tum well.
In the region outside the magnetized volume, the

magnetic fringe field is evaluated by B ¼ −μ0∇ΦorbðrÞ,
where μ0 ¼ 4π × 10−7 N=A2 is the vacuum permeability
and the scalar magnetic potential is [51]

ΦorbðrÞ ¼
1

4π

Z
dr0

∇ ·morbðr0Þ
jr − r0j : ð10Þ

Figure 3 shows the spatial distribution for each orbital
fringe field component calculated at 20 nm above a 10 nm
InAs QW for this magnetic defect. The largest values are
tenths of μT, within the range of single NV diamond
scanning magnetometry. In the left column [Figs. 3(a), 3(c),
3(e)] the fringe field structure in the SIA dominated regime
(τ ¼ π=2) reflects the radial symmetry of the circulating
current in this regime, and the fields are generated by
concentric current loops with current flowing in opposite
directions. The BIA term induces angular anistropy in the
field distribution [Figs. 3(b), 3(d), 3(f)] providing a direct
signature of the SOC ratio.

The magnitude of the orbital fringe field depends on the
distance measured from the QW, e.g., decreasing fourfold
at a distance of 20 nm from the InAs QWwith respect to the
field magnitude at the surface (Fig. 4), thus the close
proximity achievable by nanoscale scanning probes can
obtain even stronger responses within its sensitivity range.
By adjusting the Fermi energy the magnitude of the fringe
field can be increased but also compresses the orbital
features through λso. The higher magnitude shown for
currents with both SIA and BIA terms (crosses and
blue lines in Fig. 4) occurs from higher currents due to
the SOC-induced focusing effects. Furthermore, choices of
different materials may lead to more detectable effects.
Table I lists a variety of materials with either stronger
magnetic fields or larger-scale spatial features, along with
some more challenging materials that would have both (i.e.,
BiSb). The factors dfac and Bfac are the scaling factors that
should multiply the results shown for InAs (for which these
are unity) to obtain the distances and field strengths for the
other materials. For example, for BiSb the length scale of
the features is 2.5 × bigger and the fields generated are
4.6 × bigger. In Table I we keep the two-dimensional
electron density fixed to be 4 × 1011 cm−2, and note that
the features can also become larger (or smaller) for different
electron densities.
The circulating dissipationless current associated with a

single spin in a 2DEG formed in noncentrosymmetric
materials with SOC creates spatial features highly
sensitive to the underlying tunable spin-orbit field and
the defect-spin direction, a reminiscent of the anisotropic
dispersion relation and Friedel oscillations. Nanoscale
scanning probe magnetometry, or potentially electron

FIG. 3. Orbital fringe field components (a),(b) Bx, (c),(d) By,
and (e),(f) Bz; 20 nm above the surface of an InAs quantum well
with width 10 nm for a magnetic defect pointing perpendicular to
the 2DEG. (a),(c),(e) The SIA dominated regime, τ ¼ π=2. (b),
(d),(f) for τ ¼ π=8. The characteristic lengths, λf and λso, are the
same from (a) to (f).

FIG. 4. Maximum magnitude of the orbital fringe field com-
ponents Bx, By, and Bz and total magnetic field B calculated at
different distances above a 10 nm InAs QW. Shown for β ¼ 0,
τ ¼ π=2 (crosses and blue lines) β ≠ 0, τ ¼ π=8 (circles and
orange lines).
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ptychography, is sufficiently sensitive to measure the
spatially resolved orbital contribution to the magnetic
moment of a single spin. Sensitivities for NV sensors
are better than 250 pT=Hz1=2 [52–54] in ensembles, and
1.3 nT=Hz1=2 for single NVs [55–58]. For a 10 kHz
bandwidth, associated with a spin coherence time of
100 μs, the single-NV sensitivities are thus comparable
to 100 nT. Thus the features predicted in Figs. 3 and 4,
which include many features larger than 100 nT, are well
within the sensitivity range even for coherent spins. For
stable spins a sensitivity of 4.6 nTwith spatial sensitivity of
∼50 nm [56] suggests direct imaging of the features is
possible. Although the interaction strength mediated
by these currents is much smaller than the RKKY inter-
action [41], coupling is still possible through the magnetic
dipole to spins that have weak or absent exchange inter-
action such as f electrons or nuclear spins. The spatial
structure of the defect magnetic moment affects its coupling
to nearby rapidly oscillating fields from, e.g., nuclear spins,
with implications for spin dynamics and coherent control of
single spin states [59].
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